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1. Introduction

It is sometimes assumed by recent authors that the shortages are either wholly
backlogged or completely lost. Dye (2002) considered an inventory model with
stock-dependent demand and partial backlogging. Chakrabarty et al. (1998) ex-
tended the Philip’s model (1974). Skouri and Papachristos (2003) determined
optimal time of an EOQ model with deteriorating items and time-dependent
partial backlogging. This paper attempts to apply the results of Yan and Cheng
(1998) in the case where the backlogging rate is a time-dependent function. In
this connection we may mention a three parameter distribution for describing
deterioration depending on time. Deterioration can not be avoided in busi-
ness scenarios. Rau et al. (2004) presented an integrated inventory model to
determine economic ordering policies of deteriorating items in a supply chain
management system. Teng and Chang (2005) determined economic production
quantity in an inventory model for deteriorating items.

Deterioration refers to decay, damage or spoilage. In respect of items of
foods, films, drugs, chemicals, electronic components and radio-active substances,
deterioration may happen during normal period of storage and the loss is to
be taken into account where we analyze inventory systems. Dave and Patel
(1983) put forward an inventory model for deteriorating items with time propor-
tional demand, instantaneous replenishment and no shortage. Roychowdhury
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and Chaudhury (1983) proposed an order level inventory model considering a
finite rate of replenishment and allowing shortages. In their models Mishra
(1975), Deb and Chaudhuri (1986) assumed that deterioration rate is time de-
pendent. An extensive summary in this regard was made by Raafat (1991).
Berrotoni (1962) discussed some difficulties of fitting empirical data to mathe-
matical distribution. It may be said that the rate of deterioration increases with
age. It may be inferred that the work of Berrotoni (1962) inspired Covert and
Philip (1973) to develop an inventory model for deteriorating items with Weibull
distribution by using two parameters. Mandal and Phaujdar (1989) however,
assumed a production inventory model for deteriorating items with uniform rate
of production and stock dependent demand. Some valuable works in this area
were also done by Padmanabhan and Vrat (1995), Ray and Chaudhuri (1997),
Mondal and Moiti (1999).

Today, inflation has become a permanent feature of the economy. Many
researchers have shown the inflationary effect on inventory policy. Biermans
and Thomas (1977), Buzacott (1975), Chandra and Bahner (1988), Jesse et
al. (1983), Mishra (1979) developed their inventory models assuming a constant
inflation rate. An inventory model with deteriorating items under inflation when
a delay in payment is permissible is analyzed by Liao et al. (2000). Bhahmbhatt
(1982) developed an EOQ model under a variable inflation rate and marked-up
price. Ray and Chaudhuri (1997) presented an EOQ model under inflation and
time discounting allowing shortages.

Both in deterministic and probabilistic inventory models of classical type it
is observed that payment is made to the supplier for goods just after getting the
consignment. But actually nowadays a supplier grants some credit period to the
retailer to increase the demand. In this respect Goyal (1985) just formulated an
EOQ model under some conditions of permissible delay in payment. An EOQ
model for inventory control in the presence of trade credit is presented by Chung
and Huang (2005). The optimal replenishment policy for EOQ models under
permissible delay in payments is also discussed by Chung et al. (2002) and Cung
and Huang (2003). In recent times to make the real inventory systems more
practical and realistic, Aggarwal and Jaggi (1995) extended the model with
a constant deterioration rate. Hwang and Shinn (1997) determined lot-sizing
policy for exponential demand when delay in payment is permissible. Shah
and Shah (1998) then prepared a probabilistic inventory model with a cost in
case delay in payment is permissible. After that Jamal et al. (1997) developed
further following the lines of Aggarwal and Jaggi’s (1995) model to take into
consideration for shortage and make it more practical and acceptable in real
situation.

2. Notations

q(t) = Inventory level at time t
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S = q(0) = Stock level at the beginning of each cycle after fulfilling backorders

H = Length of the planning horizon

K = Constant rate of inflation ($/$/ unit time)

C(t) = Unit purchase cost for an item bought at time t, i.e., C(t) = Co.e
KT ,

where Co is the unit purchase cost at time zero

h = Holding cost ($/unit/year) excluding interest charges

Co = Unit purchase cost

C2 = Shortage cost ($/unit/time)

C3 = The ordering cost/cycle

ie = Interest earned ($/time)

ip = Interest charged ($/time)

M = Permissible delay in settling the accounts

T1 = Time at which shortages start (0 6 T1 6 T )

T = Length of a cycle

TCU (T1, T ) = The average total inventory cost per unit time

TCU 1(T1, T ) = The average total inventory cost per unit time for T1 > M
(Case I)

TCU 2(T1, T ) = The average total inventory cost per unit time for T1 6 M
(Case II)

3. Assumptions

(i) The inventory system involves only one item.

