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AN INFINITELY DIVISIBLE DISTRIBUTION
INVOLVING MODIFIED BESSEL FUNCTIONS

MOURAD E. H. ISMAIL1 AND KENNETH S. MILLER

ABSTRACT. We prove that the function

^~v Kli(bxl'*)Ku(axll'1)

(:)* KAùxWyKvQxcW)

is the Laplace transform of an infinitely divisible probability distribution when

v > ß > 0 and b > a > 0. This implies the complete monotonie ity of the

function. We also establish a representation as a Stieltjes transform, which

implies in particular that the function has positive real part when x lies in the

right half-plane. We conjecture that

rby—/Ili(ax1l3)Ii,(bx1l2)

©' /„(fceVa^iax1/3)

also is the Laplace transform of an infinitely divisible probability distribution.

It is known that in the limit as v —► oo, the infinite divisibility property holds

for both functions.

1. Introduction. A probability distribution on [0, oo) is said to be infinitely

divisible if and only if for every natural number n, the nth root of its Laplace

transform is a Laplace transform of a probability distribution. A function / denned

on (0, oo) and of class C°° is said to be completely monotonie if (—l)n/(n)(x) > 0

on (0, oo) for all n. The connection between infinitely divisible distributions and

completely monotonie functions is expressed in the following theorem (see [5, p.

450]):

THEOREM 1. The function w is the Laplace transform of an infinitely divisible

probability distribution on [0, oo) if and only ifw = e~h where h(0-\-) = 0 and hi is

completely monotonie.

In §2 we shall prove the following result:

THEOREM 2.  Let K\ be the modified Bessel function of the second kind. Then

^~u KIÀ(bx1/2)Ku(ax1>'2)
(1.1) F(x ;/i>I/) = G)

ATM(oi1/2)iCl/(6i1/2)
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234 M. E. H. ISMALL AND K. S. MILLER

is the Laplace transform of an infinitely divisible probability distribution when v >

p > 0 and b > a > 0.

As v increases without limit,

Kv(x) ~ (2i/)"-1/2e-l':r;-lV/2

(see, for example [8]). Hence

\" Kß(bx^2)_, .      (b\*K¿bxV*)
F(x-,p!œ) = (-)1^m-y

The limiting case (u —► oo) of Theorem 2 was proved by Ismail and Kelker [9]

using complex variable and special functions methods. Kent [11] and Wendel [14]

independently encountered the same distribution (v = oo) in their studies of Bessel

processes and Brownian motion, and established its infinite divisibility property

by probabilistic methods. Ismail and May [10] provided an integral representation

of the probability density function as the Laplace transform of a transcendental

function. Miller [12, p. 82] proved that F(x; p, v) is monotone decreasing, a result

needed in certain hypothesis testing problems.

In §3 we shall establish an integral representation of F(x; p, v) as a Stieltjes

transform. This implies, for example, that F(z; p, v) has positive real part when z

lies in the right half-plane. The Stieltjes transform seems to play an important role

in infinite divisibility problems, and in the theory of orthogonal polynomials (see

[2, 3, 9, 10]).
We conjecture that if v > p > 0 and b > a > 0, then the function

,ioï et \     fby—UaxV2)!^/2)
(1.2) G(x;p,v) = [-a)       Iií{bxi/2)IÁaxi/2)

is also the Laplace transform of an infinitely divisible probability distribution; here

7\ is the modified Bessel function of the first kind.

As X increases without limit

h(x) ~ (ix)xr-Hx +1)

(see, for example [4, pp. 22 and 23]). Hence

G(x; p, oo)
_ fbYUax1/2)

\a) 7M(taV2)

and the conjecture reduces to a known result, see [9, 10, 14]. In §4 we shall discuss

this conjecture and formulate an equivalent conjecture involving functions that

resemble theta functions.

2. Proof of Theorem 2. Our argument will be to show that

(2.1) h(x) = — ]nF(x;p,v)

has a completely monotonie derivative and that /i(O-f-) = 0. Then we may invoke

Theorem 1 to complete the proof.

Clearly h is well defined since F(x; p, u) is positive on [0, oo).  Now (see [1, p.

375]) as x -> 0 +,
Kv(x)~\T(v)&x)-v,    Rei/>0,

Ko(x) ~ —In x.
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This implies that h(0-\-) = 0 since F(Q-\-;p,v) = 1. Using the recursion relation

[13, p.79]

(2.2) K'v(x) = -Kv-i(x) - vKv(x)/x

we obtain

-2x^2h'(x) - a*M-i(a*1/2) _ ^M-i(to1/a)

(2.3)
^(ax1/2) Ä^fai/a)

K^=i(ax^2).,Kv_1(bxí/2)

TC^ioxVS)     '      Kv(bx^l2)   '

The integral representation [7]

where 7„ and Y"„ are the Bessel functions of the first and second kind, respectively,

enables us to express h' in the form

l2        2    r°°

(2.5) h'(x) =      ~a    /    (xa2 + i)_1(xb2 + t)~ 1(p(t) dt
TT¿        Jo

where

<A(i2) = [JlW + Yl®]-1 - [Jl(t) + Yl(t)]-\
Now, Nicholson's formula [13, p. 444]

8    f°°
(2.6) J?(x) + Yl(x) = -r /     AT0(2x sinh í)cosh 2Xi dt

shows that 72(x) + Y2(x) is a strictly increasing function of X for X > 0 and x a

fixed positive number. Therefore 4>(i) is strictly positive for t > 0; and the integrand

in equation (2.5) is a positive multiple of the completely monotonie function

(t -f- a2x)~ 1(t -\- b2x)—1 (as a function of x). This then implies the complete

monotonicity of h'. Thus the function F(x; p, u) = e~h^ is also completely

monotonie (see Criterion 2 in [5, p. 441]). By Bernstein's theorem [5, p. 439]

we see that F(x; p, v) must be the Laplace transform of a probability distribution

since F(0;p, u) = 1.

