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ABSTRACT 

We develop an index of uncertainty, the COVID-19 induced uncertainty (CIU) index, and employ 

it to empirically examine the vulnerability of energy prices amidst the COVID-19 pandemic using 

a distributed lag model that jointly accounts for conditional heteroscedasticity, autocorrelation, 

persistence, and structural breaks, as well as day-of-the-week effect. The nexus between energy 

returns and uncertainty index is analyzed, using daily price returns of eight energy sources (Brent 

oil, diesel, gasoline, heating oil, kerosene, natural gas, propane, and WTI oil) and four 

news/information-based uncertainty proxies [CIU, EPU, Global Fear Index (GFI) and VIX]. The 

CIU and alternative indexes are used, respectively for the main estimation and sensitivity analysis. 

We show the outperformance of CIU over alternative news uncertainty proxies in the prediction 

of energy prices. News (aggregate) and bad news are found to negatively and significantly impact 

energy returns, while good news has a significantly positive impact. Imperatively, energy variables 

lack hedging potentials against the uncertainty occasioned by the COVID-19 pandemic, while we 

find no strong evidence of asymmetry. Our results are robust to the choice of news variables, 

forecast horizons employed, with likely sensitivity to energy prices.  

Keywords: Distributed lag Model, Energy, Google Trends, Hedging Potential, Uncertainty 
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1. INTRODUCTION 

Coronavirus disease (COVID-19) is yet another crisis that has affected virtually every 

sector of the global economy. As the outbreak began to affect nearly all economies from late 

February to early March 2020, the World Health Organization (WHO) declared the disease as a 

pandemic on 11 March 2020 (WHO, 2020). The pandemic, within the first 3 months of the 

outbreak in Wuhan city, China on December 31 hit approximately one (1) million infected cases 

globally, while just a few weeks following, the confirmed cases reached approximately 2 million. 

As of 25 August 2020, the number of confirmed cases has hit approximately 23 million with almost 

1 million deaths.1  

Some recent studies have revealed that COVID-19 lockdown is impacting differently on 

different environment.   The rapid spread and rate of increase in the number of recorded positive 

cases appear connected to regional climatic conditions. According to Iqbal et al. (2020), the rate 

of increase and spread was found to be faster in countries with relatively cooler climatic conditions 

than in countries with warmer climatic conditions, despite differences in socio-economic 

conditions. To curtail the spread of the virus, many countries imposed some measures such as the 

closure of shops, malls, event centres, market places, public transports, airports, etc. These 

restrictive measures resulted in general low economic output/productivity, and as relating to the 

energy sector, low energy demands. The low demand for oil and other energy sources; occasioned 

by the imposed restrictions – lockdown of businesses and international travels, among others; had 

some positive impacts as it led to some improvement in air quality with the reduction in the levels 

of air pollutants such as particulate matter, carbon dioxide, Sulphur dioxide, ozone, and aerosol 

concentration, in most major cities and highly industrialized areas of the world, especially, highly 

polluted cities like Kolkata, India (see Chowdhuri et al., 2020; Dang and Trinh, 2021; among 

others). Also, the improvement in the air quality in most megacities during the intense pandemic 

period was attributed to the reduction in vehicular emission as a result of fewer vehicles on the 

roads (Keremray et al., 2020; Xuelin et al., 2021; among others).    

The pandemic, however, triggered an oil price shock at the three international oil markets,2 

as oil demand was ridiculously lowered amidst the pandemic in April 2020. The sharp drop in 

energy demand and wholesale energy prices resulted in an unprecedented increase in per-unit costs 

                                                           
1 https://www.worldometers.info/coronavirus/?  
2 The West Texas Intermediate (WTI), UK Brent and the Organization of Petroleum Exporting Countries (OPEC) 

markets. 

https://www.worldometers.info/coronavirus/
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of energy. The disruption in the demand for oil and gas led to a decline in the prices of energy. 

IEA (2020) showed that in mid-April 2020, countries in full lockdown experienced a 25% decline 

in energy demand, while countries with partial lockdown experienced about an 18% decline in 

energy demand. It has been estimated that by the end of 2020, energy investment is set to fall by 

one-fifth; with larger effects on investments coming from oil and petroleum products as a result of 

restrictions on the movement of people as well as goods and services.  

We are motivated by the development of indexes for monitoring global uncertainty as has 

been done previously with the prominent Economic Policy Uncertainty (EPU) indices for some 

G20 countries in the world (see https://www.policyuncertainty.com). Development of similar 

indexes relating to the current ravaging pandemic is still ongoing; given its unprecedented rate of 

spread across the globe. Therefore, drawing from (Salisu and Akanni, 2020) that recently used the 

number of confirmed COVID-19 positive cases and the number of recorded deaths to develop a 

Global Fear Index [GFI], we herein develop a similar index but differ on the method and the 

comprising variables considered. Extant indexes have been based on reported infection and 

mortality figures, causing anxiety levels of individuals to rise. However, the level of awareness 

and the quantity/quality of information that individuals have about the virus are not factored into 

the extant developed indexes. Such information, if and when available, is likely to affect an 

individual’s decision more than just the news of rising figures, and provide a decision support 

mechanism that could reduce investment risks (Norouzi et al., 2020). Google Trends provides 

relevant search volumes relating to information being sought from web sources. We harness the 

wealth of information in Google Trends, on the COVID-19 pandemic and subsequently develop 

an information-based index of uncertainty – COVID-19 induced uncertainty [hereafter, CIU]. 

Investment decisions are mostly dependent on available market information; hence, the relevance 

of the Google Trends features. The CIU and GFI are similar to the prominent volatility index 

(VIX)3 and the economic policy uncertainty (EPU). 

We subsequently examine the vulnerability of energy prices using the uncertainty index 

herein developed as well as other uncertainty proxies. The choice of energy variables is not only 

informed by its wide usage (residential, commercial/industrial, among others) and the important 

role of energy in economic development, with its demand cutting across different socio-economic 

divides; but also that the movement restriction during the peak of the unprecedented pandemic in 

April 2020, affected the global energy price dynamics. Modelling these price dynamics is 

                                                           
3 http://www.cboe.com/index/  

https://www.policyuncertainty.com/
http://www.cboe.com/index/
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fundamental to improving the economic prospects of global energy. The literature is therefore 

replete with diverse methodological studies (see Esfahani and Ramirez, 2003; Guo and Luh, 2004; 

Che and Wang, 2010; Ghadimi, 2015; Yaya et al., 2017; Basel et al., 2018; Salisu and Ogbonna, 

2019; Sharif et al., 2020; Salisu et al., 2020a; among others). Recent studies have revolved around 

the COVID-19 pandemic, with several papers focusing on examining the impact of the pandemic 

on commodity markets, especially the energy markets (Akintande et al., 2020; Aloui et al., 2020; 

Karaca and Dincer, 2020; Sharif et al., 2020; Wang et al., 2020; Salisu et al., 2020a; and Narayan, 

2020; among others), and greenhouse gases emission (Le Quéré et al., 2020 and Mahato et al., 

2020; among others).  