(ii) The rate of replenishment is instantaneous.

(iii) A fraction z(t) of the on hand inventory deteriorates per unit time where
z(t) = αβtβ−1, 0 < α << 1, t > 0, β > 1.

(vi) Shortages are allowed and the backlog rate is defined to be R(t)/1+δ(T−t)
when inventory is negative. The backlogging parameter δ is a positive
constant.

(v) The demand rate R(t) at any time t is given by R(t) = a + bt where a and
b are non-negative constants.

4. The problem formulation

The mathematical models are derived under two different circumstances:

Case I: The permissible delay in payment, M , is less than the period of
having inventory stock in hand, T1.
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Case II: The permissible delay in payment M is greater than T1.

4.1. The mathematical model

During the time [0, T1] the instantaneous inventory level at time t will satisfy
the following differential equations

dq

dt
+ αβtβ−1q = −(a + bt) (0 6 t 6 T1) (1)

where 0 < α << 1 and β > 1

with the boundary condition q(T1) = 0 . (1a)

Again during the time [T1, T ] the instantaneous inventory will satisfy the
following differential equation

dq

dt
= −

a + bt

1 + δ(T − t)
(T1 6 t 6 T ) (2)

where q(T1) = 0 . (2a)

The solution of (1) using boundary condition (1a) is

q(t) =(1− αtβ)

{

(

aT1 +
bT 2

1

2
+

aαT β+1
1

β + 1
+

bαT β+2
1

β + 2

)

−
(

at +
bt2

2
+

aαtβ+1

β + 1
+

bαtβ+2

β + 2

)

}

. (3)

The solution of (2) using boundary condition (2a) is

q(t) =
(a

δ
+

b(1 + δT )

δ2

)

{

log[1 + δ(T − t)]− log[1 + δ(T − T1)]
}

+
b

δ
(t− T1) . (4)

4.2. Case (I) (M < T1) (payment before depletion)

The total variable cost is comprised of the sum of the ordering cost, holding
cost, backorder cost, deterioration cost and interest payable minus the interest
earned. They are grouped together after evaluating the above cost individually.
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The holding cost HC during [0, T1] is

HC = h

m−1
∑

n=0

C(nT )

T1
∫

0

q(t)dt

= hC0

(eKH − 1

eKT − 1

)

[ T1
∫

0

(1− αtβ)
{(

aT1 +
bT 2

1

2
+

aαT β+1
1

β + 1
+

bαT β+2
1

β + 2

)

−
(

at +
bt2

2
+

aαtβ+1

β + 1
+

bαtβ+2

β + 2

)}

dt

]

= hC0

(eKH − 1

eKT − 1

)

[

aT 2
1

2
+

bT 3
1

3
+ αT β+3

1

{ b

β + 2
−

b

2(β + 1)1

+
β

2(β + 3)
−

b

(β + 2)(β + 3)

}

+
aαβT β+2

1

(β + 1)(β + 2)

]

(5)

(ignoring the higher order of α).
The number of deteriorated items during [0, T1] is

= q(0)−

T1
∫

0

(a + bt)dt = S −
(

aT1 +
bT 2

1

2

)

=
aαT β+1

1

β + 1
+

bαT β+2
1

(β + 2)
. (6)

The deterioration cost DC is

DC = C0

(

eKH − 1

eKT − 1

){

aαT β+1
1

β + 1
+

bαT β+2
1

(β + 2)

}

. (7)

The shortage cost SHC during [0, T ] is

SHC = C2.Co

(eKH − 1

eKT − 1

)

T
∫

T1

q(t)dt = C2.Co

( eKH −1

eKT − 1

)

T
∫

T1

[{a

δ
+

b(1 + δT )

δ2

}

{log |1 + δ(T − t)| − log |1 + δ(T − T1)|}+
b

δ
(t− T1)

]

dt

= C2.Co

(eKH−1

eKT−1

)[(a

δ
+

b(1+δT )

δ2

){1

δ
log |1+δ(T − T1)| − (T−T1)

}]

+
b

2δ
(T − T1)

2 . (8)

The interest earned IE1 during time [0, T ] is

IE 1 = ie.Co

eKH − 1

eKT − 1

T1
∫

0

(T1 − t)(a + bt)dt = ie.Co

eKH − 1

eKT − 1

(aT 2
1

2
+

bT 3
1

6

)

(9)



