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An Inflationary Differential Evolution

Algorithm for Space Trajectory Optimization
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Abstract

In this paper we define a discrete dynamical system that governs the evolution of a population of agents. From the

dynamical system, a variant of Differential Evolution is derived. It is then demonstrated that, under some assumptions

on the differential mutation strategy and on the local structure of the objective function, the proposed dynamical system

has fixed points towards which it converges with probability one for an infinite number of generations. This property

is used to derive an algorithm that performs better than standard Differential Evolution on some space trajectory

optimization problems. The novel algorithm is then extended with a guided restart procedure that further increases

the performance, reducing the probability of stagnation in deceptive local minima.

Index Terms

Differential Evolution, Global Trajectory Optimization.

I. INTRODUCTION

Some evolutionary heuristics can be interpreted as discrete dynamical systems governing the movements of a set

of agents (or particles) in the search space. This is well known for Particle Swarm Optimization (PSO) where the

variation of the velocity of each particle in the swarm is defined by a control term made of a social component

and a individual (or cognitive) component [1]–[4]. The social component can be interpreted as a behavior dictated

by the knowledge acquired by the whole swarm of particles, while the cognitive component can be interpreted as

a behavior dictated by the knowledge acquired by each individual particle.

The same principle can be generalized and extended to other evolutionary heuristics such as Differential Evolution

(DE) [5]. The analysis of a discrete dynamical system governed by the heuristics generating the behavior of

individuals in DE, and in Evolutionary Computation in general, would allow for a number of considerations on the
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evolution of the search process and therefore on the convergence properties of a global optimization algorithm. In

particular, four outcomes of the search process are possible:

• Divergence to infinity. In this case the discrete dynamical system is unstable, and the global optimization

algorithm is not convergent.

• Convergence to a fixed point in D. In this case the global optimization algorithm is simply convergent in D and

we can define a stopping criterion. Once the search is stopped we can define a restart procedure. Depending

on the convergence profile, the use of a restart procedure can be more or less efficient.

• Convergence to a limit cycle in which the same points in D are re-sampled periodically. Even in this case we

can define a stopping criterion and a restart procedure.

• Convergence to a strange (chaotic) attractor. In this case a stopping criterion cannot be clearly defined because

different points are sampled at different iterations.

All outcomes are generally interesting to understand the evolution process. Identifying under which conditions

divergence occurs is important to properly design an algorithm, or to define the appropriate setting, in particular in

the case of automatic adaptation of some key parameters. Divergence can be seen as the opposite of the intensification

process and can increase diversity and exploration. The convergence to a chaotic attractor can represent an interesting

case of dense random sampling of an extended region. When this happens, the algorithm repeatedly samples the

same region but never re-samples the same points. This mechanism could be useful to reconstruct an extended set

with a specific property (e.g. f(x) < ε, with f the objective function and ε a threshold).

The main interest, in this paper, is in the most commonly desired outcome: the convergence to a fixed point (see for

example [6], in the context of global root finding, for methods to eliminate undesirable behaviors). The convergence

to a fixed point, even different from an optimum, can be used to induce a restart of the search process with minimum

waste of resources (as it will be demonstrated in this paper).

The analysis of the dynamical properties of the dynamical system associated with a particular heuristic can give some

insights into the balance between global and local exploration and the volume of the search space that is covered

during the search. Extensive work on the dynamics of Genetic Algorithms and general Evolutionary Algorithms

can be found in the studies of Prügel-Bennett et al. [7], [8] and Beyer [9]. Non-evolutionary examples of the use

of dynamical system theory to derive effective global optimization schemes can be found in the works of Sertl and

Dellnitz [10].

In this paper we propose a discrete dynamical system, or discrete map, governing the evolution of a population of

individuals, being each individual a point in a d-dimensional domain D. From the discrete dynamical system we

derive a variant of Differential Evolution and we study its convergence properties. In particular, it is proven that,

under some assumptions, the dynamics of the proposed variant of DE converges to a fixed point or to a level set.

Note that, the proofs proposed in this paper considers the whole d-dimensional discrete dynamical system associated

to the evolution of the population.

The theoretical results are then used to derive a novel algorithm that performs better than DE strategies DE/rand/1/bin

and DE/best/1/bin [11] on some difficult space trajectory design problems. The novel algorithm is based on a
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hybridization of the proposed DE variant and the logic behind Monotonic Basin Hopping (MBH) [12].

The paper is organized as follows: after introducing the dynamics of a population of agents, three convergence

theorems are demonstrated. Then an inflationary DE algorithm based on a hybridization between a variant of DE

and MBH is derived. A description of the test cases and testing procedure follows. After presenting the results of

the tests, the search space is analyzed to derive some considerations on the general applicability of the results.

II. AGENT DYNAMICS

In this section we start by defining a generic discrete dynamical system governing the motion of an agent in a

generic search space D. From this general description we derive a variant of what Storn and Price defined as the

basic DE strategy [11].

If we consider that a candidate solution vector in a generic d-dimensional box,

D = [bl(1) bu(1)]× [bl(2) bu(2)]× ...[bl(d) bu(d)] (1)

is associated to an agent, then the heuristic governing its motion in D can be written as the following discrete

dynamical system:

vi,k+1 = (1− c)vi,k + ui,k

xi,k+1 = xi,k + νS(xi,k + vi,k+1,xi,k)vi,k+1

(2)

with

ν = min ([vmax, vi,k+1]) /vi,k+1 (3)

The function S(xi,k + vi,k+1,xi,k) is a selection operator that can be either 1 if the candidate point xi,k + vi,k+1

is accepted or 0 if it is not accepted. Different evolutionary algorithms have different ways to define S.

The control ui,k defines the next point that will be sampled for each one of the existing points in the solution

space, the vectors xi,k and vi,k define the current state of the agent in the solution space at stage k of the search

process, xi,k+1 and vi,k+1 define the state of the agent in the solution space at stage k + 1 of the search process

and c is a viscosity, or dissipative coefficient, for the process. Eq. (3) represents a limit sphere around the agent

xi,k at stage k of the search process. Different evolutionary algorithms have different ways to define ui,k, ν and c

(see for example the dynamics of PSO [1]). In this paper we will focus on the way ui,k, ν and c are defined in

Differential Evolution.

Now consider the ui,k defined by:

ui,k = e [(xi3,k − xi,k) + F (xi2,k − xi1,k)] (4)

where i1, i2 and i3 are integer numbers randomly chosen in the interval [1, npop] ⊂ N of indexes of the population,

and e is a mask containing a random number of 0 and 1 according to:

e(j) =

{

1⇒ rj ≤ CR

0⇒ rj > CR

(5)
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with j randomly chosen in the interval [1 d], so that e contains at least one nonzero component, d the dimension of

the solution vector, rj a random number taken from a random uniform distribution rj ∈ U [0, 1] and CR a constant.

The product between e and [(xi3,k − xi,k) + F (xi2,k − xi1,k)] in Eq. (4) has to be intended component-wise. The

index i3 can be chosen at random (this option will be called exploration strategy in the remainder of this paper) or

can be the index of the best solution vector xbest (this option will be called convergence strategy in the remainder

of this paper). Selecting the best solution vector or a random one changes significantly the convergence speed of the

algorithm. The selection function S can be either 1 or 0 depending on the relative value of the objective function

of the new candidate individual generated with Eq. (4) with respect to the one of the current individual.