The contributions of this paper are five-fold. First, we develop an information-based index 

of uncertainty induced by the COVID-19 pandemic from the wealth of information embedded in 

the daily Google search volumes. Second, we employ the index to examine the vulnerability of 

energy pricing for different energy proxies (Brent oil, diesel, gasoline, heating oil, kerosene, 

natural gas, propane, and WTI oil) to COVID-19 pandemic. This aligns with extant researches that 

have shown the relevance of the Google Trends data to facilitate predictability of financial and 

economic series (see Salisu et al., 2020b & c; among others). Third, we account for salient data 

features, such as structural breaks, persistence, conditional heteroscedasticity, and autocorrelation, 

as well as day-of-the-week effect following (Zhang et al., 2017; Yaya and Ogbonna, 2019), within 

a single predictive model, following Westerlund and Narayan (2012, 2015). These features 

characterize most high-frequency series like the daily energy prices herein considered and could 

yield misleading results if neglected. 

Fourth, we test for asymmetric effect in the developed index, to ascertain if good news and 

bad news are to be modelled differently or assumed similarly, with no need to decompose the index 

into positive and negative partial sums. Ignoring asymmetry when it exists could lead to unreliable 

estimates. Finally, we adopt a rolling, rather than fixed, window framework to account for the 

plausible time-varying parameter(s), while evaluating the forecast performance for in-sample and 

out-of-sample periods, to ascertain if results are sensitive to the data sample period. In summary, 

the results obtained here would be of policy relevance to energy market stakeholders, who are keen 

on the hedging or safe-haven or diversifier properties of energy prices amidst the current period of 

the pandemic. 

Following the introductory section of this paper, the remaining part of the paper is 

structured as follow: Section 2 focuses on the materials and methods detailing the construction of 
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the information-based index of uncertainty, the empirical model, and an exploration of the data 

issues along with some preliminary analyses; Section 3 presents and discusses the empirical 

results; while Section 4 concludes the paper. 

 

2. MATERIALS AND METHODS 

The study framework adopted in this study is four-fold: First, we construct the new information-

based index and provide a detailed explanation of the features in subsection 2.1; Second, we 

specify the distributed lag model to be used in the estimation of the energy-uncertainty nexus in 

subsection 2.2; third, we examine the data feature using statistical summaries along with some 

preliminary analyses in subsection 2.3; and fourth, we thereafter estimate and evaluate the model 

fitness as well as the preference of one of the indexes of uncertainty over the other contending 

proxies.     

2.1 Construction of the COVID-19 Index of Uncertainty 

In obtaining the information-based index - ciu , the global daily Google search volumes 

of keywords, single words or phrases, relating to the COVID-19 pandemic were used. These 

keywords were chosen given the increased frequency of usage following the outbreak of the 

epidemic-turned-pandemic. The keywords include: "Coronavirus”, "nCov2", "Severe acute 

respiratory syndrome", "Covid - 19", "COVID-19", "COVID", "Pandemic COVID-19", "COVID-

19 Pandemic" "Pandemic", "Vaccine", and "COVID Vaccine". The search volumes for any given 

item/topic is scaled to range between 0 and 100, where the latter and the former indicate the least 

and highest search frequency. Having obtained the daily volumes of word-search for the specified 

keywords, forming time series spanning the set period, the principal component analysis was used 

to combine the variables into an index, i.e. COVID-19 Induced Uncertainty [CIU]. The obtained 

index is therefore the first principal component factor of the linear combination of the eleven (11) 

daily time series of volumes of searched words. We subsequently normalized the index to values 

between 0 and 100, using    
   

unscaled unscaled

scaled

unscaled unscaled

ciu min ciu
ciu b a a

max ciu min ciu

 
     

, such that 

unscaled
ciu  is the obtained index, and a and b correspond to 0 and 100, respectively, that is the least 

and the highest levels of uncertainty. Imperatively, the higher the index value, the higher the 

investor’s uncertainty about the market; while an index value of 50 indicates a moderate level of 
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uncertainty. The index facilitates the concept of parsimony in the model, by pooling the 

information in the different searched words in one variable. 

 

2.2 The Empirical Model 

We construct a predictive model to assess the vulnerability of energy prices to the uncertainty 

induced by the COVID-19 pandemic, while also accounting for inherent salient data features, 

following Westerlund and Narayan (2012, 2015) approach. This approach adequately circumvents 

the proliferation of parameters and simultaneously resolves inherent bias, and has been widely 

applied in many recent studies (see Narayan and Gupta, 2015; Narayan, Phan, Sharma, 2018; 

Salisu et al., 2019; among others). In a bid to ascertain the most appropriate model to adopt, the 

data trends and features are analytically examined for the presence of salient features such as 

persistence, endogeneity, autocorrelation, and conditional heteroscedasticity (see Bannigidadmath 

and Narayan, 2015; Narayan and Gupta, 2015; Phan et al., 2015; Narayan et al., 2016, Devpura et 

al., 2018; Narayan et al, 2018; Salisu and Oloko, 2015; Salisu et al., 2019; among others). 

We specify a distributed lag model that comprises five lags of our index of uncertainty 

(news) variable, as well as a break dummy variable, and pre-weight the model variables with the 

standard deviation of an ordinary least squares [OLS] regression model residuals; in a bid to 

account for inherent data characteristics. The included lags are informed by the need to account 

for the day-of-the-week effect,4 which usually characterizes the daily financial series and are likely 

to bias the results if ignored when modelling such high-frequency series (Zhang et al., 2017; Yaya 

and Ogbonna, 2019). The inclusion of a break-dummy is informed by the need to account for the 

plausible structural shift from the natural path. We pre-weight our predictive model with the 

inverse of the standard deviation of the residuals  ˆ   to account for the conditional 

heteroscedasticity effect that is inherent in the high-frequency data. The predictive model is as 

given in equation (1),  

   1

1

1
k

t i t i t t t t

i

r ciu ciu ciu brk     


       

                                                           
4 Day-of-the-week effect was preliminarily confirmed for all the energy prices except gasoline and natural gas, as Monday appears 

to be statistical significant. 
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where  1ln
t t t

r P P  represents returns on energy prices t
P  at the time t ;   denotes intercept; 

t i
ciu   denotes the 

th
i  lag of the predictor variable – index of COVID-19 induced uncertainty 

 t
ciu , 1,2, ,i k  and 5k  ; i

  is the slope coefficient associated with the 
th

i  lag of the predictor 

variable; the term,  1t t
ciu ciu   is incorporated to correct for plausible endogeneity bias and 

persistence (unit root problem) that may be inherent in the predictor variable; t
brk  is an 

exogenously determined dummy variable that is used to capture the period of the shift from the 

natural trend, such that it takes value 0 for the period before WHO declaration and value 1 

afterward;   denotes the break dummy coefficient; and t
  denotes the error term. The CIU in 

equation (1) is replaced by other uncertainty proxies - GFI, EPU, and VIX, as the case may be. 