208 M. BASU, S. SINHA

The interest payable IP1 per cycle for the inventory not being sold after due
date M :

IP1 = ip.Co

eKH − 1

eKT − 1

T1
∫

M

q(t)dt

= ip.Co

eKH − 1

eKT − 1

[

(

aT1 +
bT 2

1

2
+

aαT β+1
1

β + 1
+

bαT β+2
1

(β + 2)

)

{

(T1 −M)−
α

(β + 1)
(T β+1

1 −Mβ+1)
}

−
a

2
(T 2

1 −M2)−
b

6
(T 3

1 −M3)

+
aαβ

(β + 1)(β + 2)
(T β+2

1 −Mβ+2) +
bαβ

2(β + 2)(β + 3)
(T β+3

1 −Mβ+3)

+
aα2

2(β + 1)2
(T 2β+2

1 −M2β+2) +
bα2

(β + 2)(2β + 3)
(T 2β+3

1 −M2β+3)

]

. (10)

The total variable cost, TVC 1, is defined as

TVC 1 = C3 + HC + SHC + IP1 + DC − IE1 . (11)

From equations (5)-(10), we obtain TVC as

TVC 1 = Co

(eKH − 1

eKT − 1

)

[

aT 2
1

2
(h− ie − ip) +

bT 3
1

6
(2h− ie − ip) + C3

+αT β+3
1

{2β2 + 4β(b + 1) + 8b + bβip
2(β + 2)(β + 3)

−
b

2(β + 1)

}

+
αT β+2

1

β+2

{β(ah+aip+b)+b

β+1

}

+C2

(aδ+b+bδT

δ2

){1

δ
ln |T−T1|−(T−T1)

}

+
bC2

2δ
(T − T1)

2 +
aαT β+1

1

β + 1
+ ip

(

aT1 +
bT 2

1

2
+

aαT β+1
1

β + 1
+

bαT β+2
1

β + 2

)

×
{

(T1−M)−
α

β+1
(T β+1

1 −Mβ+1)
}

+
aipM

2

2
+

bipM
3

6
−

aipαβMβ+2

(β+1)(β+2)

]

.

(12)

The total variable cost per unit time, TCU , during the cycle period [0, T ] is
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given by

TCU 1 =
TVC 1

T
=

K + HC + DC + SHC + IP1− IE1

T
(13)

TCU 1 = Co

(eKH − 1

eKT − 1

)

[

aT 2
1

2
(h− ie − ip) +

bT 3
1

6
(2h− ie − ip) + C3

+αT β+3
1

{2β2 + 4β(b + 1) + 8b + bβip
2(β + 2)(β + 3)

−
b

2β + 1)

}

+
αT β+2

1

β+2

{β(ah+aip+b)+b

β+1

}

+C2

(aδ+b+bδT

δ2

){1

δ
ln |T−T1|−(T−T1)

}

+
bC2

2δ
(T − T1)

2 +
aαT β+1

1

β + 1
+ ip

(

aT1 +
bT 2

1

2
+

aαT β+1
1

β + 1
+

bαT β+2
1

β + 2

)

×
{

(T1−M)−
α

β+1
(T β+1

1 −Mβ+1)
}

+
aipM

2

2
+

bipM
3

6
−

aipαβMβ+2

(β+1)(β+2)

]

/T .

(14)

Now the problem is:

minTCU 1

subject to the constraint 0 < T 6 1.

5. Case (II) (T1 < M) (payment after depletion)

The ordering cost C3, the holding cost HC , the shortage cost SHC , the deteri-
oration cost DC during the cycle period (0, T ) are the same as in case I. The
payable per cycle is PT = 0 when T1 < M < T because the supplier can be paid
in full at time M , the permissible delay. The interest earned per cycle is

IE2 = ieCo.
eKH − 1

eKT − 1

{ T1
∫

0

(T1 − t)(a + bt)dt + (M − T1)

T1
∫

0

(a + bt)dt

}

= ieCo.
eKH − 1

eKT − 1

{(aT 2
1

2
+

bT 3
1

6

)

+ (M − T1)
(

aT1 +
bT 2

1

2

)}

. (15)

The total variable cost, TVC 2 is defined as

TVC 2 = C3 + HC + SHC + DC − IE2
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with

TVC 2 = Co

(eKH − 1

eKT − 1

)

[

bT 3
1

6
(2h− ie − 3) + C3 +

T 2
1

2

{

a(h− ie − 2) + bM
}

+aMT1 +
bC2

2δ
(T − T1)

2 + αT β+3
1

{β2 + 2β(b + 1) + 4b

(β + 2)(β + 3)
−

b

2(β + 1)

}

+
aαT β+1

1

β + 1
+

αT β+2
1 {β(ah + b) + b}

(β + 1)(β + 2)

+C2

(aδ + b + bδT

δ2

){1

δ
{ln |T − T1| − (T − T1)

}

]

. (16)

The total variable cost per unit time TCU 2(T1, T ) is

TCU 2 =
TVC 2

T
=

C3 + HC + DC +SC − IE 2

T
. (17)

Now the problem is:

minTCU 2

subject to the constraint 0 6 T 6 1.

