An Information Centric Network
for Computing the Distribution of Computations

Manolis Sifalakis
Dept of Mathematics and Computer Science
University of Basel
sifalakis.manos@unibas.ch

Christopher Scherb
Dept of Mathematics and Computer Science
University of Basel
christopher.scherb@unibas.ch

ABSTRACT

Named Function Networking (NFN) extends classic Infor-
mation Centric Networking (ICN), such that in addition to
resolving data access by name, it also supports the concept
of function definition and application to data (or other func-
tions) in the same resolution-by-name process. This em-
powers the network to select internally (optimal) places for
fulfilling a potentially complex user expression. Forwarding
optimization and routing policies become thereafter a basis
of dynamic decisions for (re)-distributing computations, and
retrieving results.

In this paper we describe the intrinsic operations and
mechanisms of an instantiation of NFN based on untyped
Lambda expressions and Scala procedures. Then, we demon-
strate through a series of proof-of-concept experiments how
they extend the capabilities of an information centric net-
work (CCN), for orchestrating and distributing data com-
putations, and re-using cached results from previous com-
putations. In the end we report and discuss the main ob-
servations stemming from these experiments and highlight
important insights that can impact the architecting of ICN
protocols that focus on named-data.

Keywords

Network architectures; information centric networking; named
data networking; named-function networking

1. INTRODUCTION

The architectural foundations and design “principles” of the
early Internet made very simple to link networks and in-
terconnect resources. The success of these foundations en-
abled unprecedentent growth and innovations for services
and applications on either side of the IP layer. Today ICN
research focuses on architecting away the shortcomings of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICN’14, September 24-26, 2014, Paris, France.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3206-4/14/09 ...$15.00.
http://dx.doi.org/10.1145/2660129.2660150 .

137

Basil Kohler
Dept of Mathematics and Computer Science
University of Basel
basil.kohler@unibas.ch

Christian Tschudin
Dept of Mathematics and Computer Science
University of Basel
christian.tschudin@unibas.ch

host-centricity in the original Internet, addressing aspects of
node mobility, security, dynamics of content dissemination,
and most important, factoring out location dependence from
the interaction of the user with information. Two common
design foundations in many ICN architectures [22] are the
adoption of indirection semantics (by varying similarity to
a publish-subscribe system [4]), and the use of names to ad-
dress content without involving host references; as implied
in the characterisation “Named Data Networking” [10]. This
contributes to a perception and use of the network as a data
repository, a global database of some sort, or in its simplest
form as a (semantic) memory.

It is worth pondering to what extent these key design
foundations of current ICN architectures simplify all pos-
sible aspects of interconnecting information, and what po-
tential is thereby created for application/service innovation.
On first sight, and amidst the cloud computing era, only
connecting users to information seems a “halfway vision” for
an information-centric Internet.

A broader vision called “Named Function Networking”
(NFN) was introduced in [21] where information access (ala
ICN) is complemented by information processing (as in Cloud
computing). NFN essentially generalises the semantics of ac-
cess names in ICN, such that they are treated as expressions.
A name can thus interchangeably represent a mapping to an
information object, a function capable of processing infor-
mation objects, or an expression that combines the two (and
involving multiple names).

By composing expressions involving named data as well
as named functions the user can describe information trans-
formations, and the network gets in-charge of finding if and
how the result can be obtained or synthesised, by interlacing
expression-resolution with name-based forwarding. In this
process in-network caching is now extended to also involve
caching of computation results.

Like in the case of removing locality-of-storage aspects
from data names, NFN removes locality-of-execution: in-
stead of inferring from a user request the location for the
computation and expecting from the routing substrate to
reinforce its reachability, the NFN network discovers or ap-
points alternative places for hosting computations.

In this paper we present the NFN concept in action. We
report our first experiences on a small testbed, demonstrate
though a series of experiments the added value, and finally
discuss our observations and the challenges encountered.

The remaining of this paper is organised as follows. In
Sec. 2 we provide an overview of the main concepts, design
tenets and mechanisms of NFN, and we present the node ar-
chitecture and the unified expression resolution/forwarding
strategy. In Sec. 3 we present a number of concept-proofing
experiments, and report the results. In Sec. 4 we discuss the
main observations, the issues we encountered, and possible
solutions alongside their implications on ICN architecting.
Finally Sec. 6 concludes the paper.

2. NAMED FUNCTION NETWORKING
(IN A NUTSHELL)

NFN blends the interpretation of a program’s control-flow
with network forwarding, and thereby dynamically distributes
computation tasks across an ICN network; orchestrating in
this way the interaction of code with data on user’s behalf
(and outside his explicit control). This orchestration is ef-
fected in one of three different ways, depicted in Fig. 1.

The first case is an attempt to locate results of compu-
tations that may have already taken place before, and so
in case (a) a node handling a request avoids recomputing
information which exists elsewhere in the net. Case (b) ap-
plies when information needs be generated, either because it
never was computed before or is not timely available. Case
(¢) covers the situation when some function or data required
to evaluate an expression, is “pinned down” (non retrievable)
by policy or other reasons. In this case the name resolution
(evaluation and possibly execution) is delegated (pushed)
towards the pinning site.

To achieve these objectives, names in NFN represent func-
tional programs in their simplest, most compact and archaic
form: A-calculus expressions. Their manipulation and evalu-
ation (progressively) “interferes” with name-based forward-
ing in ICN, and thereby is subject to network conditions,
load, and routing policies.

ICN NFN capable ICN path ICN path to
client ICN node ta code src content src
pragram
ta} {code + dataj
rielegate cached result 1Y
upstream result L S
Y
pregram
[code + data] =
> i
fdata] - partly processed or prime Ees
{b}
codenrag {code] srC
L compuoied result %}
¥
program
fdata, coda] {sul program
[ronde, datal
{c) ——
computation .@.
push ted resutt -
computed result M‘; -

¥

Figure 1: Three scenarios that NFN must handle: upstream
fetch, separate code and data fetch, computation push

2.1 Lambda calculus & Expression evaluation

Church’s Lambda () Calculus, which is the basis of func-

tional programming, defines recursively the form of terms

that compose a valid expression, in one of three cases: vari-

able lookup, function application and function abstraction
expr ::= v | expr-1 expr-r | Ax.expr

138

The most basic form of a A-term is just a variable name
v (that may be resolved). The second valid form expr-1
expr-r, the so called function application, is nothing else
than a simple function call expr-1(expr-r) with one argu-
ment (expr-r). Notice that both the function and its argu-
ment are in turn A-expressions and the only distinction of
their roles is their relative left-vs-right placement. The third
term form is called abstraction: Ax.expr is a definition of
a function with one argument. It consists of a A\-expression
expr, in which all occurrences of the formal parameter x
are the places where the actual parameter value (function
argument) has to be substituted.