Equation (1) specifies energy price returns as a function of the lags of the index of 

uncertainty (CIU, GFI, EPU, and VIX) and an exogenously determined structural break dummy. 

Although the estimated coefficients associated with the lags of the predictor as well as the break 

dummy are examined for statistical significance, the joint significance of these lags, which 

translates to ciu  predictability for energy prices is of greater importance. The joint significance 

is examined under a null hypothesis of no predictability (that is, 0

1

: 0
k

i

i

H 


 ) using the Wald 

test statistic. Failure to reject the stated null hypothesis implies no joint significance of the lags of 

ciu . However, if the joint significance for the lags of ciu  is ascertained, then the relationship 

between energy price returns and ciu  is expected to be negative. A rolling window, rather than a 

fixed window, the framework is adopted to forecast the selected energy price returns, given that 

the former accounts for plausible time-variation in the parameters. The model is used, also with 

partially decomposed sums in a bid to examine the asymmetric effect. The COVID-19 induced 

uncertainty  t
ciu  is decomposed into positive and negative partial sums, which are defined as 

 
1 1

max ,0
t t

t j j

j j

ciu ciu ciu
 

 

      and  
1 1

min ,0
t t

t j j

j j

ciu ciu ciu
 

 

     , respectively (see 

Narayan and Gupta, 2015; Salisu et al., 2019; Salisu et al., 2020b & c; among others).  

A historical average model is also estimated for each energy price returns to serve as a 

benchmark model, with which the forecast performance of our predictive model is compared using 

relative root mean square error (RMSE). The relative RMSE value is computed as a ratio of the 
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RMSE of our predictive model (with each proxy of uncertainty) and the historical average model. 

Consequently, we expect a value less than one for our predictive model to out-perform the 

historical average, and greater than one for the latter over the former. A unity value will indicate 

no difference in the forecast of our predictive model and the historical average model.  We also 

consider a pairwise comparison statistic – Diebold and Mariano [DM, 1995] test, which is 

considered the most appropriate when the contending models are non-nested; to compare the 

forecast performance of our predictive model with the different uncertainty proxies. The test 

provides a formal framework to tests whether the observed difference, in the forecast errors of the 

paired contending non-nested models, is not statistically different from zero. The test statistic is 

specified as: 

 
 

   ~ 0,1 6
d

DM Stat N
V d

T

  

where the sample mean of the loss differential    t it jt
d g g    is defined as 

1

1 T

tt
d d

T 
  , 

with  it
g   and  jt

g   representing the loss functions of the contending models’ forecast errors, 

it
  and jt

 , which are associated with the two forecasts, say ît
r  and ˆ

jt
r , respectively, while  t

V d  

is the unconditional variance of t
d . The null hypothesis tests for the equality of the forecast errors 

of the paired competing models, such that   0
t

E d  . A rejection of the null hypothesis would 

imply a statistically significant difference in the forecast precision of the two competing models. 

We expect a significantly negative DM statistic for our predictive model with our new index to 

out-perform the predictive model with any of the other uncertainty proxies; otherwise, the latter 

would be preferred over the former. In any case, the preferred predicts the energy price returns 

more precisely with few errors compared to the contending paired model. In the case of 

asymmetry, we also require a significantly negative DM statistic to confirm the presence of the 

asymmetric effect. 

 

2.3 Data Issues and Some Preliminary Analyses 

In this study, daily prices of eight different energy sources (oil and petroleum products), 

uncertainty index  ciu  computed based on the principal component analysis (PCA) of Google 
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search volumes relating to COVID-19 pandemic, and Global Fear Index [hereafter, GFI] were 

analyzed. Prices of energy sources such as Brent crude, diesel, gasoline, heating oil, kerosene, 

natural gas, propane, and West Texas Intermediate [WTI] crude oil obtained from the website 

https://www.investing.com; the Google search volume data were obtained from Google Trend 

search engine; the daily implied volatility on the S&P500 index  [VIX] from the Chicago Board 

of Options Exchange was obtained from https://fred.stlouisfed.org/series/VIXCLS; while the 

economic policy uncertainty [EPU] (see Baker, Bloom, and Davis, 2016) was obtained from 

www.policyuncertainty.com/media/All_Daily_Policy_Data.csv. The energy prices, Google 

search volume data, and the uncertainty proxies (EPU and VIX) span a period between January 2, 

2020 and July 17, 2020. The GFI data, which spanned a period between February 9, 2020 and July 

17, 2020, was sourced from Salisu and Akanni (2020) 5. The data sample interval was chosen to 

include periods before and after the WHO declaration of COVID-19 as a pandemic. 

On the transformation of variables, except for the uncertainty proxies (CIU, GFI, EPU, and 

VIX), that were logged, all the energy prices were transformed into returns. Table 1 presents the 

summary statistics of the data employed in this study, and some preliminary tests, which include 

unit root tests, the ARCH test, autocorrelation, persistence, and endogeneity tests. The results of 

the data feature and tests serve as a pre-requisite for the adoption of the estimation approach used 

in the paper. 