6. The basic algorithm (Genetic Algorithm)

Genetic Algorithm

Genetic Algorithms are a class of adaptive search techniques based on the prin-
ciple of population genetics.The algorithm is an example of a search procedure
that uses random choice as a tool to guide a highly exploitative search through a
coding of parameter space. Genetic Algorithms work according to the principles
of natural genetics on a population of string structures representing the prob-
lem variables. All these features make genetic algorithm search robust, allowing
them to be applied to a wide variety of problems.

Implementing GA

The following aspects are involved in the proposed GA to solve the problem:

(1) Parameters
(2) Chromosome representation
(3) Initial population production
(4) Evaluation
(5) Selection
(6) Crossover
(7) Mutation
(8) Termination.
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Parameters

Firstly, we set the different parameters on which the specific GA depends. These
are the number of generations (MAXGEN), population size (POPSIZE), prob-
ability of crossover (PCROS), probability of mutation (PMUTE).

Chromosome representation

An important issue in applying a GA is to design an appropriate chromosome
representation of solutions of the problem together with genetic operators. Tra-
ditional binary vectors used to represent the chromosomes are not effective in
many non-linear problems. Since the proposed problem is highly non-linear,
hence to overcome the difficulty, a real-number represention is used. In this
representation, each chromosome Vi is a string of n numbers of genes Gij ,
(j = 1, 2, . . .n) where these n numbers of genes respectively denote n number of
decision variables (Xi, i = 1, 2, . . .n).

Initial population production

The population generation technique proposed in the present GA is illustrated
by the following procedure: For each chromosome Vi, every gene Gij is randomly
generated between its boundary (LB j , UB j) where LB j and UBj are the lower
and upper bounds of the variables Xj , i = 1, 2, . . ., n, POPSIZE.

Evaluation

Evaluation function plays the some role in GA as that, which the environment
plays in natural evalution. Now, evaluation function (EVAL) for the chromo-
some Vi is equivalent to the objective function PF (X). These are steps of
evaluation:

Step 1. Find EVAL(Vi) by EVAL(Vi) = f(X1, X2, . . ., Xn) where the genes
Gij represent the decision variable Xj , j = 1, 2, . . ., n, POPSIZE and f is the
objective function.

Step 2. Find total fitness of the population: F =
POPSIZE
∑

i=1

EVAL(Vi) .

Step 3. Calculate the probability pi of selection for each chromosome Vi as

Yi =

i
∑

j=1

pj .

Selection

The selection scheme in GA determines which solutions in the current popu-
lation are to be selected for recombination. Many selection schemes, such as
stochastic random sampling, roulette wheel selection have been proposed for
various problems. In this paper we adopt the roulette wheel selection process.
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This roulette selection process is based on spinning the roulette wheel POPSIZE
times, each time we select a single chromosome for the new population in the
following way:

(a) Generate a random (float) number r between 0 to 1.
(b) If r < Yi then the first chromosome is Vi otherwise select the ith chromosome

Vi (2 6 i 6 POPSIZE) such that Ti−1 6 r 6 Yi.

Crossover

Crossover operator is mainly responsible for the search of new string. The ex-
ploration and exploitation of the solution space is made possible by exchanging
genetic information of the current chromosomes. Crossover operates on two par-
ent solutions at a time and generates offspring solutions by recombining both
parent solution features. After selection of chromosomes for the new population,
the crossover operator is applied. Here, the whole arithmetic crossover opera-
tion is used. It is defined as a linear combination of two consecutive selected
chromosomes Vm and Vn and the resulting offspring’s V

′

m and are V
′

n calculated
as:

V
′

m = c.Vm + (1− c).Vn

V
′

n = c.Vn + (1− c).Vm

where c is a random number between 0 and 1.

Mutation

Mutation operator is used to prevent the search process from converging to
local optima rapidly. It is applied to a single chromosome Vi. The selection of
a chromosome for mutation is performed in the following way:

Step 1. Set i← 1.

Step 2. Generate a random number u from the range [0, 1].