Invocations (applications) and definitions of function with
more than one arguments are possible by a succession of
single argument function invocations and definitions respec-
tively. Parentheses may be used to make expressions more
readable but strictly speaking are not needed.

Complex expressions are transformed (evaluated) and of-
ten reduced to simpler ones, by iteratively applying beta-
reduction operations whenever a function application term
is encountered (beta-reduction specifies the rules of trans-
formation). For example, the following line succession of A-
expressions shows such a sequence of (simplifying) transfor-
mations between equivalent forms, through beta-reductions.
Op-Aq. (p g P)) Ox.Ay.x) ((Az.As.z) (Ak.k)) —
(Aq. ((Ax.Ay.x) q (Ax.Ay.x))) ((Az.As.z) (Ak.k)) —
Qx.Ay.x) ((Az.As.z) (Ak.k)) (Ax.)y.x) —

Qy. ((Az.As.2) (Ak.k))) (Ax.Ay.x) —
(Az.Xs.z) (M\k.k) —
(As. Ak.k)

When starting the evaluation of an expression from a dif-
ferent term and following a different convention for select-
ing the next term to reduce (e.g. innermost/rightmost —
Az.\s.z— as opposed to leftmost —~Ap.Aq. (p q p)), one may
realise that different reduction paths emerge, all of which
however lead to the same result (confluence theorem). This
is a basis for alternative resolution strategies such as call-by-
name/need/value/etc. Call-by-name resolution is particu-
larly useful in the context of network computations because
sub-expression resolution is delayed until their result “be-
comes essential”; implying in this way a potential saving of
processing resources and reduction of the entailed amount
of network traffic.

Although on first sight the untyped A-calculus, presented
above, seems nothing more than an elegant name-reshuffling
machinery, it nevertheless allows us to express program logic
of arbitrary complexity, very compactly encoded in ICN
names, and limited only by the maximum allowed length of
a name (i.e. packet size). On the other hand, actual binary
data processing operations, cannot be efficiently handled at
the name-manipulation level (although theoretically possible
in reality it is impractical). For this reason NFN assumes
two levels of program execution: One regards the name-
manipulation and the orchestration of computation distri-
bution; handled by the functional untyped A-calculus. The
other regards native code execution for actual data process-
ing tasks at the identified execution site(s), which in our
prototype is done in Java byte code for procedures written
in the Scala language [18].

Overall the use of A-calculus in NFN serves a role similar
to a simple IDL! language, involving only two operations:

nteractive Data Language, but also Intermediate Defini-
tion Language

(4) variable look-up —the name resolution ala ICN-, and (i)
term reduction, where a function is applied to its arguments
and composes new terms from them.

2.2 NFN node architecture

In its current instantiation NFN extends the CCN/NDN [10]
architecture?, hereafter referred to as CCN, (i) by integrat-
ing a A-expression resolution engine in a CCN relay, and (i)
by optionally hosting an application processing/execution
environment. These two extensions correspond to the two
levels of program execution discussed earlier.

The A-expression resolution engine is situated within the
COCN relay, and processes all Interests that have the implicit
postfix name component /NFN (this is by analogy to the way
the current CCN protocol implementation handles name
checksum hashes). It embodies a Krivine Abstract Machine
[12] (AM) that follows a call-by-name reduction strategy for
“lazy evaluation” of A-expressions. Call-by-name evaluation
guarantees that Interests for the recursive evaluation of sub-
expressions will be sent out in the network only if/when the
result of the sub-expression is needed. To implement the
required primitives (Table 1) we used the ZAM [13] instruc-
tion set of Caml, on a Stack-Machine with two stacks: One,
for holding intermediate reduction state, and the other for
resolving external invocations to native code data processing
functions. This implementation is compact and lightweight
in a typical CCNx relay, enabling controlled resource allo-
cation for NFN-extended processing.

Primitive A-op AM Instructions

RBN(v) VAR ACCESS (v) ; TAILAPPLY

RBN(\x body) | ABSTR | GRAB(x);RBN(body)

RBN(f g) APPLY | CLOSURE(RBN(f));RBN(g)

ACCESS (var) Lookup name wvar in environment E
and push the corresponding closure to
the argument stack A

CLOSURE(code) | Create a new closure using E and term
code, push it to the argument stack A.

GRAB(x) Replace E with a new environment
which extends E with a binding be-
tween = and the closure found at the
top of A.

TAILAPPLY Pop a closure from the argument stack
A and replace the current configura-
tion’s E and T with those found in the
closure.

Table 1: Krivine Abstract Machine primitives using the

ZAM instruction set.

The application processing environment is currently a Scala
language[18] ComputeServer (practically a JVM), layered
over CCN by being attached to a node-local Face. The CCN
relay demuxes to it requests for data processing computa-
tions by usual longest prefix match against prefix /COMPUTE.
The application processing environment is optional in the
sense that there is no requirement for all NFN nodes to be
capable of “number crunching” data processing operations

2 Architecture compatibility with ver < 0.8.1 of CCNx, and
ver < 0.2 of NDN.

139

(NFN nodes that have a pure router/forwarder role, only
need the AM for the distribution of computation tasks and
caching of results).