Table 1: Summary Statistics and Preliminary Analysis 
 BRENT DIESEL GASOLINE HEATING_OIL KEROSENE NGAS PROPANE WTI CIU GFI EPU VIX 

Mean -0.306 -0.361 -0.291 -0.382 -0.426 1.802 0.060 -0.291 45.243 310.924 58.105 30.257 

Std. Dev. 9.457 4.904 8.559 4.840 6.008 0.152 4.758 8.408 30.536 183.403 15.439 13.666 

Minimum -64.370 -20.430 -41.080 -18.460 -28.104 1.420 -16.959 -34.542 1.690 22.250 9.909 12.100 

Maximum 41.202 15.079 29.469 11.186 15.346 2.170 15.645 31.963 100.000 807.660 91.190 76.450 

Skewness -1.693 -0.626 -1.159 -0.702 -0.747 0.022 -0.612 -0.451 -0.153 0.303 0.693 1.387 

Kurtosis 20.267 6.394 10.078 5.553 6.628 2.704 6.033 8.570 1.729 2.084 3.363 5.213 

J-B Statistic 1818.947*** 76.874*** 325.942*** 49.896*** 90.460*** 0.531 62.850*** 187.062*** 10.112*** 7.134*** 9.843** 74.544*** 

N 141 141 141 141 141 142 141 141 142 115 142 142 

ADF -10.687*** -11.223*** -12.346*** -11.148*** -11.644*** -3.600*** -11.802*** -10.914*** -12.400*** -4.602*** -19.137*** -10.894*** 

PP -10.764*** -11.224*** -12.344*** -11.150*** -11.771*** -3.282** -11.828*** -10.914*** -12.424*** -16.481*** -23.044*** -10.883*** 

ARCH(3) 5.130*** 3.858** 2.662* 2.106 1.434 0.994 5.542*** 15.417*** 1.694 6.267*** 2.685** 3.997*** 

ARCH(6) 2.439** 2.366** 3.974*** 2.529** 1.484 1.246 3.139*** 8.191*** 0.841 5.638*** 1.822* 1.909* 

ARCH(12) 1.29 1.215 1.843** 1.537 0.816 2.832*** 3.209*** 3.847*** 0.578 12.955*** 0.951 1.665* 

Q(3) 2.7536 1.4457 3.6319 0.3528 1.3786 2.7865 13.924*** 7.461* 3.5031 25.654*** 22.424*** 5.3851 

Q(6) 4.9866 2.455 6.8007 3.4964 10.175 4.3183 17.745*** 15.008** 12.608* 31.052*** 23.901*** 7.0648 

Q(12) 18.958* 9.2243 17.77 13.895 15.287 9.9238 37.736*** 20.070* 21.251** 80.433*** 44.529*** 19.843* 

Q2(3) 14.266*** 12.126*** 9.853*** 8.426** 5.6672 3.487 16.686*** 50.707*** 6.1776 13.740*** 7.723* 13.174*** 

Q2(6) 14.272** 20.842*** 26.492*** 25.534*** 15.064** 6.9955 21.413*** 61.701*** 6.258 15.24** 11.237* 14.605** 

Q2(12) 17.577 25.454** 35.836*** 36.617*** 23.239** 30.795*** 59.584*** 69.914*** 8.6479 54.627*** 14.491 30.328*** 

Persistence -0.048 0.065 -0.153* 0.073 -0.049 0.840*** -0.046 0.077 0.971*** 0.862*** 0.879*** 0.957*** 

Endogeneity             

CIU -0.108 -0.075 -0.317*** -0.096 -0.136* 1.58E-05 -0.078 -0.012 - - - - 

GFI -0.098 -0.082 -0.059 -0.080 -0.108 -4.02E-04 -0.046 -0.119 - - - - 

                                                           
5 Details of computation of GFI index is found in Salisu and Akanni (2020). 

https://www.investing.com/
https://fred.stlouisfed.org/series/VIXCLS
http://www.policyuncertainty.com/media/All_Daily_Policy_Data.csv
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EPU 0.006 0.006 -0.003 0.005 0.006 -2.56E-04*** 0.004 0.002 - - - - 

VIX 0.050 0.099 0.327* 0.059 0.133 0.003 0.135 0.079 - - - - 

Note: ***, ** and * denote statistical significance at 1%, 5% and 10% levels, respectively. 

From the results in Table 1, the average returns on energy variables; apart from natural gas 

and propane, for the sampled period is positive. The returns on Brent oil are more volatile than 

those of WTI oil and the other energy variables, judging from the standard deviation results. 

Returns on propane are least volatile compared to the other energy variables. As consistent with 

returns series, we find all the energy prices, except natural gas, to be negatively skewed. These 

energy prices are leptokurtic (exhibiting kurtosis values greater than the normal threshold of 3). 

On the predictors, CIU is negatively skewed, GFI is positively skewed, and both are platykurtic. 

From the foregoing, all the energy prices and predictors – CIU, GFI, EPU, and VIX, are not 

normally distributed, judging from the Jarque-Bera statistic.  

On the stationarity of the variables, we find all the energy prices, except natural gas,  to be 

non-stationary at levels, hence the need to transform using differenced log transformation; and the 

predictor variables are found to be integrated of order 1, as revealed by the ADF and PP unit root 

tests. The presence of the ARCH effect is also confirmed in all the energy prices and GFI, EPU, 

and VIX but not in CIU, while we find the variables to exhibit some level of autocorrelation up to 

lag 12. Persistence is evidenced in the two predictor variables (CIU, GFI, EPU, and VIX), which 

conforms to their non-stationary stance at levels as observed from the ADF and PP unit root tests. 

These predictors do not exhibit any significant evidence of endogeneity across the model, pairing 

each predictor with any of the energy returns series. This translates to the fact that while the 

evidence of persistence may portend some challenges, we do not have to worry about endogeneity 

bias.  



11 

 

0

20

40

60

80
0 

20 

40 

60 

80 

100 

6 13 20 27 3 10 17 24 2 9 16 23 30 6 13 20 27 4 11 18 25 1 8 15 22 29 6 13

M1 M2 M3 M4 M5 M6 M7

E
n

er
g

y
 P

ri
ce

(U
S

D
/U

n
it

)

0.50

0.75

1.00

1.25

1.50

1.75

2.00 0 

20 

40 

60 

80 

100 

6 13 20 27 3 10 17 24 2 9 16 23 30 6 13 20 27 4 11 18 25 1 8 15 22 29 6 13

M1 M2 M3 M4 M5 M6 M7

0.0

0.4

0.8

1.2

1.6

2.0
0 

20 

40 

60 

80 

100 

6 13 20 27 3 10 17 24 2 9 16 23 30 6 13 20 27 4 11 18 25 1 8 15 22 29 6 13

M1 M2 M3 M4 M5 M6 M7

C
O

V
ID

-1
9

 In
d

u
ced

U
n

certain
ty

0.4

0.8

1.2

1.6

2.0

2.4

0 

20 

40 

60 

80 

100 

6 13 20 27 3 10 17 24 2 9 16 23 30 6 13 20 27 4 11 18 25 1 8 15 22 29 6 13

M1 M2 M3 M4 M5 M6 M7

E
n

er
g

y
 P

ri
ce

(U
S

D
/U

n
it

)