In other words the selection function S can be expressed as:

S(xi,k + ui,k,xi,k) =
{ 1 if f(xi,k + ui,k) < f(xi,k)

0 otherwise
(6)

Note that in this paper we consider minimization problems in which the lowest value of f is sought.

If one takes c = 1, ν = 1 and vmax = +∞, then map (2) reduces to:

xi,k+1 = xi,k + S(xi,k + ui,k,xi,k)ui,k (7)

In the general case the indices i1, i2 and i3 can assume any value. However, if the three indexes i1, i2 and i3 are

restricted to be mutually different, map (7), with ui,k defined in (4), e defined in (5) and S defined in (6), is the DE

basic strategy DE/rand/1/bin defined by Storn and Price in [11]. If i3 is taken as the index of the best individual

ibest, and i1, i2 and i3 are mutually different, then one can obtain the DE strategy DE/best/1/bin. In fact, if (4) is

substituted in (7) one gets:

xi,k+1 = (1− Se)xi,k + Se [(xi3,k + F (xi2,k − xi1,k)] (8)

Now, if the selection function does not accept the candidate point xi,k +ui,k, then S = 0, therefore (8) reduces to

xi,k+1 = xi,k (i.e. the state of the agent remains unchanged). If the candidate point is accepted instead, then the

new location of the agent is:

xi,k+1 = (1− e)xi,k + e [(xi3,k + F (xi2,k − xi1,k)] (9)

The quantity in square brackets is the basic DE strategy DE/rand/1/bin or the variant DE/best/1/bin, respectively

for i3 random or i3 = ibest. The mask e together with (1 − e)xi,k represent the cross-over operator in the basic

DE strategy [11], with 1 a vector of 1’s and the products 1xi,k and exi,k that are both component-wise. In fact,

xi,k+1 is made of the components of xi,k that correspond to the zero elements of e, and the components of

[(xi3,k + F (xi2,k − xi1,k)] that correspond to the nonzero elements of e. If the assumption of mutually different

indexes is dropped then map (7) can be seen as a further variant of the basic DE strategy.

In compact matrix form for the entire population, map (7) can be written as:

Xk+1 = JkXk (10)

with the i-th line of matrix Xk ∈ R
npop×d is point xi,k.
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To be more precise, in the case xi,k+1 ̸∈ D, then every component j violating the boundaries bl and bu is

projected back into D by picking the new value x(j)i,k+1 = bl(j) + ς(bu(j) − bl(j)), where ς is taken from a

random uniform distribution ς ∈ U [0, 1]. The interest is now in the properties of map (10). We start by observing

that if S(xi,k + ui,k,xi,k) = 1⇔ f(xi,k + ui,k) < f(xi,k), for i = 1, ..., npop, the global minimizer xg ∈ D is a

fixed point for map (7) since every point x ∈ D is such that f(x) ≥ f(xg).

Then, let us assume that at every iteration k we can find two connected subsets Dk and D∗

k of D such that

f(xk) < f(x∗

k), ∀xk ∈ Dk, ∀x
∗

k ∈ D∗

k \Dk, and let us also assume that Pk ⊆ Dk while Pk+1 ⊆ D∗

k (recall that

Pk and Pk+1 denote the populations at iteration k and k + 1 respectively). If xl is the lowest local minimum in

Dk, then xl is a fixed point in Dk for map (7). In fact, every point generated by map (7) must be in Dk and

f(xl) < f(x), ∀x ∈ Dk.

Moreover, under the above assumptions the reciprocal distance of the individuals cannot grow indefinitely because

of the map (7), therefore the map cannot be divergent.

Finally, a matrix Xk whose lines are npop replications of a unique point x ∈ D, is always a fixed point for the

map (10).

Now one can consider two variants of Differential Evolution: one in which index i1 can be equal to index i2 but

both are different from i3 and one in which index i1 can be equal to index i3 but both are different from i2. In

these cases two interesting results can be proven. First of all we prove that if i1 can be equal to index i2 then the

population can collapse to a single point in D.

THEOREM II.1 If, for every k, i1 is equal to i2 with strictly positive probability and f(xibest,k) = f(xi,k) ⇔

xibest,k = xi,k(i.e., the set of best points within the population is made up by a single point, multiple copies of

which possibly exist),then the population collapses to a single point with probability 1 for k →∞ under the effect

of the discrete dynamical system (7)

Proof: If i1 is equal to i2 with strictly positive probability, and f(xibest,k) = f(xi,k)⇔ xibest,k = xi,k for every

k, then map (7) at each iteration k can generate, with strictly positive probability, a displacement ui,k = (xi3,k−xi,k)

for each member i, i = 1, . . . , npop. This happens if, for each i ∈ [1, . . . , npop], the following event, whose

probability is strictly positive, occurs

e(s) = 1, s = 1, . . . , d, i3 ̸= i1 = i2.

i3 ∈ {i : f(xi,k) = f(xibest,k)} (11)

Then, at each iteration we have a strictly positive probability that the two or more individuals collapse into the

single point xibest,k and for k →∞ the whole population collapses to a single point with probability one.

After a collapse, the population cannot progress further and needs to be restarted. It is important to evaluate the

probability of a total collapse, in fact if the collapse is progressive the population can keep on exploring but if

the collapse is instantaneous the evolution ceases. Let us analyze the worst case in which, i3 = ibest. Then if for
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all the individuals i1 = i2 and e = 1 we have a total instantaneous collapse. The probability of having i1 = i2

is 1/npop and the probability of having npop − 1 individuals collapsing at the same iteration k is (1/npop)
npop−1.

Furthermore, given a CR ̸= 1 the probability to have e = 1 is Cd−1
R . Thus the total probability of an instantaneous

total collapse is [(1/npop)C
d−1
R ]npop−1. The event has positive but small probability to happen. The complementary

probability is 1− [(1/npop)C
d−1
R ]npop−1 and the probability to have at least one total collapse after kh generations

is 1− {1− [(1/npop)C
d−1
R ]npop−1}kh . Therefore, allowing the indexes to assume the value i1 = i2 introduces the

following interesting property. If the population is stagnating, and the condition f(xibest,k) = f(xi,k)⇔ xibest,k =

xi,k holds true, eventually there will be a total collapse and the population can be restarted with no risk to interrupt

the evolutionary process.

If i1 is equal to i3 with strictly positive probability but both are always different from i2, then convergence to a

fixed point can be guaranteed if the function f is strictly quasi-convex [13] in D, and D is compact and convex. In

other words, under the given assumptions, the population will converge to a single point. We immediately remark

that such point is not necessarily a local minimizer of the problem.