On NFEN nodes hosting a ComputeServer, a native code
named function is registered in the NFN realm with a pub-
lish primitive. This, aside from populating the CCN node’s
FIB with a corresponding namespace entry, also inserts in
the AM’s dictionary a mapping to a ’call <num> <func>’
statement (where <num> refers to the number of arguments
required to invoke <func>). When processing a CCN name
as a A-expression, and <func> is encountered in the next
term, it is replaced with the respective call mapping. This
prepares the AM to interface with the ComputeServer by
“mangling” enough additional terms for the external native
function invocation. Furthermore, the call operation is a
“game-changer” during the expression resolution, because it
forces a switch in the evaluation strategy from call-by-name
to call-by-value momentarily, for the completion of the ex-
ternal native code operation. This means that before the
external call to <func> is made, each mangled term that
will be used as a parameter must be a fully evaluated and
resolved expression.

2.3 Distributing computations: Program
translation & network forwarding

In NFN a name can hold an expression of the sort func(data),
which imperates the application of func on data. Such
an expression can be encoded equivalently in any of the A-
expressions that follow>.

func data

(Azy.z y) func data
(Ay.func y) data
(Az.z data) func

=W N e

The equivalence of these expressions and the ability to con-
vert any of them to any other is the essence of NFN.

As code and data are treated interchangeably by virtue of
their names in the ICN network, both func and data can
be independently addressable CCN names for content. For
example if

func: /name/of/transcoder

data: /name/of/media
then the application of a transcoding function on the media
content can be represented by means of these names in the
following named expression, according to the 3rd form above.

Ay. (/name/of/transcoder y) /name/of/media
NFN packages this named expression inside a CCN Interest
as follows (in this symbolism of a CCN Interest, |’ delimits
individual name components®)

in [/name/of/media | (Ay.(/name/of/transcoder y))]
The term inversion in CCN’s wire format has to do with its
longest prefix-match forwarding as we will see shortly. In
general the term placement in a name composition relates
to how the ICN architecture implements its resolution pro-
cess based on the name’s components. A more convenient
representation that we will use hereafter to refer to the same
Interest is

i1{ (\y.(/name/of/transcoder y)) /name/of/media }

3The possible forms are not limited to these four only of
course.

4We use this convenience notation recursively, when a name
component is itself a CCN name.

The underlined name component appears in the first (posi-
tion 0) in the Interest packet encoding, influencing by rule
of longest prefix match, the Interest forwarding.

To distribute computations in the network, NFN currently
implements the following strategy (Fig. 2). Initially (phase
1) using Interest i1, a cached copy of a transcoded version
of media is sought for, en-path to /name/of/media. Hav-
ing component /name/of/media in first position warrants
that the Interest will travel in the direction of the data
source. Representing “a transcoded version of media” as
/name/of /media/name/of/transcoder is a perfectly plausi-
ble search also at the data source, even in a CCN-only node
if such a naming convention has been adopted.

~receive

Phase 1
“_request },
Found resuit __,.--'/|00kup"'
—_— >
G5
L
vNot Found
e Recv e
oosend Ty result _—propagaté—~._ Mo response
~Jfesponsg ~ EJE ~~_upstream —
Yes S~
P Phase z
—Tfinished?~_ no
" £ o —
< recurse
~normal form— i
split name |
& "drag’ code |
Mo

St o T NeE
_—compute ompute (Al thunks ™~ a)
~_blocked? & reduc ~_retrieved? —
TR S o -
Yes
R
invert name "push"

Q’
components computation\ ,5

Figure 2: NFN forwarding strategy for CCN.

If this search does not yield results, then ideally one of
the NFN nodes that has received the Interest en-path to
the source of /name/of/media, may attempt to compute the
result (subject to policies, and processing resource avail-
ability). This is made feasible at any NFN node, by ex-
tracting the CCN names from the A-expression and fork-
ing separate individual Interests for /name/of/media and
/name/of /transcoder. Each of those will hopefully retrieve
the video data and the transcoder code respectively, en-
abling the node to compute and then cache the result (“code
drag” case in Fig. 1). At the end of this 2nd phase the result
will be cached still en-path and possibly close to the data
source, increasing its re-use potential in other requests.

If any of the two Interests does not yield the content back
for some reason, and before giving up, there is still the pos-
sibility to take the computation off-path (phase 3). The
NFN node may become a computation-proxy directing the
computation towards the code source by simply transform-
ing the named expression in 4; to an equivalent form as in a
new Interest io

i2{ (Az.(z /name/of/media)) /name/of/transcoder }
This equivalent form of the expression refers to the same
computation, but has the /name/of/transcoder name com-
ponent in the first position, which results in forwarding the
Interest in the direction of the function (“computation push”
in Fig. 1). Due to the symmetric routing in CCN, if the com-
putation succeeds on-the-way to /name/of/transcoder, the

140

result will travel the same way back to the proxy point and
satisfy the original Interest.

The Interest for /name/of/transcoder may yield no re-
sults in phase 2 if the code data does not exist, due to a
“name pinning” policy for not distributing the code, etc.
What is important, however is that: (a) Distribution of
computation tasks in the network does not entail forward-
ing state or cache state alterations — ephemeral content may
appear in a cache as a by-product, which in absence of pop-
ularity will be eventually erased. (b) Computations may or
may not take place, leaving the computation placement and
resource allocation decision entirely to the network (avoid-
ing single point of failure, compensating for routing failures,
and partly protecting against DoS attacks targeting a spe-
cific host or service).

Finally, in the whole process of evaluating a named ex-
pression, requests for intermediate results in nested terms
can in fact retrieve only thunks. One can think of a thunk in
NFN as a reference or contract for the feasibility of a compu-
tation, whose results can be retrieved later in time. Thunks
allow the evaluation of a named expression to progress even
when results are not available yet (enabling asynchronous
and parallel computations as we will demonstrate in one of
the experiments later on)®.

3. EXPERIENCES WITH NFN

In this section we report and discuss our experiences with a
proof-of-concept evaluation of NFN in a small testbed topol-
ogy. The goals set out for this evaluation have been to

e Showcase the ability of NFN for dynamic distribution
of computation tasks and interactions between static
data and functions inside an ICN network (and involv-
ing the benefits of caching computation results).

e Test, and identify occasions where NFN empowers net-
work side decisions and optimisations. Understand the
nature of these optimising decisions, and develop in-
sights of how to improve the effectiveness of NFN.

e Have a first indication of the comparative overhead of
running NFN, in a CCN network.

interest
—_—
B S

a?
g

content

1
@
N
/nodel/

Figure 3: Testbed topology — two CCN & three NFN nodes.