0.0

0.4

0.8

1.2

1.6

2.0 0 

20 

40 

60 

80 

100 

6 13 20 27 3 10 17 24 2 9 16 23 30 6 13 20 27 4 11 18 25 1 8 15 22 29 6 13

M1 M2 M3 M4 M5 M6 M7

1.4

1.6

1.8

2.0

2.2 0 

20 

40 

60 

80 

100 

6 13 20 27 3 10 17 24 2 9 16 23 30 6 13 20 27 4 11 18 25 1 8 15 22 29 6 13

M1 M2 M3 M4 M5 M6 M7

C
O

V
ID

-1
9

 In
d

u
ced

U
n

c
ertain

ty

.2

.3

.4

.5

.6

0 

20 

40 

60 

80 

100 

6 13 20 27 3 10 17 24 2 9 16 23 30 6 13 20 27 4 11 18 25 1 8 15 22 29 6 13

M1 M2 M3 M4 M5 M6 M7

E
n

er
g

y
 P

ri
ce

(U
S

D
/U

n
it

)

0

20

40

60

80

0 

20 

40 

60 

80 

100 

6 13 20 27 3 10 17 24 2 9 16 23 30 6 13 20 27 4 11 18 25 1 8 15 22 29 6 13

M1 M2 M3 M4 M5 M6 M7

Energy Price COVID-19 Induced Uncertainty

C
O

V
ID

-1
9

 In
d

u
ced

U
n

certain
ty

Brent Diesel Gasoline

Heating Oil Kerosene Natural Gas

Propane WTI

Period Period

Period

 

Figure 1: Bivariate Plot of Energy Prices and COVID-19 Induced Uncertainty 

The graphical illustration in Figures 1 - 4 show pairs of each energy price variable with 

each uncertainty proxies (CIU, EPU, GFI, and VIX, respectively) and can be seen that although 

the prices are trending downwards, there appears to be relative stability in the prices before the 

WHO declaration of the COVID-19 as a pandemic. The announcement appears to have triggered 

a structural shift in the natural path of the prices and more prominently in the level of uncertainty. 

Interestingly, the highest level of uncertainty coincides with the WHO declaration of COVID-19 

as a pandemic (see Figures 1 and 3). It would, therefore, be necessary to account for structural 

breaks in the predictive model of these energy prices. The evidence featured in the data suggests 

that the most appropriate model would be one that accounts for conditional heteroscedasticity, 

autocorrelation, the persistence as well as a structural break; hence, the adoption of the distributed 

lag model specification in equation (1).  
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Figure 2: Bivariate Plot of Energy Prices and Economic Policy Uncertainty 
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Figure 3: Bivariate Plot of Energy Prices and Global Fear Index 
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Figure 4: Bivariate Plot of Energy Prices and Volatility Index 

 

3. RESULTS AND DISCUSSIONS  

3.1 Main Estimation 

Here, we present the empirical findings of our analysis using the distributed lag model specified 

in equation (1). We begin this section by ascertaining the predictability of each energy price returns 

using the developed index of uncertainty – CIU, and thereafter, examine the impact of accounting 

for asymmetry in the predictive model for each of the energy price returns (Table 2). In a bid to 

evaluate the model adequacy, we employ both the relative RMSE and the DM test (Diebold and 

Mariano, 1995) in a pairwise comparison of a benchmark and the paired contending models; and 

examine both the in-sample and out-of-sample (h=5, h=10, and h=20) forecast performance of 

our predictive model (see Tables 3 and 4). We also conduct a sensitivity analysis using extant 

uncertainty proxies (GFI, EPU, and VIX) and discuss the results for the predictability (see Tables 

2) and forecast performance (see Tables 3 and 4), as in the main estimation. 
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Table 2 presents the predictability results for energy returns, using the aggregate (news) as 

well as the positively (good news) and negatively (bad news) decomposed partial sums of CIU 

index, separately, as predictors. The CIU index is generated by summarizing the information in 

Google search volumes on several keywords relating to the COVID-19 pandemic, using PCA. Five 

(5) lags of CIU index are then included in the model, as a way to account for the day-of-the-week 

effect, which characterizes most daily frequency series (Zhang et al., 2017; Yaya and Ogbonna, 

2019; among others). While the statistical significances of the lags of CIU are as well important; 

the predictability stance is ascertained from the joint coefficient that combines the coefficients of 

the five lags of CIU, with the statistical significance, or otherwise, of the joint coefficient estimate 

determined using the conventional Wald statistic. Consequently, a statistically significant joint 

coefficient estimate6 would suggest that the index of uncertainty is a good predictor for the 

corresponding energy price. 

The results across the energy variables, except for natural gas and propane that are positive 

and statistically significant, reveal that CIU impacts energy returns negatively and significantly. 

This is consistently evidenced in six of the eight energy returns measures considered in this study. 

The significantly negative relationship between energy price returns and CIU implies that energy 

prices have no hedging potential against the uncertainty occasioned by the COVID-19 pandemic. 

This finding contradicts the stance of Salisu et al., (2020a) that found a positive relationship 

between commodity prices and uncertainty. Imperatively, investors in the energy market who do 

not seek alternative assets to invest in, are likely to incur losses during the COVID-19 pandemic. 

Table 2: Predictability of Energy Prices using CIU 

Energy Aggregate  
Asymmetry 

Negative  Positive 

Brent -5.63E-02***[1.83E-02]  -4.16E-02***[1.25E-02]  2.28E-02***[4.91E-03] 

Diesel -3.32E-02***[5.23E-03]  -1.87E-02***[5.35E-03]  1.60E-02***[5.58E-03] 

Gasoline -6.02E-02***[6.44E-03]  -7.15E-02***[1.05E-02]  3.54E-02***[1.17E-02] 

Heating oil -4.64E-02***[6.81E-03]  -1.79E-02***[3.82E-03]  1.81E-02***[5.78E-03] 

Kerosene -1.54E-02[1.40E-02]  -4.46E-02***[4.16E-03]  1.97E-02*[1.02E-02] 

Natural gas 4.46E-04*[2.34E-04]  6.74E-04***[7.55E-05]  -3.69E-04**[1.72E-04] 

Propane 2.38E-02**[1.14E-02]  -3.09E-02***[3.67E-03]  -3.79E-02***[6.48E-03] 

WTI -5.46E-02***[9.23E-03]  -1.12E-02***[1.04E-02]  3.58E-03[1.68E-02] 
Note: ***, ** and * denote statistical significance at 1%, 5% and 10% levels, respectively. Figures in square brackets are the standard errors of the 

estimated coefficients. 