LEMMA II.2 Let f be a continuous and strictly quasi-convex function on a set D and let us assume that D is

compact, convex and is not a singleton. Then, the following minimization problem with F ∈ (0, 1) has a strictly

positive minimum value δr(ϵ) for ϵ small enough:

δr(ϵ) = min g(y1,y2) = f(y2)− f(Fy1 + (1− F )y2)

s.t. y1,y2 ∈ D

∥y1 − y2∥ ≥ ϵ

f(y1) ≤ f(y2)

(12)

Proof:

Since f is strictly quasi-convex g(y1, y2) > 0, ∀y1, y2 ∈ D; furthermore, the feasible region is nonempty (if ϵ

is small enough and D is not a singleton) and compact. Therefore, according to Weierstrass’ theorem the function

g attains its minimum value over the feasible region. If we denote by (y∗

1,y
∗

2) a global minimum point of the

problem, then we have

δr(ϵ) = g(y∗

1,y
∗

2) > 0. (13)

THEOREM II.3 Assume that index i1 can be equal to i3. Given a function f that is strictly quasi-convex over

the compact and convex set D, and a population Pk ∈ D, then if F ∈ (0, 1) and S(xi,k + ui,k,xi,k) = 1 ⇔

f(xi,k + ui,k) < f(xi,k), for i = 1, ..., npop , the population Pk converges to a single point in D for k →∞ with

probability one.

Proof: By contradiction let us assume that we do not have convergence to a fixed point. Then, it must hold
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that:

inf
k
max

{

∥xi,k − xj,k∥, i, j ∈ [1, ..., npop]
}

≥ ϵ > 0 (14)

At every generation k the map can generate with a strictly positive probability, a displacement F (xi∗,k − xj∗,k)

for xj∗,k, where i∗ and j∗ identify the individuals with the maximal reciprocal distance, such that the candidate

point is xcand = Fxi∗,k + (1 − F )xj∗,k with f(xi∗,k) ≤ f(xj∗,k). Since the function f is strictly quasi-convex,

the candidate point is certainly better than xj∗,k and, therefore, is accepted by S. Now, in view of Eq. (14) and of

Lemma (II.2) we must have that,

f(xcand) ≤ f(xj,k)− δr(ϵ) (15)

Such reduction will occur with probability one infinitely often, and consequently the function value of at least one

individual will be, with probability one, infinitely often reduced by δr(ϵ). But in this way the value of the objective

function of such individual would diverge to −∞, which is a contradiction because f is bounded from below over

the compact set D.

If a local minimum satisfies some regularity assumptions (e.g., the Hessian at the local minimum is definite positive),

then we can always define a neighborhood such that: (i) map (7) will be unable to accept points outside the

neighborhood; (ii) the function is strictly convex within the neighborhood. Therefore, if at some iteration k the

population Pk belongs to such a neighborhood, we can guarantee that map (10) will certainly converge to a fixed

point made up by npop replications of a single point belonging to the neighborhood. For general functions, we

can not always guarantee that the population will converge to a fixed point, but we can show that the maximum

difference between the objective function values in the population converges to 0, i.e. the points in the population

tend to belong to the same level set. The proof is closely related to that of Theorem II.1 and we still need to assume

that indices i1 and i2 can be equal.

THEOREM II.4 Assume that index i1 can be equal to i2. Given a function f , limited from below over D, and a

population Pk ∈ D, then if F ∈ (0, 1) and S(xi,k +ui,k,xi,k) = 1⇔ f(xi,k +ui,k) < f(xi,k), for i = 1, ..., npop

, the following holds

max
i,j∈[1,...,npop]

| f(xj,k)− f(xi,k) |→ 0, (16)

as k →∞ with probability one.

Proof: Let S∗

k denote the set of best points in population Pk, i.e.

S∗

k =
{

xj,k : f(xj,k) ≤ f(xi,k) ∀ i ∈ [1, . . . , npop]
}

(17)

At each iteration k there is a strictly positive probability that the whole population will be reduced to S∗

k at the

next iteration. To show this it is enough to substitute the condition stated in (11) with the following condition

i3 ∈ {i : xi,k ∈ S∗

k}
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(basically, with respect to Theorem II.1, we only drop the requirement that at each iteration the best value of the

population is attained at a single point).

In other words, there is a strictly positive probability for the event that the population at a given iteration will be

made up of points all with the same objective function value. Therefore, such an event will occur infinitely often

with probability one. Let us denote with {kh}h=1,... the infinite subsequence of iterations at which the event is

true, and let

∆h = f(xi,kh
)− f(xi,kh+1

) (18)

be the difference in the objective function values at two consecutive iterations kh and kh+1 (note that, since at

iterations kh, h = 1, . . . the objective function values are all equal and any i can be employed in the above

definition). It holds that for all i, j ∈ [1, . . . , npop]

| f(xj,k)− f(xi,k) | ≤ ∆h ∀ k ∈ [kh, kh+1] (19)

Therefore, if we are able to prove that ∆h → 0, as h→∞, then we can also prove the result of our theorem. Let

us assume by contradiction that ∆h ̸→ 0. Then, there will exist a δ > 0 such that ∆h ≥ δ infinitely many times.

But this would lead to function values diverging to −∞ and, consequently, to a contradiction.

As a consequence of these results, for the choice of the index i1, i2 and i3 non-mutually different, a possible

stopping criterion for the dynamics in Eq. (7) would be to stop when the difference between the function values

in the population drops below a given threshold. However, this could cause a premature halt of the evolutionary

process. Indeed, even if at some iteration the function value at all points of the population is equal, this does not

necessarily mean that the algorithm will be unable to make further progress (unless all points in the population are

multiple copies of a unique point). Therefore, since the evolution definitely ceases when the population contracts to

a single point, we can alternatively use as a stopping criterion the fact that the maximum distance between points

in the population drops below a given threshold.

It is important to observe that the contraction of the population does not depend on whether the function f is

minimized or maximized but depends only on the definition of S and on whether the function is bounded or

unbounded.

To further verify the contraction properties of the dynamics in Eq. (7) one can look at the eigenvalues of the matrix

Jk.

If the population cannot diverge, the eigenvalues cannot have a norm always > 1. Furthermore, according to

Theorem II.3 if the function f is strictly quasi-convex in D, the population converges to a single point in D, which

implies that the map (7) is a contraction in D and therefore the eigenvalues should have a norm on average lower

than 1. This can be illustrated with the following test: Consider a population of 8 individuals and a D enclosing

the minimum of a paraboloid with the minimum at the origin. For a CR=1.0 and F=0.8, we compute, for each step

k, the distances of the closest and farthest individuals from the local minimum and the eigenvalues of the matrix

J. Fig. 1 shows the behavior of the eigenvalues and of the distance from the origin. From the figure, we can see

that for all iterations, the value of the norm of all the eigenvalues is in the interval [0, 1] except for one eigenvalue
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Fig. 1. Contraction of map (10): a) max and min distance of the individuals in the population from the origin, b) eigenvalues with the number

of evolutionary iterations.

at iteration 12. However, since every expansion is not accepted by the selection function S and for each iteration

a number of eigenvalues have modulus lower than 1, the population contracts as represented in Fig. 1(a).

If multiple minima are contained in D, then it can be experimentally verified that the population contracts to a

number of clusters initially converging to a number of local minima and eventually to the lowest among all the

identified local minima.

The local convergence properties of map (7) suggest its hybridization with the heuristic implemented in Monotonic

Basin Hopping (MBH).