A thunk-ed name appearing in a CCN packet has 2 postfix
components iy [..|/NFN|/TH] for delivering to, and appropri-
ately interpreting by, the NFN resolver

3.1 Experimental set-up

Our testbed is a hybrid topology including CCN-NFN as
well as CCN-only nodes (Fig. 3). The topology and size
of the testbed were kept simple enough for alpha-testing
and ease of tracking the node interactions, and at the same
time complex enough to serve our demonstration purposes
of NFN’s features. As shown in Fig. 3, it consists of five
nodes, where two are pure CCN nodes and the other three
are NFN nodes (AM extension to the CCN relay) hosting
additionally the Scala [18] ComputeServer (JVM) execution
environment; connections between nodes are bidirectional;
client requests always arrive at Nodel first. Any deviations
from this set-up is reported in the individual sections of the
experiments.

The FIBs of the nodes are initialised manually (in absence
of dynamic routing currently for CCN) and such that each
node can reach every other node over the shortest path.
When more than one paths are available, both are included.

In regard to content distribution, we have placed a dif-
ferent document at every node’s content store with name
/nodeX/doc. Additionally, the content stores of Node3 and
Node4 contain bytecode of a word counting procedure, pub-
lished with name /bin/scala/wrdcnt, and corresponding
FIB entries are placed in all other nodes. This procedure
takes as a single argument a document and computes the
number of words in it. In our simulation it waits for 500 mil-
liseconds to model a more compute-intensive function, be-
fore returning its result.

3.2 Six cases where the network is in charge
of placing computations

Experiment 1 (code4content pull): The first experi-
ment is a vanilla check of case (b) of Fig. 1 for carrying out
locally computations by first retrieving code and data. It
starts by a user requesting the word-counting of /nodel/doc.
Following our default mapping of A-expressions to CCN mes-
sages, the argument /nodel/doc becomes the first name
component, which characterises Node1l as the recipient of the
expression. When Node1l starts resolving the expression and
the component /bin/scala/wrdcnt is encountered, it issues
Interest i2 to retrieve it, which is satisfied by Node3. When
Nodel receives the bytecode of the procedure it applies it to
the locally available document and returns the word count
result in a content object to the client.

% ’ Nodel:NFN ” Node2:CCN ” Node3:NFN ” Node4:NFN ” Node5:CCN I
user i
interest(il)
Compute
interest(i2)
H content(i2) /l l
Compute H
content(il)

Figure 4: Experiment 1 — the network pulls code, applies it
to locally available data

i1{/bin/scala/wrdcnt (/nodel/doc)}

io{/bin/scala/wrdcnt}

Experiment 2 (computation push): The second expe-
riment demonstrates case (c) of Fig. 1 for delegating a com-
putation, as a result of name manipulations in NFN that
influence decision of the CCN forwarding fabric. The client

141

issues a word-counting request as in experiment 1, but this
time for /node5/doc, which is located on Nodeb5, a CCN-
only node. As neither of the missing named objects is avail-
able locally on Nodel, according to the strategy discussed
in Sec. 2.3, Nodel places the name component /node5/doc
at the first position and propagates the Interest iz towards
Node5. However, at Node5 the Interest times out because it
is a CCN-only node: the remaining name components can-
not be matched exactly or the Interest cannot be propagated
further based on longest prefix match.

Nodel then reverts to the next phase of the strategy from
Sec. 2.3 and transforms the expression to an equivalent one
that has the component /bin/scala/wrdcnt at the first po-
sition in the name. This new Interest 73 is now forwarded
by CCN to Node3. This node has a local copy of wrdent,
which means it can start evaluating the expression and then
separately request the content of /node5/doc in i4 . This
time, the name can be matched exactly: Node3 receives the
content, computes the result and returns it to Nodel, who
in turn satisfies the client request.

% ’ Nodel:NFN ” Node2:CCN ” Node3:NFN ” Node4:NFN ” Node5:CCN I
user
interest(il)
gCompute
interest(i2)
/l] interest(i2)
Timeout
gCompute
interest(i3)

Compute
interest(i4)

F Compute

content(i4) ||

content(i3)

p Compute

Figure 5: Experiment 2 — computation push (the network
works around a CCN-only node)

i1{/bin/scala/wrdcnt (/node5/doc)}

i2{/bin/scala/wrdcnt (/node5/doc)}

i3{(Ax.(x /nodeb5/doc)) (/bin/scala/wrdcnt)}
i4{/nodeb/doc}

content(il)

Experiment 3 (failover conditions): Assume the same
query was issued as in experiment 2 and additionally that
the connection between Nodel and Node3 failed: How should
the network use the alternate path that exists between Node1
to Node57 Fig. 6 shows that interest io (which carries the
complete name expression) now travels to Node5 via Node2
and Node4. As before, this request times out. Then the
transformed Interest i3 is generated as before by Nodel; it is
sent to Node2, which is a CCN-only node, and upon reach-
ing Node4, the computation completes there! Note that al-
though there is an alternative (albeit longer) path to Node3,
who may compute the expression, re-routing does not try
to deliver the computation there. Instead, another (addi-
tional and closer) location is found for the computation, on
Node4. Since the locality of computation is not part of the
user request, if alternative computation-capable places are
available, NFN might try to exploit them rather than forcing
traffic to one only specific place!

Experiment 4 (recursive distribution): For this expe-
riment another native (bytecode) procedure that accepts a

’ Nodel:NFN ” Node2:CCN ” Node3:NFN ” Node4:NFN ” Node5:CCN I

A

user
interest(i1)
z‘ Compute
interest(i2)
/[l interest(i2)
/[l interest(i2)
Timeout
z‘ Compute
interest(i3)
/[l interest(i3)
Compute
interest(i4)

i, content(i4)
Compute
content(i2) |_

content(i2)

Compute
content(il)

Figure 6: Experiment 3 — failover (the network discovers
another suitable computing place)

i1{/bin/scala/wrdcnt (/node5/doc)}

io{/bin/scala/wrdcnt (/node5/doc)}

13{(Ax.(x /nodeb5/doc)) (/bin/scala/wrdcnt)}
i4{/node5/doc}

variable list of integer arguments and sums their values, is
registered with name /bin/scala/sum at Nodel.