                                                           
6 We only report the joint coefficient estimates to conserve space, however the results are available on request. 
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In the same vein, bad news (negative decomposed partial sum of CIU) impacts negatively 

and significantly on energy returns in all but one case – natural gas. This largely follows the stance 

with the news (aggregated) results. On the other hand, the good news (positively decomposed 

partial sum of CIU) appears to have mixed impacts on the energy returns, with more evidence of 

significant positive impacts than significant negative impacts. While it had a significantly positive 

impact on brent, diesel, gasoline; heating oil, and kerosene; it significantly negatively impacted on 

prices of natural gas and propane. From the foregoing, it appears that bad news and good news do 

not impact equally energy returns. This informs the need to test for asymmetric effect in the 

information-based variable (see results in Tables 4 and 5), in addition to our predictive model’s 

performance compared with the contending models, using DM statistic.  

 

3.2 Predictability of energy prices using alternative measures of uncertainty 

Here, we consider alternative measures of uncertainty to ascertain the role of uncertainty in the 

predictability of energy price returns amidst the COVID-19 pandemic. This could in a way be 

considered a sensitivity analysis of the results earlier obtained in the main estimation. The 

alternative measures of uncertainty include EPU, GFI, and VIX. The predictive model 

specification and estimation procedures are still the same as those of the main estimation with CIU 

lag as predictors, except for the change in the uncertainty proxy. The results of the predictability 

of the different energy prices are presented in Table 3. The stances and conclusions here are largely 

similar to those observed in the main estimation, where CIU lags were used instead. We observed 

a more significantly positive relationship between energy prices and EPU, while a more significant 

negative relationship is observed for GFI and VIX, under the aggregated data (second column of 

Table 3). However, under the negative and positive asymmetry column, the stance across 

uncertainty proxies are quite similar to those earlier observed in the case of CIU. Imperatively, 

while we could say that uncertainty and negatively decomposed partial sum of uncertainty 

measures (bad news) impact energy prices significantly negatively and positively decomposed 

partial sum of uncertainty measures (good news) impacts energy prices significantly positively, 

the result may be sensitive to the energy and uncertainty pairs being considered  (see Table 3). 

Table 3: Predictability of Energy Prices using alternative measures of uncertainty 
 Aggregate  Negative  Positive 

EPU 

Brent 6.02E-03***[5.81E-04]  -8.40E-04***[7.13E-05]  1.02E-03***[6.62E-05] 
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Diesel -2.96E-03***[5.70E-04]  -5.62E-04***[7.13E-05]  8.90E-04***[1.04E-04] 

Gasoline 1.28E-02***[1.59E-03]  -1.01E-03***[2.30E-04]  1.36E-03***[1.27E-04] 

Heating oil -2.94E-03***[3.64E-04]  -5.10E-04***[9.51E-05]  6.50E-04***[1.21E-04] 

Kerosene 2.42E-03***[8.03E-04]  -1.05E-03***[1.31E-04]  1.16E-03***[8.96E-05] 

Natural gas 1.19E-04***[4.06E-05]  2.82E-05***[3.05E-06]  -4.75E-05***[2.42E-06] 

Propane 1.01E-02***[8.77E-04]  -4.65E-04***[6.17E-05]  3.03E-04***[8.13E-05] 

WTI 2.48E-03***[9.80E-04]  -2.26E-04[1.87E-04]  6.45E-04*[3.48E-04] 

GFI 

Brent -7.11E-02***[1.74E-02]  -8.00E-03**[3.56E-03]  1.48E-02***[2.05E-03] 

Diesel -3.60E-02***[4.09E-03]  -1.59E-02***[7.50E-04]  7.33E-03***[2.13E-03] 

Gasoline -8.28E-02***[1.01E-02]  -2.01E-02***[4.70E-03]  1.51E-02***[1.55E-03] 

Heating oil -1.01E-02[6.63E-03]  -1.02E-02***[3.09E-03]  1.00E-02***[2.74E-03] 

Kerosene -4.62E-02***[1.38E-02]  -1.99E-02***[3.06E-03]  2.16E-02***[1.72E-03] 

Natural gas 2.35E-04[2.34E-04]  8.80E-04***[8.81E-05]  -1.21E-03***[5.45E-05] 

Propane -2.68E-02**[1.16E-02]  -1.51E-04[1.27E-03]  -8.44E-03***[2.52E-03] 

WTI -8.97E-02***[9.87E-03]  -4.02E-03[5.55E-03]  1.52E-02***[1.98E-03] 

VIX 

Brent -1.28E-02[1.25E-02]  -2.67E-02***[4.49E-03]  1.32E-03[9.63E-04] 

Diesel 4.09E-05[7.64E-03]  -2.53E-02***[4.41E-03]  1.19E-02***[8.86E-04] 

Gasoline -4.88E-02***[4.48E-03]  -4.12E-02***[1.01E-02]  1.20E-02***[4.70E-03] 

Heating oil 7.10E-03***[5.02E-03]  -1.89E-02***[5.20E-03]  1.03E-02***[1.01E-03] 

Kerosene -6.31E-03[1.15E-02]  -3.10E-02***[8.30E-03]  1.64E-02***[9.52E-04] 

Natural gas -3.36E-04[3.25E-04]  2.11E-03***[1.47E-04]  -1.42E-03***[1.63E-04] 

Propane -1.81E-03[8.20E-03]  3.41E-03[6.98E-03]  -2.25E-03[2.27E-03] 

WTI -5.45E-02***[1.33E-02]  -1.73E-02***[1.40E-03]  -5.80E-04[5.19E-03] 
Note: ***, ** and * denote statistical significance at 1%, 5% and 10% levels, respectively. Figures in square brackets are the standard errors of the 

estimated coefficients. 

 

3.3 Forecast Evaluation 

Having established the in-sample predictability of energy prices using the different uncertainty 

proxies, we here examine the out-of-sample forecast performance of all the model constructs. We 

employ the conventional RMSE and the Diebold and Mariano (1995) test statistic. The results are 

presented in Tables 4 and 5, respectively. The results in Table 4 are the relative RMSE pairwise 

comparison between the forecast of an unrestricted (our predictive distributed lag) model 

comprising separately the lags of the different uncertainty measures (CIU, EPU, GFI, and VIX) 

and the restricted (benchmark historical average) model. Relative RMSE values that are less than 

one indicate a preference for the lag distributed over the historical average. In addition to the 

established in-sample predictability in Tables 2 and 3, we examine the out-of-sample forecast 

performances under three forecast horizons (h=5, h=10, and h=20), as another form of robustness 

check. Across the out-of-sample forecast periods and energy prices (except Brent, under longer 

out-of-sample forecast horizon), our distributed lag model with CIU lags as predictors and 

incorporates all evidenced data features (conditional heteroscedasticity, autocorrelation, and 

structural break) outperformed the benchmark historical average model that ignores same. This 
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shows that the incorporation of an information-based (news) variable in the predictive model for 

energy prices does improve the forecasts of the returns series than when ignored. 