MBH, first introduced in [14] in the context of molecular conformation problems) is a simple but effective global

optimization method. At each iteration MBH: (i) generates a sample point within a neighborhood of size 2∆ of the

current local minimum (e.g., by a random displacement of each coordinate of the current local minimum); (ii) starts

a local search from the newly generated sample point; (iii) moves to the newly detected local minimum only if its

function value is better than the function value at the current local minimum. The initial local minimum is usually

randomly generated within the feasible region. Moreover, if no improvement is observed for a predetermined number

of sample points nsamples, a restart mechanism might be activated. The neighborhood of the local minimum xl is

defined as [xl −∆,xl +∆]d. A proper definition of ∆ is essential for the performance of MBH: too small a size

would not allow MBH to escape from the current local minimum, while too large a value would make the search

degenerate in a completely random one. The local search performed at each iteration can be viewed as a dynamical

system where the evolution of the systems at each iteration is controlled by some map. Under suitable assumptions,

the systems converge to a fixed point. For instance, if f is convex and C2 in a small enough domain containing a

local minimum which satisfies some regularity conditions, Newton’s map converges quadratically to a single fixed

October 5, 2010 DRAFT



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 10

point (the local minimum) within the domain. This observation leads to the above mentioned hybridization of DE

with MBH: the dynamical system corresponding to a local search is replaced by the one corresponding to DE.

More precisely, if map (7), either for a cluster Psub ⊆ Pk or for the entire population Pk, contracts, we can define

a bubble Dl ⊆ D, around the best point within the cluster xbest, and re-initialize a subpopulation Psub in Dl. Such

operation is performed as soon as the maximum distance ρA = max(∥xi−xj∥) among the elements in the cluster

collapses below a value tolconvρA,max, where ρA,max is the maximum ρA recorded during the convergence of the

map (10).

In order to speed up convergence, the best solution xbest of the cluster is refined through a local search started at it,

leading to a local minimum xl, which is saved in an archive Ag . The bubble is defined, similarly to the neighborhood

of MBH, as Dl = [xl − ∆ xl + ∆]d. The overall process leads to Algorithm 1. Note that the contraction of the

population given, for example, by the metric ρA, is a stopping criterion that does not depend explicitly on the value

of the objective function but on the contractive properties of the map in Eq. (7). Some remarks follow.

1. Convergence of DE to a single point can not always be guaranteed, and consequently, we can not always

guarantee that the contraction condition ρA ≤ tolconvρA,max will be satisfied at some iteration. Therefore, in

order to take into account this possibility, we need to introduce a further stopping criterion for DE, such as

a maximum number of iterations. We point out, however, that such alternative stopping criterion has never

become active in our experiments.

2. Even when DE converges to a single point, this is not guaranteed to be a local minimum. For this reason we

always refine the best observed solution through a local search.

3. If the search space is characterized by a single funnel structure [15], the restart of the population in the bubble

allows the algorithm to move towards the global optimum by progressively jumping from one minimum to a

better one. On the other hand, if multiple funnels or multiple isolated minima exist, a simple restart of the

population inside a bubble might not be sufficient to avoid stagnation. A way to overcome this problem is

to use global re-sampling: when the value of the best solution does not change for a predefined number of

iterations iunmax, the population is restarted. The restart procedure collects the solutions in the archive into

nc clusters with baricenter xc,j for j = 1, ..., nc, then each agent xi of the new population is generated so that

∥xi−xc,j∥ > δc. Note that a restart mechanism for DE was previously proposed also by Peng et al. [16] in a

variant of the adaptive Differential Evolution JADE. However, in the work of Peng et al. the restart criterion

and restart strategy are substantially different from the ones proposed here. For example, although we record

the local minima in an external archive, we do not prevent the algorithm from searching in the surroundings

of the recorded minima. On the contrary, we combine a local restart in a bubble surrounding the final point

returned by DE, according to the heuristics of MBH, with a more global restart sampling outside the bubbles.

A complete review of the existing variants of Differential Evolution can found in the work of Neri et al.

[17]. Other restart mechanisms have recently been adopted to improve other evolutionary algorithms such as

G-CMAES [18] or hybrid methods [19], but also in these cases the restart criterion and restart strategy are
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substantially different from the ones proposed here.

4. A question, mainly of theoretical interest, is about convergence. General results stating conditions under which

convergence to the global minimum (with probability 1) is guaranteed can be found, e.g., in [20] and [21].

Such conditions are not fulfilled by standard DE, while IDEA fulfills them if parameter δc employed in the

restart mechanism is ”small enough” (if too large, some portions of the feasible region, possibly including the

global minimum, might remain unexplored). We point out that, although in practice we are not interested in

the behavior of an algorithm over an infinite time horizon, global convergence justifies re-running the search

process with an increased number of function evaluations should the results be unsatisfactory. As we will show

in the remainder of this paper, IDEA produces performance steadily increasing with the number of function

evaluations without the need to change its settings.

III. TRAJECTORY MODEL AND PROBLEM FORMULATION

The modified differential evolution algorithm derived in Section II is applied to the solution of four real world

cases. The four cases are all multigravity assist (MGA) trajectory design problems, three of them with deep space

manoeuvres (DSM) and one with no DSM’s. In this section we describe the trajectory model and we formulate the

global optimization problem that will be tackled through Algorithm 1.

A. Trajectory Model with no DSM’s

Multi-gravity assist transfers with no deep space maneuvers can be modeled with a sequence of conic arcs connecting

a number of planets. The first one is the departure planet, the last one is the destination planet and at all the

intermediate ones the spacecraft performs a gravity assist maneuver. Given NP planets Pi with i = 1, ..., NP − 1,

each conic arc is computed as the solution of a Lambert’s problem [22] given the departure time from planet

Pi and the arrival time at planet Pi+1. The solution of the Lambert’s problems yields the required incoming and

outgoing velocities at a swing-by planet vin and vrout (see Fig. 2). The swing-by is modeled through a linked-conic

approximation with powered maneuvers [23], i.e., the mismatch between the required outgoing velocity vrout and

the achievable outgoing velocity vaout is compensated through a ∆v maneuver at the pericenter of the gravity assist

hyperbola. The whole trajectory is completely defined by the departure time t0 and the transfer time for each leg

Ti, with i = 1, ..., NP − 1.

The normalized radius of the pericenter rp,i of each swing-by hyperbola is derived a posteriori once each powered

swing-by manoeuvre is computed. Thus, a constraint on each pericenter radius has to be introduced during the

search for an optimal solution. In order to take into account this constraint, the objective function is augmented

with the weighted violation of the constraints:

f(x) = ∆v0 +

Np−2
∑

i=1

∆vi +∆vf +

Np−2
∑

i=1

wi(rp,i − rpmin,i)
2 (20)

for a solution vector:

x = [t0, T1, T2, ..., TNP−1]
T (21)
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Fig. 2. Trajectory model with no DSM’s