In Fig. 7, a client sends a request for the sum of the
word-counts of two documents in ¢;. The word-counting
of each document can take place independently and at dif-
ferent places. As shown this is orchestrated at Nodel, where
/bin/scala/sum (first name component of i) is found. The
expression evaluation progresses by two reduction steps until
the point that results from the word-counting sub-expressions

are necessary for the sum to be computed. Each sub-expression

is resolved in turn through a separate Interest: The first
subexpression leads to Interest is, forwarded to Node3 and
computed there. The second subexpression yields Interest
i3 which is computed at Node4. The partial results are col-
lected at Nodel which can then use them to evaluate the
sum and return the answer to the client.

% ’ Nodel:NFN ” Node2:CCN ” Node3:NFN ” Node4:NFN ” Node5:CCN |
user

Compute

interest(i2)

Compute
interest(i3)

interest(il)

F Compute
Compute
content(i3)

content(i2) /‘

/H interest(i3)

content(i3)

Compute
content(il)

Figure 7: Experiment 4 — sequential evaluation of sub-

expressions

11{((A\f.\g.(f (g /node3/doc) (g /node4/doc)))
(/bin/scala/wrdcnt)) (/bin/scala/sum)}

io{/bin/scala/wrdcnt (/node3/doc)}

i3{/bin/scala/wrdcnt (/node4/doc)}

142

This experiment 4 shows how more complex computations
are recursively decomposed by NFN into a workflow of tasks
with rather opportunistic coupling among them (compare
this to the tight signalling coupling expected by components
of most SoA architectures today). Later on, in Sec. 3.3,
we show how through the use of thunks the same request is
worked out in parallel, effectively providing an opportunistic
Map-Reduce transport across an ICN network.

Experiment 5 (cached results prevent repeated com-
putations): This experiment extends the previous one to
show that if the result of a (presumably popular) computa-
tion can be cached, this will reduce the computational cost
or delivery time of subsequent similar computations.

A word-count request for document (/node3/doc) is sent
in Interest 41, before the request for the sum of the two doc-
ument word-counts as in experiment 4. Nodel passes the
request in 72 to Node3 (where both the data and code are
available), which computes and returns the result; Nodel
will cache this result. When the next request for summing
up the two word-counts of /node3/doc3 and /node4/doc4d
is received in i3, Nodel already has the result of the first
computation for /node3/doc. Hence, it issues only one In-
terest (i4) for the sub-expression involving the word-count
of /node4/doc. This time the request for i3 completes much
faster than in the previous example, as seen in Fig. 12 (com-
paring the times of Exzp4 and Expbs).

% ’ Node1:NFN ” Node2:CCN ” Node3:NFN ” Noded:NFN ” Node5:CCN I

user

interest(il)

Compute

/’ Eerest(iz)
Compute
content(i1)

interest(i3)

P Compute

content(i2) W

Compute

/’ Eerest(m)

/H interest(i4)

F Compute

content(i4) /‘

content(i4)

Compute

content(i3) {

Figure 8: Experiment 5 — accessing cached results

i1{/bin/scala/wrdcnt (/node3/doc)}

i2{/bin/scala/wrdcnt (/node3/doc)}

i3{((A\f.\g.(f (g /node3/doc) (g /node4/doc)))
(/bin/scala/wrdcnt)) (/bin/scala/sum)}

i4{/bin/scala/wrdcnt (/node4/doc)}

Experiment 6 (Node loaded, pass it to the next): It
can happen that some NFN node capable of data compu-
tations is overloaded, e.g. only because it happens to be
closer to popular content or because it receives voluminous
requests. The opportunistic location-decoupled nature of
computations in NFN can enable implicit load-balancing in
the ICN network.

In this experiment, Node3 is designated to be in overloaded
state and the link between Node4 and Node5 was cut. The
client sends a request i; for word-counting content object
/node5/doch, which is to be found on the CCN-only Node5.

’ Nodel:NFN I’ Node2:CCN I

Node3:NFN, load I’ Noded:NFN I’ Node5:CCN I

N

user

interest(il)

z‘ Compute
interest(i2)

/l] interest(i2)

Timeout

z‘ Compute
interest(i3)

interest(i3)

interest(i4)
interest(i4)

}Z‘ Compute

content(i4) /l]

}Z‘ Compute

| content(i4)

content(i3)

content(i3)

P Compute

Figure 9: Experiment 6 — implicit load-balancing
i1{/bin/scala/wrdcnt (/node5/doc)}
i2{(Ax./bin/scala/wrdcnt x) /node5/doc5}
i3{(Ax.(x /node5/doc)) (/bin/scala/wrdcnt)}
i4{/node5/doc}

content(il)

At first, the network reacts similarly to experiment 2: when
the propagated whole request in iz arrives to Node5 it times
out. Nodel re-admits the program modified (according to
the strategy in Sec. 2.3) as Interest i3. This time how-
ever, Node3 cannot assume the computation because it is
marked overloaded, and instead forwards it towards Node4.
Node4 computes the result by retrieving /node5/doc5 via
Node3 and using the local copy of /bin/scala/wrdcnt. In
the end, not only the client request was not rejected but a
load-balancing action was taken implicitly by the network
rather that being administratively configured.

3.3 Gratuitous parallelism with thunks

Experiment 7 is a modified version of Experiment 4 where
two word-counting results are summed up. We have now en-
abled the use of thunks to allow asynchronous non-blocking
dispatching of the two sub-expressions.

When Node3 receives the request iz for word-counting
/node3/doc, it will immediately return a thunk (and start
the actual work). A thunk response contains a temporary
name that is routable back to the node that started the
computation, along-side an optional completion time esti-
mate. It is a “contract” that allows the requester (Nodel) to
continue work (e.g. proceed in the reduction of a blocked ex-
pression, and evaluation of other sub-terms) and ask for the
thunk-ed result later. At the same time Nodel may adjust
the PIT timer for the pending Interest from the client not
to expire for as long time as the longest sub-computation
will need (time estimate returned with the thunk) — so as to
refresh the Interests on the thunks later on — and pass an
equivalent thunk name response to the client. In case the
PIT timer on Nodel expires without having successfully ac-
quired the thunk-ed result, the client can either re-issue the
request, or try and re-animate the partially completed com-
putation by using the thunk name as a “reminder” to refer
Nodel to possibly cached state of the sub-computation.