The stance of outperformance of the distributed lag model that incorporates any of the 

alternative proxies is dependent on the energy variable being considered. While the forecast 

performance results for EPU are quite similar to those of CIU, the distributed lag model 

incorporating GFI and VIX differ markedly, with less proportion of outperformance over the 

historical average model. The consistency of outperformance across the out-of-sample periods 

shows that results are not sensitive to the forecast periods chosen, especially in the case of CIU. 

However, the model incorporating the decomposed partial sums of lags of the corresponding 

uncertainty proxy, separately, as predictors may not outperform the historical average model as 

the case incorporating the aggregate. Put differently, the predictive model (with CIU lags as 

predictors) is preferred over the benchmark historical average model across energy markets (Brent, 

diesel, gasoline, kerosene, propane, WTI oil) returns as well as across forecast horizons. 

Furthermore, we adopt the DM test statistic to formally ascertain the performance of the different 

constructs of the non-nested distributed lag model. 

 

Table 4: Relative RMSE test results using alternative measures of uncertainty 

Energy Aggregate 
 Asymmetry 

 Negative  Positive 

 5h   10h   20h    5h   10h   20h    5h   10h   20h   

CIU 

Brent 0.998 1.001 1.002  0.988 1.013 1.062  1.063 1.089 1.142 

Diesel 0.979 0.984 0.983  0.982 1.003 1.045  1.017 1.039 1.082 

Gasoline 0.964 0.970 0.973  0.932 0.951 0.994  0.990 1.010 1.057 

Heating Oil 0.977 0.982 0.981  1.014 1.036 1.078  1.038 1.060 1.104 

Kerosene 0.973 0.977 0.978  0.962 0.984 1.028  1.026 1.050 1.097 

Natural Gas 0.856 0.882 0.901  0.800 0.761 0.747  0.778 0.740 0.727 

Propane 0.907 0.913 0.915  0.950 0.969 1.009  1.012 1.033 1.076 

WTI 0.970 0.971 0.974  0.993 1.017 1.066  1.039 1.063 1.115 

EPU 

Brent 0.988 0.988 0.989  0.998 1.001 1.016  0.988 0.992 1.000 

Diesel 1.006 1.010 1.009  1.017 1.036 1.048  0.991 1.000 1.005 

Gasoline 0.959 0.960 0.967  0.953 0.955 0.958  0.978 0.988 1.005 

Heating Oil 0.997 1.002 1.001  1.029 1.046 1.050  0.977 0.986 0.990 

Kerosene 0.983 0.988 0.995  0.958 0.975 0.991  0.972 0.985 1.000 

Natural Gas 0.919 0.939 0.949  0.899 0.916 0.912  0.860 0.841 0.833 

Propane 0.969 0.972 0.975  0.944 0.949 0.957  0.976 0.985 0.999 

WTI 0.980 0.982 0.983  0.999 1.007 1.012  0.992 0.996 1.004 

GFI 

Brent 1.003 1.003 1.001  1.042 1.051 1.062  1.030 1.032 1.035 

Diesel 1.003 1.004 1.000  1.019 1.026 1.028  1.015 1.021 1.023 

Gasoline 0.997 0.999 0.997  1.036 1.043 1.049  1.020 1.023 1.023 

Heating Oil 1.028 1.030 1.025  1.041 1.046 1.044  1.035 1.039 1.036 

Kerosene 1.013 1.014 1.011  1.051 1.091 1.152  1.020 1.026 1.029 

Natural Gas 0.912 0.916 0.920  0.922 0.904 0.892  0.888 0.870 0.857 

Propane 0.991 0.994 0.994  0.984 0.987 0.988  1.030 1.032 1.035 

WTI 1.015 1.015 1.013  1.048 1.049 1.050  1.032 1.035 1.038 

VIX 
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Brent 0.992 0.992 0.992  0.981 0.983 0.984  1.007 1.008 1.008 

Diesel 1.006 1.009 1.005  0.966 0.971 0.970  1.006 1.012 1.013 

Gasoline 0.980 0.981 0.980  0.924 0.936 0.943  1.007 1.009 1.008 

Heating Oil 1.000 1.003 0.999  0.973 0.979 0.978  1.033 1.037 1.039 

Kerosene 1.006 1.009 1.006  0.951 0.962 0.969  1.040 1.046 1.050 

Natural Gas 0.890 0.900 0.911  0.882 0.864 0.846  0.879 0.884 0.894 

Propane 0.983 0.987 0.993  0.981 0.987 0.989  1.000 1.002 1.006 

WTI 1.000 1.002 1.002  0.987 0.991 0.995  1.002 1.004 1.005 

Note: Figures less than one indicate a preference for our predictive model over the benchmark historical average model.  

The results in Table 5 are the DM test statistics that provide a pairwise comparison between 

non-nested models. Here, we compare our predictive distributed lag model that incorporates CIU 

lags as predictors with the other model variants that incorporated the alternative uncertainty 

measures (EPU, GFI, and VIX). Under the column titled, “aggregate”, the null hypothesis asserts 

that both contending models do not differ markedly, one from the other. Negative and statistically 

significant DM statistics would imply preference of the model incorporating CIU over the models 

incorporating other uncertainty proxies (EPU, GFI, and VIX), while positive and statistically 

significant DM statistics would imply preference of the other uncertainty proxies over CIU. 

Similarly, the distributed lag models incorporating, separately, positively and negatively 

decomposed partial sums of the corresponding uncertainty measure are compared, to ascertain 

formally if asymmetry exists. The null hypothesis here asserts that asymmetric effect does matter, 

which implies that forecast from a model incorporating positive partial sum of corresponding 

uncertainty measure does not differ markedly from a model incorporating negative partial sum of 

corresponding uncertainty measure. In all cases, we consider three different out-of-sample forecast 

horizons. 
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Table 5: Diebold and Mariano Test Results 