B. Trajectory Model with DSM’s

A general MGA-DSM trajectory can be modeled through a sequence of NP − 1 legs connecting NP celestial

bodies (Fig. 3) [24]. In particular if all celestial bodies are planets, each leg begins and ends with an encounter

with a planet. Each leg i is made of two conic arcs: the first, propagated analytically forward in time, ends where

the second solution of a Lambert’s problem begins. The two arcs have a discontinuity in the absolute heliocentric

velocity at their matching point M . Each DSM is computed as the vector difference between the velocities along

the two conic arcs at the matching point. Given the transfer time Ti and the variable αi ∈ [0, 1] relative to each

leg i, the matching point is at time tDSM,i = tf,i−1 + αiTi, where tf,i−1 is the final time of the leg i − 1. The

relative velocity vector v0 at the departure planet can be a design parameter and is expressed as:

v0 = v0[sin δ cos θ, sin δ sin θ, cos δ]
T (22)

with the angles δ and θ respectively representing the declination and the right ascension with respect to a local

reference frame with the x axis aligned with the velocity vector of the planet, the z axis normal to orbital plane of

the planet and the y axis completing the coordinate frame. This choice allows for an easy constraint on the escape

velocity and asymptote direction while adding the possibility of having a deep space maneuver in the first arc after

the launch. This is often the case when the escape velocity must be fixed due to the launcher capability or to the

requirement of a resonant swing-by of the Earth (Earth-Earth transfers). In order to have a uniform distribution of

random points on the surface of the sphere defining all the possible launch directions, the following transformation

has been applied:

θ̄ =
θ

2π
δ̄ =

cos(δ + π/2) + 1

2
(23)

It results that the sphere surface is uniformly sampled when a uniform distribution of points for θ̄, δ̄ ∈ [0, 1] is

chosen. Once the heliocentric velocity at the beginning of leg i, which can be the result of a swing-by maneuver or

the asymptotic velocity after launch, is computed, the trajectory is analytically propagated until time tDSM,i. The

second arc of leg i is then solved through a Lambert’s algorithm, from Mi, the Cartesian position of the deep space

maneuver, to Pi, the position of the target planet of phase i, for a time of flight (1− αi)Ti. Two subsequent legs
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Fig. 3. Schematic representation of a multiple gravity assist trajectory

Fig. 4. Schematic representation of a multiple gravity assist trajectory

are then joined together with a gravity assist manoeuvre. The effect of the gravity of a planet is to instantaneously

change the velocity vector of the spacecraft.

The relative incoming velocity vector and the outgoing velocity vector at the planet swing-by have the same modulus

but different directions; therefore the heliocentric outgoing velocity results to be different from the heliocentric

incoming one. In the linked conic model, the spacecraft is assumed to follow a hyperbolic trajectory with respect

to the swing-by planet. The angular difference between the incoming relative velocity ṽi and the outgoing one ṽo

depends on the modulus of the incoming velocity and on the pericenter radius ri. Both the relative incoming and

outgoing velocities belong to the plane of the hyperbola. However, in the linked-conic approximation, the maneuver

is assumed to occur at the planet, where the planet is a point mass coinciding with its center of mass. Therefore,

given the incoming velocity vector, one angle is required to define the attitude of the plane of the hyperbola Π.

Although there are different possible choices for the attitude angle γ, the one proposed in Ref. 7 has been adopted

(see Fig. 4), where γ is the angle between the vector nΠ, normal to the hyperbola plane Π, and the reference vector

nr, normal to the plane containing the incoming relative velocity and the velocity of the planet vP .

Given the number of legs of the trajectory NL = NP − 1, the complete solution vector for this model is:

x =[v0, θ̄, δ̄, t0, α1, T1, γ1, rp,1, α2, T2, ..., (24)

γi, rp,i, Ti−1, αi−1, ..., γNL−1, rp,NL−1, αNL
, TNL

]

where t0 is the departure date. Now, the design of a multi-gravity assist transfer can be transcribed into a general
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nonlinear programming problem, with simple box constraints, of the form:

min
x∈D

f(x) (25)

One of the appealing aspects of this formulation is its solvability through a general global search method for box

constrained problems. Depending on the kind of problem under study, the objective function can be defined in

different ways. Here we choose to focus on minimizing the total ∆v of the mission, therefore the objective function

f(x) is:

f(x) = v0 +

Np
∑

i=1

∆vi +∆vf (26)

where ∆vi is the velocity change due to the DSM in the i-th leg, and ∆vf is the maneuver needed to inject the

spacecraft into the final orbit.

IV. TEST PROBLEMS

We consider a benchmark made of four different test-cases: two versions of the MGA transfer from the Earth to

Saturn of the Cassini-Huygens mission, a multi-gravity assist transfer to the comet 67P/Churyumov-Gerasimenko

(similar to the Rosetta mission), and a multi-gravity assist rendezvous transfer with mid-course manoeuvres to

Mercury (similar to the Messenger mission). Algorithm 1, called IDEA, is applied to the solution of the four cases

and compared to standard Differential Evolution [5] and Monotonic Basin Hopping [14], [25].

A. Cassini with no DSM’s

The first test case is a multi gravity assist trajectory from the Earth to Saturn following the sequence Earth-Venus-

Venus-Earth-Jupiter-Saturn (EVVEJS). There are six planets and the transfer is modeled as in Section III-A, thus

the solution vector is:

x = [t0, T1, T2, T3, T4, T5]
T (27)

The final ∆vf is the ∆v needed to inject the spacecraft into an ideal operative orbit around Saturn with a pericenter

radius of 108950 km and an eccentricity of 0.98. The weighting functions wi are defined as follows:

wi = 0.005[1− sign(rp,i − rpmin,i)], i = 1, ..., 3 (28)

w4 = 0.0005[1− sign(rp,4 − rpmin,4)]

with the minimum normalized pericenter radii rpmin,1 = 1.0496, rpmin,2 = 1.0496, rpmin,3 = 1.0627 and

rpmin,4 = 9.3925. For this case the dimensionality of the problem is six, with the search space D defined by

the following intervals: t0 ∈ [−1000, 0]MJD2000, T1 ∈ [30, 400]d, T2 ∈ [100, 470]d, T3 ∈ [30, 400]d, T4 ∈

[400, 2000]d, T5 ∈ [1000, 6000]d. The best known solution is fbest = 4.9312 km/s, with xbest=[–789.75443770458,

158.301628961437, 449.385882183958, 54.7050296906556, 1024.5997453164, 4552.72068790619]T .
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B. Cassini with DSM’s

The second test case is again a multi gravity assist trajectory from the Earth to Saturn following the sequence Earth-

Venus-Venus-Earth-Jupiter-Saturn (EVVEJS), but a deep space manoeuvre is allowed along the transfer arc from

one planet to the other according to the model presented in Section III-B. Although from a trajectory design point

of view, this problem is similar to the first test case, the model is substantially different and therefore represents

a different problem from a global optimization point of view. Since the transcription of the same problem into

different mathematical models can affect the search for the global optimum, it is interesting to analyze the behavior

of the same set of global optimization algorithms applied to two different transcriptions of the same trajectory

design problem.