Meanwhile, Node3 and Node4 compute in parallel the re-
sults for the i3 and i3 and when the thunk-ed requests arrive
anew from Nodel, they respond with the actual results. This

143

second round of Interests sent from Nodel, contain the thunk
names and not the original names of the sub-expressions.
This guarantees that the computation results will be re-
trieved from the correct (contracted) places.

The effect of thunks and the parallelism that they enable
can be seen in the measurements of Fig. 12, where experi-
ment 7 terminates in roughly half the time of experiment 4
although the client asks for the same computation result in
both settings.

A

user

’ Nodel:NFN I’ Node2:CCN I’ Node3:NFN I’ Noded:NFN I’ Node5:CCN I

Check
interest(i2,T)

interest(il,T)

;‘ Check

Compute

content(i2,T)

‘\interest(ilT)

/H interest(i3,T)

z‘ Check
content(i3,T)

[Compute

content(i3,T)

Check
content(i1,T)

Wait

| Finished

interest(i1)

z‘ Compute

interest(i2)
Compute
interest(i3)

content(i3)

Compute

|| Finished

content(\z)/l l

/H interest(i3)
H content(i3)’l l

content(il)

Figure 10: Experiment 7 — gratuitous parallelism
11{((Af.\g.(f (g /node3/doc) (g /mnode4/doc)))
(/bin/scala/wrdcnt)) (/bin/scala/sum)}
io{(Ax./bin/scala/wrdcnt x) (/node3/doc)}
13{(Ax./bin/scala/wrdcnt x) (/node4/doc)}

3.4 Preferential opportunism in the distribu-
tion of computations

The previous experiments demonstrated the NFN network’s
ability to discover places where computations can take place.
In this process it is also possible for clients to “give hints”
to NFN for preferential placement of computations, through
simple user-prepared abstraction transformations of the A-
expression or selected sub-terms, in the initial request. For
example, as seen in experiment 8 (Fig. 11), the follow-
ing two equivalent expressions even though they produce
the same result, they follow different resolution paths in the
network:

11{/bin/scala/wrdcnt (/node3/doc)}

13{(\f.(f /node3/doc)) (/bin/scala/wrdcnt)}
Transforming i; before issuing the initial request, with a A-
abstraction to 73, does nothing else than simply changing the
argument name, which will comprise the first prefix compo-
nent in the CCN name (shown underlined). In the first case
the computation will be attempted first near /node3/doc,
and in the latter near /bin/scala/wrdcnt. This trick can be

exploited by the client to format programs, such that pref-
erences for the distribution of computations are expressed
—but importantly, they cannot be enforced— for individual
sub-expressions (in the program).

% ’ Nodel:NFN ” Node2:CCN ” Node3:NFN ” Noded:NFN ” Node5:CCN I

user

interest(il)

/l l interest(i1)

Compute
interest(i2)
content(i2)

Compute
content(il)

content(il) [I\

interest(i3)

/l l interest(i3)

/[l interest(i3)

interest(i4) i
content(i4) i

Compute

content(i3)

content(i3)
content(i3) [

Figure 11: Experiment 8 — same result, but different prefer-
ences hinted at by the client

i1{(\d./bin/scala/wrdcnt d) /node3/doc3},
i2{/bin/scala/wrdcnt},

i3{(A\f.f /node3/doc3) /bin/scala/wrdcnt},

i4{/node3/doc3}

3.5 Performance overhead of NFN-over-CCN

Fig. 12 provides an indication of the completion times for
the experiments we conducted, and for each of them the
distribution of delay components across (i) native code ex-
ecution at the ComputeServer/JVM, in blue, (i) waiting
time on Interest timeouts in the CCN network, in red, and
(it1) NFN processing, in white. NFN processing includes
expression evaluation at the abstract machine and commu-
nication with the ComputeServer.

Runtimes of all Experiments

B vy Comput.
B coN Timeouts
[NFN Processing

Runtime in seconds
o

o A
@4;2” @4,@ @4;2"” @ﬁb’@@@\@ &7 A @A,Q*’

Figure 12: Per experiment runtimes

144

Although these experiments are only indicative (given the
non-quantitative character of our experiments), nevertheless
two standing out observations may be made. The first is that
NFN processing is definitely affordable in the time scales of
operation and decisions in CCN. Even with a very crude
prototype implementation all NFN AM-related operations
across up to 3-4 nodes take only a fraction of the typical
CCN Interest timeout; and affirms the lightweight type of
operation it adds to the ICN forwarding plane.

The second observation regards the overhead that the cur-
rent CCN architecture inflicts on NFN, witnessed in the ef-
fects of timeouts (as an implicit feedback mechanism) on the
total completion time of NFN client requests. The agility of
NFN in making decisions is seriously limited by the absence
of fast feedback; after probing for computations that are in-
feasible or for content/code that cannot be retrieved. The
effect is more pronounced in NFN than in CCN only, since a
typical NFN request entails several CCN level transactions.

4. DISCUSSION & KEY INSIGHTS
4.1 NACK:Ss, explicit vs. implicit feedback

In most of the experiments presented as well as others that
we have conducted, it is easy to realise that the role of decid-
ing alternative courses of action as entailed in the resolution-
forwarding strategy of Sec. 2.3, is almost always assumed by
the first NFN node upstream from the client (Nodel here).
This is because of the fact that in the interaction with the
CCN substrate this is the first one to detect timeouts and
react to them. If explicit notifications were available by
the CCN protocol (such as ACKs/NACKs), to help detect
faster infeasible computations or unavailable content, the
role of selecting alternative actions would be assumed by
NFN nodes “deeper” in the network, and lending to much
wider distribution of tasks and computations. The time
scale of decisions would also be much shorter (currently wait-
ing for 1-3 timeouts), thus improving NFN’s agility.