Energy 
Aggregate 

 
Asymmetry 

5h   10h   20h   5h   10h   20h   

CIU 

Brent - - -   0.492  0.493  0.493 

Diesel - - -  -0.939 -0.939 -0.940 

Gasoline - - -  -0.090 -0.090 -0.090 

Heating oil - - -   0.121  0.121  0.121 

Kerosene - - -  -1.040 -1.041 -1.041 

Natural Gas - - -   0.479  0.479  0.479 

Propane - - -  -0.276 -0.276 -0.276 

WTI - - -   0.286  0.286  0.287 

EPU 

Brent   -6.331***   -6.265***   -6.158***   0.713  0.876  1.621 

Diesel   -9.245***   -9.461***   -9.654***   1.435  1.953*  2.637*** 

Gasoline   -7.913***   -7.770***   -7.564***  -0.319 -0.708 -1.514 

Heating oil   -9.562***   -9.292***   -8.865***   0.842  0.999  1.045 

Kerosene   -9.942*** -10.175***   -9.610***   0.403  0.371  0.194 

Natural Gas   -1.911*   -2.927***   -3.941***   0.605  1.417  1.694* 

Propane   -8.975***   -9.282***   -9.825***  -0.306 -0.306 -0.306 

WTI   -7.805***   -8.032***   -8.112***   1.162  1.162  1.162 

GFI 

Brent   -6.383***   -6.316***   -6.206***   1.616  1.615  1.615 

Diesel   -9.576***   -9.741***   -9.897***   0.475  0.556  0.651 

Gasoline   -7.973***   -8.095***   -7.863***   1.690*  1.938*  2.430** 

Heating oil   -9.796***   -9.837***   -9.880***  -0.018 -0.018 -0.018 

Kerosene   -9.365***   -9.096***   -8.672***   1.040  1.889*  1.887* 

Natural Gas   -2.119**   -2.118**   -2.115**   0.961  1.077  1.112 

Propane   -8.847***   -8.668***   -8.383***  -0.198 -0.164 -0.164 

WTI   -7.634***   -7.519***   -7.333***   1.021  1.021  1.022 

VIX 

Brent   -6.283***   -6.219***   -6.114***  -0.964 -0.934 -0.580 

Diesel   -9.792***   -9.960*** -10.035***  -0.513 -0.555 -0.439 

Gasoline   -8.133***   -7.979***   -7.756***  -1.150 -0.791 -0.126 

Heating oil -10.200***   -9.879***   -9.380***  -0.378 -0.378 -0.378 

Kerosene   -9.881***   -9.573***   -9.091***  -1.700* -1.475 -1.475 

Natural Gas   -1.336   -1.336   -1.336  -0.711 -0.712 -0.712 

Propane   -8.834***   -9.019***   -8.699***   0.534  0.554  0.507 

WTI   -7.999***   -8.065***   -8.085***  -0.534 -0.534 -0.535 

Note: ***, ** and * denote statistical significance at 1%, 5% and 10% levels, respectively. Figures in square brackets are standard errors of the 

estimated coefficients. 

We find consistently across energy variables and out-of-sample forecast horizons the 

distributed lag model that incorporates CIU lags significantly outperformed the distributed lag 

model that incorporates the alternative uncertainty measures (see results in Table 5, under the 

column titled “Aggregate”). Imperatively, the newly developed index of uncertainty appears to 

have better predictive capacity over the extant variants (EPU, GFI, and VIX), hinging on the wealth 

of information from the Google trends database. Its outperformance transcends all three out-of-

sample forecast horizons (h=5, h=10, and h=20), thus, it is not sensitive to the choice of the sample 

period. . On the confirmation of asymmetric effect, the results are presented under the column 

titled “Asymmetry” in Table 3. In testing formally the relevance of disaggregating the news effect 

into positive and negative values, we find, mostly, no evidence of asymmetry across the energy 

price variables, except in the case of EPU (diesel), GFI (gasoline and kerosene), and VIX 



21 

 

(kerosene). Asymmetry may be dependent on the energy price variable and sample period, and 

should only be incorporated whenever they exist.  

Generally, energy prices are vulnerable to the uncertainty induced by the COVID-19 

pandemic, as they exhibit little or no hedging potential against uncertainty. While the relevance of 

news cannot be ignored when modelling energy price returns, failure to account for salient data 

features in the predictive model would bias the results and lead to unreliable conclusions.  

 

4. CONCLUSION 

In this study, we set out to develop an information-based index of uncertainty (the COVID-19 

induced uncertainty) and empirically apply it to assess the vulnerability of energy prices to market 

uncertainties using a distributed lag model that appropriately accounts for conditional 

heteroscedasticity, autocorrelation, persistence, and structural breaks. Eight energy sources (Brent, 

diesel, gasoline, heating oil, kerosene, natural gas, propane, and the WTI oil) prices and four 

uncertainty proxies (CIU, GFI, EPU, and VIX) were analyzed. The first uncertainty proxy, the 

CIU index was developed in this study by summarizing the information in Google search volumes 

on several keywords relating to the COVID-19 pandemic, using the PCA, and used the same in 

the main estimation, while the other three alternative indices – GFI, EPU, and VIX, are drawn 

from extant literature and used to ascertain the robustness of results to news proxy. In addition to 

the computation of relevant summary statistics, some preliminary analyses were conducted, which 

informed the choice of the predictive model. Hence, we specified a distributed lag model (with 

five lags of the news variable, meant to account for the day-of-the-week effect and 

autocorrelations) that properly accounted for the observed salient data features. A break dummy 

that indicated the structural shift occasioned by the WHO declaration of COVID-19 as a pandemic 

was also incorporated into the predictive model. The conditional heteroscedasticity was taken care 

of by pre-weighting the model with the inverse of the standard deviation of the residuals.  

We ascertained the predictability of each energy price returns using the aggregate (news), 

as well as the positively (good news) and negatively (bad news) decomposed partial sums of our 

index of uncertainty – CIU, as well as those of the three alternatives. While we found that news 

and bad news negatively and significantly impacted energy prices; good news impacted 

significantly positively. These outcomes revealed the lack of hedging potential of energy returns 
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against the uncertainty that is occasioned by the COVID-19 pandemic. We showed the relevance 

of incorporating news as a predictor for energy prices by comparing our predictive model with the 

benchmark historical average model. The former outperformed the latter in most of the cases, 

across the specified forecast horizons (h=5, h=10, and h=20). We also found that the predictive 

model incorporating CIU performs better than the variants incorporating the three other 

alternatives. We further examined the relevance of accounting for asymmetry by comparing 

models that incorporated, separately, the good and bad news; and seldom found evidence of 

asymmetric effect across forecast horizons and energy prices being modelled. By implication, 

energy prices were vulnerable to the uncertainty occasioned by the COVID-19 pandemic, and this 

stance was not sensitive to the uncertainty proxy employed, given that the conclusions from the 

main estimation were upheld in the sensitivity analysis that used EPU, GFI, and VIX in place of 

CIU.  

Meanwhile, investors in the energy market who do not seek alternative assets to invest in, 

are likely to incur losses during the COVID-19 pandemic. In furtherance of attempting to 

understand how commodity markets react to pandemics, research into improving the uncertainty 

index could be pursued, concerning accommodating more dynamics that are inherent in different 

sources of uncertainty. Also, this could be extended to other macroeconomic variables, other than 

energy prices.  
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