Note that in the process of proving Theorem 2 we also have shown that:

COROLLARY. The function F(x; p, v), defined in (1.1), is a completely monotonie

function ofx for v > p > 0 and b > a > 0.

3.   An integral representation.   The purpose of this section is to establish an

integral representation for the function F of Theorem 2.

THEOREM 3.   If K\ is the modified Bessel function of the second kind and of
order \, then

K^bzV^K^az1/*)     ,

K^azi/^Kvibz1/2)

I» + t)\J2M1/2) + n(ati/2)][J2(bii/2) + ya(fci/a)] '

(3.1) = 1   f°°_    _M(t,a,b,p.,v)dt

IT fo

|arg z\ < ir,
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236 M. E. H. ISMAJL AND K. S. MILLER

for p > 0, v > 0, a > 0, b > 0 where

M(t2, a, b, p, v) = [7M(oí)7v(oí) + Y^a^Y^at)}

X [M*)Y¿bt) - Mbt)Yv(H)\

{' ' - [jp{bt)Mbt) + yM(«)y„(&t)]

X [Jv(at)Y^.(at) - J^aQY^at)}

and Jy,, Yv are the Bessel junctions of the first and second kind respectively.

The proof utilizes the representation and inversion theorems for the Stieltjes

transform, namely,

Lemma (Representation Theorem). If
(i) H(z) is analytic for |arg z\ < it ¡a for some a, 0 < a < 1, and

(ii) 77(z) = o(l) as \z\ -» oo and H(z) = o(\z\~*) as \z\ -* 0 uniformly in every

sector |arg z\ < it ¡oí with c/ > a, then

(3.3)        g(l)airjLi/^%
1    ' ()      it Jo    x + t2mJc    ?2 + 7r2      *

where C is a rectifiable closed curve going around [—in, in] in the positive direction

and lying in the strip |Im c| < n/a.

For a proof of this lemma see [6, pp. 210 and 235]. We are now in a position to

prove our theorem.

PROOF OF THEOREM 3. Denote the leftrhand side of (3.1) by H(z). Then
77(z) satisfies condition (i) of the Lemma, for some a > 2/3, because K\(z) has

finitely many zeros and none in the half-plane Re z > 0. For X > 0 we have

K\(z) ~ (n/2z)lf2e~z uniformly as |z| ->• oo in the sector |arg z\ < 3/2 — 6 for

any 6 £ (0,3tt/2), (see [13, p. 203]). As \z\ -> 0 we have Kx(z) ~ èr(X)(£z)-x for
X > 0 and Kn(z) ~ — In 2, (see [1, p. 375]). Hence 77(z) also satisfies condition (ii)
of the Lemma.

The contour integral in (3.3) is now readily seen to be

(3.4) i[77(ie-)-77(ie--)].

Equation (3.1) now follows, for z > 0, from (3.4) and

Kv(ze™'2) = -\ine-™l2[Ju(z) - iYu(z)\

and

Ku(ze-iir'2) = \ine™l2[Jv(z) + iYv(z)],

(see, for example, [4, pp.  4 and 6]).  Finally, (3.1) follows for |arg z\ < n from

z > 0 by analytic continuation.

4. Discussion of conjecture. We shall show that the conjecture made in §1 is

equivalent to the statement that the function

00

(4.1)       e„(x;a,b)=^2 (e~:>'."ax — e-^bx\    0 < a < b,    v > 0,

n=l

is a decreasing function of v, where j„ti  < jUi2 < • • • < jVin < • • • are the

successive positive zeros of the Bessel function of the first kind and order v.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MODIFIED BESSEL FUNCTIONS 237

From (1.2)

„.«d,. ,       7^+1(6xx/2)        7M+1(ox1/2)
-2^2-lnG(x;,,,) = b-^-^-a^-^

(    J Jy+iibx1'2)       Iv+ijax1'2)

Iv(bxl>2)     "r        7l/(oX1/2)

where we have used [13, p. 79]

rx(i) = 7x+i(x) + X7x(x)/x.

An analog of (2.4) is the Mittag-Leffler expansion [4, p. 61]

(4'3) b^-=2z%f+^n)-\      X>-1.

Combining (4.1), (4.2) and (4.3) we get

-±G(x;p,u) =  £ [(x + J2,^-2)-1 - (x + 4«-»)-1]
Tl=l

OO

- E i<*+ilJ-'r' - (*+Ä,„«-2r']

-jf
./o

n=l
CO

e-at[eM(i; 6~2, a"2) - e„(t; 6~2, a~2)} dt
>o

which shows that the conjecture is equivalent to the above-mentioned property of

e„(x;a,&).
The sums appearing in (4.1) resemble theta functions, and, in fact, when v =

i J the function Qu reduces to the difference of two theta functions,

ei/2(x; a, b) = $[03(O, q) - tf3(0, <f)l

6_1/2(x; o, 6) = 4 [i?2(0,9) - t?2(0, rf)],

where ? = e~^ax and g7 = e_ff3¿>x.
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