In current absence of explicit notifications in the CCN
architecture, a number of alternative solutions deserve ex-
ploration. One of them is to regard thunks as a means of
explicit notifications e.g. as in Map-Reduce type of oper-
ations. A thunk currently includes a time-to-compute esti-
mate, which in practical reality it is challenging to qualify at
different nodes in absence of a global clock. This time esti-
mate is mostly useful therefore to differentiate unavailability
from statistical plausibility (of acquiring a result), which is
otherwise not discernible from timeouts. A NACK in this
context is nothing more than a thunk with a timer to infin-
ity. The problem with this “NFN-level” approach is that in a
hybrid environment the semantics would only be understood
by NFN nodes, making its effects partial or occasional.

Another partial solution®, which would likely improve the
problem, without architecting explicit notifications inside
CCN, would be the creation of a decreasing timeout gra-
dient as Interests travel away from the receiver. This would
require that all CCN nodes have the same default PIT timer,
and that an Interest travelling from hop to hop has a means
to request its registration in the PIT with an increasing
decrement from the default timer. The Interest will then
have the possibility of expiring earlier the further away it
has travelled from the source, and the respective NFN node

5Contributed by one of the reviewers of this paper

would be the one to seek alternative courses of action. This
approach is quite fragile however and requires hard-wiring
common defaults to all CCN nodes.

4.2 The right semantics for thunks

Following up the topic of thunks, so far we have used them
to convey a notification of the sort: “I start computing now,
contact me later for the result”. An alternative type of se-
mantics, would be to convey the notification: “I can com-
pute, contact me when to start”. The latter semantics have
the benefit of allowing the client side of the computation to
“collect offers” and choose among several candidate places
where a computation can be completed, or delay a paral-
lelized execution for later. Although this would have the
cost of some additional communication work on the client
side of the computation (e.g. Nodel in Experiment 4 and 7),
it could however avoid triggering redundant computations
in different places when the request is multicast by CCN in
several directions. This exploration is the topic of future
quantitative evaluation.

4.3 Security

Intuitively one may ponder on the security implications of
having a possibility to spawn arbitrary computations from
the middle of the network through “hand-grenade” programs
masqueraded as normal requests (even by accident). Al-
though we have not architected NFN or engineered its key
functions with security as a prime concern, we have been
however security-implications aware.

The tenets of caching and re-using computation results,
and the removal of locality-of-execution, are two top-listed
features of NFN, which can minimize the effectiveness of
DoS attacks towards specific targets in the network (more
than what is actually possible in today’s Internet).

Call-by-name expression resolution warrants that a re-
quest for evaluating a sub-expression will be dispatched in
the network only if the result of that sub-expression will
actually be used, making the plausibility of an attack not
deterministically discernible.

Thunks with the alternative semantics describe before have
also the potential to protect against waste of computation re-
sources: the orchestrating NFN node can ensure that thunk-
ed computations are spawned only if their enclosing expres-
sion is feasible and allowed.

All these features to start with, although not securing the
network, they nevertheless, intend to limit or localise the
effects of an attack, and make it difficult to plan against
specific targets.

Additionally, access control to functions can be protected
by similar means that it is today in SoA. Data cannot be
altered in NFN, only new data can be generated from other
data and while older fade-away from caches. Every entity
that generates new data must sign them according to data
authorship rules in CCN, and when source data are trans-
formed by some function, chained signing can be used to
assert and verify the function owner, its inputs and its out-
puts (independently always of location).

4.4 NFN in ICN architectures

Clearly (to us), NFN-type of functionality deserves to be
a part of an ICN enabled Internet. The question is where
should this functionality be fleshed out? Should it be part
of the ICN forwarding plane or engineered on top of it?

145

The arguments that speak against its embedding in the
ICN plane are those of execution performance overhead, and
architectural simplicity (the internetworking layer “needs”
to be super fast and simple). On the aspect of execution
performance, our first indications (albeit admittedly very
preliminary to support evidence) are that the overhead is
easily sustainable considering the CCN protocol time scales
of operation (decisions driven by timeouts). Moreover, as
the typical NFN topology would sufficienly be a hybrid one,
involving NFN as well as CCN-only nodes, scalability should
not be a concern (although this also requires a quantitative
validation to confirm).

The counter arguments that speak for its placement in the
ICN plane are twofold: (¢) Name manipulation by NFN’s
Abstract Machines influence the forwarding/routing seman-
tics, which naturally belongs to the network’s forwarding
and routing layer, by analogy that NAT’s IP address ma-
nipulation functions today are part of the IP and trans-
port layers. On the other hand, the actual NFN’s data
processing execution environment and host of application
logic, resides at CCN’s application layer, mostly to be found
near the network’s edge. (iz) It is critical that routing and
compute-placement decisions are made as close as possible
where things (timeouts, unavailability of resources or capa-
bilities) can be discovered, i.e. close to the root cause. Oth-
erwise, if nodes somewhere at the edge have to discover what
happened, one needs either to setup rich diagnostic feedback
protocols and pay a price for that complexity and additional
delay, or let the edge nodes timeout, which is catastrophic
for performance.

Finally, if one accepts a de-facto role of NFN in ICN,
the question arises about the feasibility of NFN with other
architectures apart from NDN/CCN. We have seen that
NFN names contain two types of components, one which
is routable/resolvable in the ICN, and another which is glue
for expressions, and which is not directly routable but ma-
nipulated by the AM in NFN. Interestingly, the latter also
appears in most ICN architectures, often specialised as a
“routing context” but which is nevertheless identified with
simple manipulations: E.g. AS routing vector in DONA [11],
scope in PSIRP/PURSUIT (8], routing hints in NetInf [6],
namespaces in Convergence [16], and so on. On the other
hand, a more challenging requirement in other ICN archi-
tectures is NFN’s current reliance on symmetric paths for
the implementation of the combined expression-resolution
strategy (Sec. 2.3). This is a topic of follow up exploration.