Here, ∆vf is defined as the modulus of the vector difference between the velocity of Saturn at arrival and the

velocity of the spacecraft at the same time. For this case the dimensionality of the problem is 22, with the search

space D is defined by the following intervals: t0 ∈ [−1000, 0]MJD2000, v0 ∈ [3, 5]km/s, θ̄ ∈ [0, 1], δ̄ ∈ [0, 1],

T1 ∈ [100, 400]d, T2 ∈ [100, 500]d, T3 ∈ [30, 300]d, T4 ∈ [400, 1600]d, T5 ∈ [800, 2200]d, α1 ∈ [0.01, 0.9],

α2 ∈ [0.01, 0.9], α3 ∈ [0.01, 0.9], α4 ∈ [0.01, 0.9], α5 ∈ [0.01, 0.9], rp,1 ∈ [1.05, 6], rp,2 ∈ [1.05, 6], rp,3 ∈

[1.15, 6.5], rp,4 ∈ [1.7, 291], γ1 ∈ [0, 2π], γ2 ∈ [0, 2π], γ3 ∈ [0, 2π], γ4 ∈ [0, 2π]. The best known solution is

fbest = 8.3889 km/s, xbest=[–780.917853635368, 3.27536879103551, 0.782513100225235, 0.378682006044345,

169.131920055057, 424.13242396494, 53.296452710059, 2199.98648654574, 0.795774035295027, 0.530055267286,

0.126002760289258, 0.0105947672634, 0.0381505843013, 1.35556902792788, 1.05001740672886, 1.30699201995999,

71.3749247783128, 3.15842153037544, 3.53046280721895, 3.12561791754698, 3.08422162979462]T .

C. Rosetta Mission

The third test case is a multi gravity assist trajectory from the Earth to the comet 67P/Churyumov-Gerasimenko

following the gravity assist sequence that was planned for the spacecraft Rosetta: Earth-Earth-Mars-Earth-Earth-

Comet. The trajectory model is the one described in Section III-B but the objective function does not include

v0.

For this case the dimensionality of the problem is 22, with the search space D is defined by the following intervals:

t0 ∈ [1460, 1825]MJD2000, v0 ∈ [3, 5]km/s, θ̄ ∈ [0, 1], δ̄ ∈ [0, 1], T1 ∈ [300, 500]d, T2 ∈ [150, 800]d, T3 ∈

[150, 800]d, T4 ∈ [300, 800]d, T5 ∈ [700, 1850]d, α1 ∈ [0.01, 0.9], α2 ∈ [0.01, 0.9], α3 ∈ [0.01, 0.9], α4 ∈

[0.01, 0.9], α5 ∈ [0.01, 0.9], rp,1 ∈ [1.05, 9], rp,2 ∈ [1.05, 9], rp,3 ∈ [1.05, 9], rp,4 ∈ [1.05, 9], γ1 ∈ [0, 2π],

γ2 ∈ [−π, π], γ3 ∈ [0, 2π], γ4 ∈ [0, 2π].

The best known solution is fbest=1.34229 km/s, with solution vector xbest=[1542.65536672006, 4.48068107888312,

0.935220667497966, 0.9909562486258, 365.24235847396, 707.540858648698, 257.417859715383, 730.483434305258,

1850, 0.310501108489873, 0.809061227121068, 0.0124756484551758, 0.0466967002704, 0.43701236871638, 1.8286351998512,

1.05, 2.80973511169638, 1.18798981835459, 2.61660601734377, –0.215250274241349, 3.57950314115394, 3.46467471264343]T .
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D. Messenger Mission

The fourth problem is a multi-gravity assist trajectory from the Earth to planet Mercury following the sequence of

planetary encounters of the first part of the Messenger mission. As for the previous test case, the trajectory model

is the one described in Section III-B.

For this case the dimensionality of the problem is 18, with the search space D is defined by the following intervals:

t0 ∈ [1000, 4000]MJD2000, v0 ∈ [1, 5]km/s, θ̄ ∈ [0, 1], δ̄ ∈ [0, 1], T1 ∈ [200, 400]d, T2 ∈ [30, 400]d, T3 ∈

[30, 400]d, T4 ∈ [30, 400]d, α1 ∈ [0.01, 0.99], α2 ∈ [0.01, 0.99], α3 ∈ [0.01, 0.99], α4 ∈ [0.01, 0.99], rp,1 ∈ [1.1, 6],

rp,2 ∈ [1.1, 6], rp,3 ∈ [1.1, 6], γ1 ∈ [−π, π], γ2 ∈ [−π, π], γ3 ∈ [−π, π].

The best known solution is fbest = 8.631 km/s, with solution vector xbest=[1171.14619813253, 1.41951376601752,

0.628043728560056, 0.500000255697689, 399.999999999969, 178.921469111868, 299.279691870106, 180.689114497891,

0.236414009949924, 0.0674215615945254, 0.832992171208578, 0.312514378885353, 1.7435422021558, 3.03087330660319,

1.10000000000119, 0.219820823285448, 0.477475660779879, 0.225898117795826]T .

Note that, the search space for each one of the trajectory models is normalized so that D is a unit hypercube with

each component of the solution vector belonging to the interval [0, 1]. Furthermore, for all cases, solution algorithms

were run for a progressively increasing number of function evaluations from 100000 to 1.25 million.

V. TESTING PROCEDURE

The modified DE algorithm will be compared against standard DE and MBH following a rigorous testing procedure.

A detailed description of the testing procedure can be found in [26] and it is here summarized in Algorithm 2 for

a generic solution algorithm A and a generic problem p. Here x̄(A, i) denotes the best point observed during the

i-th run of algorithm A.

The index of performance js is the number of successes of the algorithm A. In the following we use the fbest

values reported above in place of fglobal and we consider only δf (x̄(A, i)) and not δx(x̄(A, i)).

The success rate, ps = js/n, will be used for the comparative assessment of the algorithm performance instead of

the commonly used best value, mean and variance. Indeed, the distribution of the function values is not Gaussian.

Therefore, the average value can be far away from the results returned with a higher frequency from a given

algorithm. In the same way, the variance is not a good indicator of the quality of the algorithm because a high

variance together with a high mean value can correspond to the case in which 50% of the results are close to the

global optimum with the other 50% far from it. Finally, statistical tests, such as the t-test, that assume a Gaussian

distribution of the sample can not be applied to correctly predict the behavior of an algorithm. Instead, the success

rate gives an immediate and unique indication of the algorithm effectiveness, and, moreover, it can be always

represented with a binomial probability density function (pdf), independent of the number of function evaluations,

the problem and the type of optimization algorithm.

A key point is setting properly the value of n to have a reliable estimate of the success probability of an algorithm,

or success rate ps = js/n. Since the success is binomial (assumes values that are either 0 or 1) we can set a priori
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the value of n to get the required confidence on the value of ps. A commonly adopted starting point for sizing the

sample of a binomial distribution is to assume a normal approximation for the sample proportion ps of successes

(i.e. ps ∼ N{θp, θp(1 − θp)/n}, where θp is the unknown true proportion of successes) and the requirement that

Pr[|ps − θp| ≤ derr|θp] is at least equal to 1− αp [27]. This leads to the expression n ≥ θp(1− θp)χ
2
(1),αp

/d2err

that can be approximated conservatively with

n ≥ 0.25χ2
(1),αp

/d2err (29)

valid for θp = 0.5. According to Eq. (29), an error ≤ 0.05 (derr = 0.05) with a 95% of confidence (αp = 0.05)

would require at least n = 175. If n is extended to 1000, the error reduces to 0.020857. In the following, we

will use n = 200 and N = 1.25e6 for tuning the algorithms, and n = 1000 with variable N to compare their

performance. In fact, a reduced error is required to discriminate between the performance of two algorithms at low

N .