Step 3. If u < PMUTE, then go to Step 2.

Step 4. Set i← i + 1.

Step 5. If i 6 POPSIZE, then go to Step 2.

Then the particular gene Gij of the chromosome Vi, selected by the above
mentioned steps is randomly selected. In this problem, the mutation is defined
as

Gmut
ij = random number from the range [0, 1].

Termination

If the number of iterations is less than or equal to MAXGEN then the process
is going on, otherwise it terminates. The GA’s procedure is given below:
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begin

do {

t← 0

while (all constraints are not satisfied)

{

initialize Population (t)

}

evaluate Population(t)

while (not terminate)

{

t← t + 1

select Population(t) from Population(t-1)

crossover and mutate Population(t)

evaluate Population(t)

}

print Optimum Result

}

end.

7. Numerical example and sensitivity analysis

In this paper the ordering policies have been discussed in two scenarios: payment
before total depletion (Case–I) and payment after total depletion (Case–II). An
example is considered to illustrate the effect of the developed model in this
paper.

The following inventory parametric values are used a = 500, b = 80, α =
0.00010, β = 1.0, M = 0.1, δ = 5.0, C0 = 0.5, ie = 0.18, ip = 0.20, K = 0.1,
H = 1 year, h =$ 2.00/unit, C3 = 100.0, C2 = 0.8/unit

To solve the problem the genetic algorithm is used. In this problem, GA
consists of the parameters, POPSIZE=50, MAXGEN=50, Cross over probabil-
ity=0.85, Mutation probability=0.005. The solutions of two cases for different
parametric values of α, β, M and δ, are given in Table 1 and Table 2.

From the above tables the results can be discussed as follows

1. When the parameter α increases, the values of T1 and T decrease, but the
total average inventory cost (TCU ) increases in both cases.

2. As the parameter β increases, the values of T1, T decrease and total av-
erage inventory cost (TCU ) increases for both cases.

3. When the parameter M increases, the values of T1, T increase and the
total average inventory cost (TCU ) decreases both in Case–I and Case–
II.

4. As the parameter δ increases, the cycle time T decreases but total cost
(TCU ) increases in both the cases.
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From Table 1 and Table 2 we can infer that the parameters α, β have a
bigger influence than the parameters M and δ. Therefore, the parameters α,
β entail higher sensitivity towards the cycle time and total average inventory
cost.

Table 1. CASE–I (Payment before depletion)

Changing Change in T1 T TCU 1

parameters parameters

0.00010 0.0853 0.0962 4673.81

α 0.00015 0.0728 0.0834 6210.16

0.00020 0.0676 0.0740 7714.54

1.0 0.0853 0.0962 4673.81

β 1.5 0.0722 0.0810 6530.32

2.0 0.0636 0.0769 7046.74

0.1 0.0853 0.0962 4673.81

M 0.3 0.0920 0.1013 3997.04

0.5 0.1068 0.1254 2815.35

5.0 0.0853 0.0962 4673.81

δ 6.0 0.0876 0.0938 5178.14

7.0 0.0902 0.0925 5446.28

Table 2. CASE–II (Payment after depletion)

Changing Change in T1 T TCU 2

parameters parameters

0.00010 0.0936 0.1148 3381.50

α 0.00015 0.0841 0.1027 4205.20

0.00020 0.0728 0.0952 4930.89

1.0 0.0936 0.1148 3381.50

β 2.0 0.0822 0.1085 3817.55

3.0 0.0793 0.0923 5132.07

0.10 0.0936 0.1148 3381.50

M 0.12 0.1014 0.1365 2444.05

0.13 0.1147 0.1476 2100.50

5.0 0.0936 0.1148 3381.50

δ 6.0 0.0965 0.1072 4035.39

7.0 0.0986 0.1012 4572.32
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8. Conclusion

To be precise, a model has been illustrated for determination of optimal order-
ing time and total cost with time dependent demand for deteriorating items
following the Weibull distribution. Two cases namely (I) payment before deple-
tion (M < T1) and (II) payment after depletion (M > T1) have been taken into
account for consideration of the model, which can help the decision maker to
determine the optimal cycle time and to minimize the total average inventory
cost. From the sensitivity analysis it is inferred that as the rate of deterioration
(α, β) increases, the total average inventory cost increases, which is obvious.
Moreover, it follows that increase in permissible delay decreases total cost i.e.
there is an inverse relation between total cost and the permissible payment
period. The intuitive reason behind this is that the extension in permissible
payment period offers opportunity to the purchaser to earn more by investing
the resource otherwise from the sale-proceed of the inventory, which results in
the lower cost.
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