S. RELATED WORK

Mostly related to the work presented in this paper is the
research on Service Centric Networking (SCN) [2]. SCN en-
visions to create processing workflows inside an ICN network
through a manipulated concatenation of names that identify
network services in the network to be interfaced. Express-
ibility of distributed computations and workflow creation
in SCN is much more basic when compared to NFN. On
the other hand SCN creates workflows by means of inter-
face specifications and service descriptions. This feature of
SCN can provide an elegant approach of introducing SLAs
in NFN, which can be the basis for an information centric
Service-oriented-Architecture.

An inspiring work for our ideas is Borenstein’s Atomic-
Mail [1] from 1992, who proposed and developed a “pro-
grammable email system”. Similarly inspiring has been the

idea of a Turing Switch [5], which is a universal network in-
terconnecting element on which all link-layer and network-
layer functions are expressed through A-calculus programs.

In seeing the network as a distributed database, work on
declarative networking [14] pioneered interesting ideas, in-
cluding a network query language (NDlog), that enabled ac-
cess to distributed information and coordination of compu-
tations at disparate locations, without explicit reference of
communication primitives. Although the core philosophy
and methodology between declarative networking and NFN
are different (e.g. declarative query language, versus imper-
ative functional programs), there are important similarities
and analogies that deserve further exploration and possible
cross fertilisation of ideas.

In the general topic of in-network programmability, in the
past, Active Networking (AN) research [3] envisioned users
able to load programs [23, 19] in a network data path that
supports programming primitives [7, 20], or programming
language frameworks, eg. [9, 17]. A modern re-incarnation
of parts of the AN vision is found today in the objectives of
Software Define Networking [15]. Unlike AN and SDN, how-
ever, NFN’s primary focus is not on explicitly programming
a data path, but rather letting the network compose a data
path that satisfies the needs of a high level user program,
thus the main decision making lies with the network.

6. CONCLUSIONS AND FUTURE WORK

NFN captures an essential aspect of modern use of the Inter-
net: multi-modality of information and multi-purpose use.
With this goal it extends the ICN name semantics and pro-
poses that a name generally stands for a function: a constant
mapping (as in ICN today), but also a complex recipe involv-
ing many sub-operations. Name resolution in the current
ICN-way is then only a special case of expression resolution.

We presented first experiences with NFN in action, and
demonstrated through a series of experiments several sce-
narios where this functional extension leads easily to a gen-
eralization of “information access” in the network: static in-
formation look up complemented by dynamic computation
on the fly. We have gained interesting insights to fuel fol-
low up work and orient more extensive evaluations, but also
which have the possibility to influence architectural work in
CCN and ICN in general.

7. REFERENCES

[1] N. Borenstein. Computational mail as network
infrastructure for computer-supported cooperative
work. In Int’l conference on Computer-Supported
Cooperative Work, 1992.

[2] T. Braun et al. Service-Centric Networking. In Int’l
IEEE Conference on Communications (ICC), pages
1-6, June 2011.

[3] A. Campbell et al. A survey of programmable
networks. SIGCOMM Comput. Commun. Rev.,
29(2):7-23, Apr. 1999.

[4] M. Caporuscio et al. Design and evaluation of a
support service for mobile, wireless publish/subscribe
applications. IEEE Trans. Softw. Eng.,
29(12):1059-1071, December 2003.

[5] J. Crowcroft. Turing Switches: Turing machines for
all-optical Internet routing. Technical Report
UCAM-CL-TR-~556, Cambridge University, Jan. 2003.

[6] C. Dannewitz et al. Network of Information (NetInf) -
An information-centric networking architecture.
Comput. Commun., 36(7):721-735, Apr. 2013.

[7] D. Feldmeier et al. Protocol Boosters. IEEE JSAC,
Special Issue on Protocol Architectures for 21st
Century Applications, 16(3), April 1998.

[8] N. Fotiou et al. Developing Information Networking
Further: From PSIRP to PURSUIT. In International
Conference on Broadband Communications, Networks,
and Systems, pages 1-13. Springer, 2010.

[9] M. Hicks et al. PLAN: A Packet Language for Active
Networks. In 8rd ACM SIGPLAN Int’l conference on
Functional Programming, 1998.

[10] V. Jacobson et al. Networking Named Content. In
Int’l ACM conference on Emerging networking
experiments and technologies (CoNEXT), 2009.

[11] T. Koponen et al. A data-oriented (and beyond)
network architecture. SIGCOMM Comput. Commun.
Rev., 37(4):181-192, Aug. 2007.

[12] J.-L. Krivine. A call-by-name lambda-calculus
machine. Higher Order Symbol. Comput.,
20(3):199-207, Sept. 2007.

[13] X. Leroy. The Zinc Experiment: An Economical
Implementation of the ML Language. Technical
Report TR 117, INRIA, 1990.

[14] B. T. Loo et al. Declarative networking: Language,
execution and optimization. In Int’l ACM SIGMOD
Conference on Management of Data. ACM, 2006.

[15] N. McKeown et al. Openflow: enabling innovation in
campus networks. SIGCOMM Comput. Commun.
Rev., 38(2), Mar. 2008.

[16] N. B. Melazzi. Convergence: extending the media
concept to include representations of real world
objects. In The Internet of Things, pages 129-140.
Springer, 2010.

[17] S. Merugu et al. Bowman and CANEs:
Implementation of an Active Network. In 37th
Allerton Conference on Communication, Control and
Computing,, Monticello, 1L, September 1999.

[18] M. Odersky et al. An Overview of the Scala
Programming Language. Technical Report
IC/2004/64, EPFL Lausanne, 2004.

[19] S. Schmid et al. A highly flexible service composition
framework for real-life networks. Computer Networks,
Special Issue on Active Networks, 50:2488-2505,
October 2006.

[20] C. Tschudin and R. Gold. Network Pointers. ACM
SIGCOMM Comput. Commun. Rev., 33(1):23-28,
Jan. 2003.

[21] C. Tschudin and M. Sifalakis. Named functions and
cached computations. In Annual IEEE conference on
Consumer Communications and Networking, Jan.
2014.

[22] G. Xylomenos et al. A survey of information-centric
networking research. Communications Surveys
Tutorials, IEEE, 16(2):1024-1049, Feb. 2014.

[23] J. Zander and R. Forchheimer. Softnet - An approach
to high level packet communication. In 2nd Amateur
Radio Computer Networking Conference, 1983.