The values of tolf for the four test cases are: tolf = 0.0688 km/s for Cassini with no DSM’s, tolf = 0.1111 km/s

for Cassini with DSM’s, tolf = 0.05778 km/s for Rosetta and tolf = 0.05 km/s for Messenger. The choice of

these thresholds was dictated by the need to discriminate among different minima. At the same time they represent

a reasonable margin on the total ∆v. In fact, during standard preliminary designs, a margin between 3% and 5% is

typically added for contingencies, while here all the selected thresholds are below 5% of the value of the objective

function. In other words, all the minima within the thresholds would be indistinguishable from a mission design

point of view.

A. Parameter Tuning

Prior to running the tests on all the four cases, the key parameters for DE and MBH were tuned to get the best

performance. We used the Rosetta case as a tuning example. The tuning of DE and MBH is used also to tune

IDEA. The tuning of MBH was relatively fast as there are only two parameters: the size of the neighborhood and

the number of samples before global restart.

Figure 5 shows the performance of MBH on the Rosetta case for different values of ∆ and nsamples. It can be

noted that the performance tends to increase for a number of samples that tend to infinity. On the other hand,

there is a peak of performance around nsamples = 30. In the remainder of this paper, we will call MBH-GR the

version of MBH implementing a global restart after 30 unsuccessful samples and we call MBH, the version with

nsamples =∞. The optimum ∆ seems to be 0.1, therefore this value was used for all the test cases.

Note that the general trend of the performance of MBH does not change for the other cases and therefore the

settings seem to be of general validity for this benchmark of test problems.

For the tuning of DE, we instead considered a grid of values for F , CR and population size, for different strategies.

Figs. 6 to 9 show the most significant results. From these figures one can deduce that strategy 6 with F in the range

[0.8, 1] and a population below 200 individuals would be a good choice. Alternatively strategy 7 can be used with
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Fig. 5. Performance of MBH on the Rosetta test case

a smaller population and an F in the range [0.6, 0.7]. In both cases CR is better at around 0.8 as the problem is

not separable and the components of the solution vector are interdependent.

The combination of strategy and values of F , npop controls the speed of local convergence to a fixed point of the

algorithm. In the following tests, therefore, we decided to use strategy 6 with two sets of populations, [5 d, 10 d],

where d is the dimensionality of the problem, with single values of step-size and crossover probability F = 0.75

and CR = 0.8 respectively. The two settings will be denoted with DE5, DE10. The trends in Figs. 6 to 9 can

be registered also for the other two test cases, although the performance of DE is much poorer than for Rosetta,

therefore it can be argued that the settings have general validity. These settings are also in line with the theory

developed by Zaharie in [28].

The settings of IDEA were derived from the individual tuning of DE and MBH. In particular, we took a value

CR = 0.9, as the variables are not decoupled, a convergence strategy for the choice of the indexes in Eq. (4)

and a value F = 0.9 together with a small population to have a fast convergence but without losing exploration

capabilities. We used an npop = 20 for Cassini with no DSM’s and for Messenger, while an npop = 40 for Rosetta

and Cassini with DSM’s. For all the test cases δc = 0.1, tolconv = 0.25, while ∆ = 0.2 for all the cases except

for Messenger for which we used 0.25 instead. The parameter controlling the maximum number of local restarts

is iunmax = 6 for Messenger, iunmax = 2 for Rosetta, iunmax = +∞ for Cassini with and without DSM’s as no

guided restart is applied.

B. Test Results

The performance of all the algorithms are summarized in Figs. 10, 11, 12 and 13. For the Cassini case with no

DSM’s, with results shown in Fig. 10, IDEA performs exceptionally well compared to all the other algorithms

providing a success rate over 50% at 200000 function evaluations. Both versions of DE exhaust their exploration

capabilities quite soon and an increase of the number of function evaluations does not help as the population has
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Fig. 6. Performance of Differential Evolution on the Rosetta test case, with strategy 6 and CR=0.8
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Fig. 7. Performance of Differential Evolution on the Rosetta test case, with strategy 7 and CR=0.8

collapsed to a fixed point. The performance is not nearly as good on the Cassini case with DSM’s, as seen in Fig.

11.

Although IDEA is still better than the other algorithms, and in particular than standard DE, it is comparable to MBH

up to 600000 function evaluations and achieves a moderate 30% as best result at 1.25 million function evaluations.

This poor performance seems to be due mainly to problems of local convergence. Note, however, how the general

trend suggests that IDEA is not stagnating as the success rate is steadily increasing for an increasing number of

function evaluations. On the contrary DE seems to reach a flat plateau. Even for the Rosetta case, IDEA displays

exceptionally good results with DE5, DE10, MBH and MBH-GR substantially equivalent until N ≤ 800k. After

that, DE reaches a plateau and stops exploring. Both IDEA and MBH, instead, show a positive monotonic trend

until N = 1.25M , but IDEA outperforms both versions of MBH.

In the Messenger case, all algorithms do not perform particularly well if N ≤ 500k. Due to the structure of the

problem, IDEA needs more time to converge under the tolconv threshold and only after many re-sampling iterations

is able to show good performance. On the other hand, all DE’s do not display any significant improvement for
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Fig. 9. Performance of Differential Evolution on the Rosetta test case, with strategy 7 and npop=110

more than 500k evaluations and even MBH can be considered equally ineffective (the difference between DE and

MBH is lower then the confidence interval).

VI. SEARCH SPACE ANALYSIS

The different behaviors of IDEA, DE and MBH on the four test cases can be understood with an analysis of the

structure of the search space. The collection of the results from the tests can be used to deduce some properties

of the problems within the benchmark and to predict the behavior of the solution algorithms. An understanding of

the characteristics of the benchmark is required to generalize the result of the tests. In fact, every consideration on

the performance of the algorithms is applicable only to problems with similar characteristics.

All local minima found in all the tests by the applied global methods were grouped according to the value of their

objective function. Specifically, the range of values of the objective function for each test was divided in a finite

number of levels, with each group of minima associated to a particular level.
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Fig. 10. Variation of the success rate with the number of function evaluations, for the Cassini without DSM’s test case

0 2 4 6 8 10 12 14

x 10
5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Function evaluations

S
uc

ce
ss

 R
at

e

Cassini with DSM’s

 

 
DE5c
DE10c
MBH
MBHGR
IDEA

Fig. 11. Variation of the success rate with the number of function evaluations, for the Cassini with DSM’s test case

Then, we computed the average value of the relative distance of each local minimum with respect to all other local

minima within the same level dil (or intra-level distance), and the average value of the relative distance of each

local minimum with respect to all other local minima in the lower level dtl (or trans-level distance). The dtl for

the lowest level is the average distance with respect to the best known solution.

The values dil and dtl give an immediate representation of the diversity of the local minima and the probability of a

transition from one level to another. More precisely, a cluster of minima with a large intra-level distance and a small

trans-level distance suggests an easy transition to lower values of the objective function and a possible underlying

funnel structure [12]. In particular in the case of funnel structures, the values of dtl and dil should progressively go

to zero. A dil that does not go to zero or clusters with different values of dtl, are the cue to a possible underlying

multi-funnel structure.
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Fig. 12. Variation of the success rate with the number of function evaluations, for the Rosetta test case
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Fig. 13. Variation of the success rate with the number of function evaluations, for the Messenger test case

Fig. 14 provide two illustrative examples. Fig. 14(a) represents a single funnel structure with five local minima xl,i

where i = 1, ..., 5, and three levels. The intra-level distance at level 2, given by the distance d24 = xl,2 − xl,4, is

lower than d15 = xl,1−xl,5, the intra-level distance at level 1. The same is true for the trans-level distance at level

2, d23, which is lower than the trans-level distance at level 1, (d12 + d14)/2, for minimum xl,1.

Fig. 14(b), instead, represents a bi-funnel structure. In this case, the minima around xl,6 have an average intra-level

distance lower than xl,2 but a trans-level distance d63 much larger than d23. Thus, the two minima xl,2 and xl,6

will appear on the dtl-dil graph with different values of dil and dtl. If the threshold of level 3 were increased above

the objective value of xl,6, then all minima of level 2 would have similar dtl, but the dil at level 3 would not go

to zero.

This analysis method is an extension of the work of Reeves and Yamada [9], and is used to concisely visualize
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Fig. 14. One dimensional example of a) single funnel structure and b) bi-funnel structure.
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Fig. 15. Relative distance of the local minima for the Rastrigin function in 5 dimensions

the distribution of the local minima. The definition of the levels depends on the groups of minima of interest,

and can be derived from mission constraints or by an arbitrary subdivision of the range of values of the objective

function. Different subdivisions reveal different characteristics of the search space but give only equivalent cues on

the transition probability.

As an example of application of the proposed search space analysis method, Figs. 15 and 16 show the dil-dtl plots

for two well known functions: Rastrigin and Schwefel. In both cases the dimensionality is 5. The Rastrigin function

is known to have a single funnel and to be globally convex (see the example of one-dimensional Rastrigin function

in Fig. 17(a)). The clusters in the dil-dtl plane are aligned along the diagonal and converge to 0. In the case of the

Schwefel function, which has no single funnel structure (see the example of one-dimensional Schwefel function in

Fig. 17(b)), the clusters are more scattered and both the dil and dtl values tend to remain quite high.
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Fig. 17. One dimensional example of a) Rastrigin function and b) Schwefel function.

When applied to the benchmark of space trajectory problems, the analysis approach seems to suggest (see Fig. 18(a))

that the Cassini case with no DSM’s has a structure similar to the one in Fig. 14(b): the minima at level 5 belong to

two distinct clusters with substantially different dtl and dil. The clusters, corresponding to levels 1, 2 and 3, have

values of dtl and dil both lower than 0.2, which suggests an easy transition from one level to an another. Thus,

below an objective function of 7.5 km/s there seems to be an underlying single funnel structure. Note that an easy

transition among levels favors the search mechanism of MBH as demonstrated by the test results.

Fig. 18(b) shows that both dtl and dil progressively tend to zero up to a certain point, after which dtl goes to

zero while dil remains almost unchanged. The figure suggests that, in the Cassini case with DSM, there is a single

funnel structure for function values above 9.5 km/s, while below the minima are scattered and distant from each
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Fig. 18. Relative distance of the local minima for Cassini: a) without DSM’s and b) with DSM’s.

other.

From Fig. 19 we can argue that Rosetta has a wide zone containing the global minimum together with a number of

local minima with similar cost function. In fact the blue stars belonging to level 1 are distributed over values of dtl

in the range [0.0, 1.9] and dil in the range [1.2, 1.6]. It should be noted that from a practical point of view, solutions

with a difference in the total ∆v of less than 50 m/s are equivalent, especially in the preliminary design phase of

a mission. Therefore, all the blue stars belonging to level 1 are potentially good candidates for a space mission.

Note that, the solutions at level 1 are very far apart. Thus, a transition within this group and the identification of

the global minimum can be problematic.

In addition to the solutions at level 1, the search space of Rosetta presents two interesting groups at level 3 and level

4. These two sets of local minima have a relatively low inter-distance dil but are far from the global minimum, since

dtl is quite high. They represent two strong attractors that explain why, for example, the actual Rosetta mission has

a total ∆v a bit higher than 1.7 km/s.

The Messenger mission problem presents a different structure, see Fig. 20. The structure of the search space of the

Messenger test case appears to be characterized by many small basins separated from one another. Even the level

under the threshold adopted to compute the success rate contains two distinct, yet similar, regions.

VII. CONCLUSION

In this paper we casted an evolutionary heuristic in the form of a discrete map. The discrete map can be seen as a

variant of Differential Evolution. We then demonstrated empirically and theoretically that the map has a number of

fixed points to which it converges asymptotically under some assumptions on the structure of the search space. This

result suggested the development of an algorithm that outperforms Differential Evolution on some difficult space
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trajectory design problems. The novel algorithm displays a remarkable robustness, i.e., the ability to repeatedly

converge to solutions with a value of the cost function close to the best known solution to date. Furthermore, it

shows the desirable characteristic of increasing its performance with the number of function evaluations, reaching

in some cases success rates which are up to around 25 times higher than the standard DE. These considerations

can be generalized to all problems with similar characteristics of the search space.
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Algorithm 1 Inflationary Differential Evolution Algorithm (IDEA)

1: Set values for npop, CR, F , iunmax, and tolconv, set nfeval = 0 and k = 1

2: Initialize xi,k and vi,k for all i ∈ [1, ..., npop]

3: Create the vector of random values r ∈ U [0, 1] and the mask e = r < CR

4: for all i ∈ [1, ..., npop] do

5: Select three individuals xi1 ,xi2 ,xi3

6: Create the vector ui,k = e[(xi3,k − xi,k) + F (xi2,k − xi1,k)]

7: vi,k+1 = (1− c)vi,k + ui,k

8: Compute S and ν

9: xi,k+1 = xi,k + Sνvi,k+1

10: nfeval = nfeval + 1

11: end for

12: k = k + 1

13: ρA = max(∥xi,k − xj,k∥) for ∀xi,k,xj,k ∈ Psub ⊆ Pk

14: if ρA < tolconvρA,max then

15: Run a local optimizer al from xbest and let xl be the local minimum found by al

16: if f(xl) < f(xbest) then

17: fbest ← f(xl)

18: end if

19: if f(xbest) < fmin then

20: fmin ← f(xbest)

21: iun = 0

22: else

23: iun = iun+ 1

24: end if

25: if iun ≤ iunmax then

26: Define a bubble Dl such that xbest ∈ Dl for xbest ∈ Psub and ∀Psub ⊆ Pk

27: Ag = Ag + {xbest} where xbest = argmini f(xi,k)

28: Initialize xi,k and vi,k for all ∈ [1, ..., npop], in the bubble Dl ⊆ D

29: else

30: Define clusters in the archive and compute the baricenter xc,j of each cluster with j = 1, ..., nc.

31: Initialize xi,k and vi,k for all i ∈ [1, ..., npop], in D such that ∀i, j, ∥xi,k − xc,j∥ > δc

32: end if

33: end if

34: Termination Unless nfeval ≥ nfevalmax, goto Step 3
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Algorithm 2 Testing Procedure

1: Set to N the max number of function evaluations for A

2: Apply A to p for n times and set js = 0

3: for all i ∈ [1, ..., n] do

4: Compute δf (x̄(A, i)) =| fglobal − f(x̄(A, i)) |; and δx(x̄(A, i)) = ∥xglobal − x̄(A, i)∥

5: if (δf (x̄(A, i)) < tolf ) ∧ (δx(x̄(A, i)) < tolx) then js = js + 1

6: end if

7: end for
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