
An information measure for classification

By C. S. Wallace* and D. M. Boulton*

This paper derives a measure of the goodness of a classification based on information theory. A
classification is regarded as a method of economical statistical encoding of the available attribute
information.

The measure may be used to compare the relative goodness of classifications produced by
different methods or as the basis of a classification procedure.

A classification program, 'SNOB', has been written for the University of Sydney KDF 9
computer, and first tests show good agreement with conventional taxonomy.

(First received December 1967)

1. Introduction
In all fields of discourse, the basic objects of concern
are classified, and names given to the classes, to enable
us to make general statements whose meaning applies to
many objects rather than to a single object. For such
a classification to be useful, the objects within a single
class must essentially be equivalent at some level of
discourse. The problem of generating a useful classi-
fication, exemplified by taxonomy, may be stated as
follows:

Given a set of £ things and for each a set of D measure-
ments (attributes), to form a partition of the set of things,
or, equivalently, a partition of the Z>-dimensioned
measurement space within which each thing may be
represented by a point, such that the things within each
subset, or region of measurement space, may usefully be
treated as equivalent in some discussion.

Many classification processes have been devised in
answer to this problem (Sokal and Sneath, 1963;
Williams and Dale, 1965). These methods have usually
been directed towards producing classes such that
members of the same class are as 'similar' as possible
and/or members of different classes are as 'dissimilar' as
possible. Such aims, while not necessarily equivalent to
the general aim described above, can obviously be
expected in practice to produce classifications which well
serve the general aim. Unfortunately, the different
measures of similarity between things and between
classes of things which have been used in these processes
result in significantly different classifications, and it is
usually left to the user to choose that method which
produces the most useful result. Moreover, it is difficult
in many of these processes to separate a measure of the
success of a classification from the process used to
generate it. There is no readily applicable objective
criterion firmly based on the original aim of the classi-
fication which can be used to compare the relative
success of different processes.

The aim in this paper is to propose a measure of the
goodness of a classification, based on information
theory, which is completely independent of the process
used to generate the classification.

2. The information measure
A classification may be regarded as a method of

representing more briefly the information contained in
the S x D attribute measurements.

These measurements contain a certain amount of
information which without classification can be recorded
directly as S lists of the D attribute values. If the things
are now classified then the measurements can be recorded
by listing the following:

1. The class to which each thing belongs.
2. The average properties of each class.
3. The deviations of each thing from the average

properties of its parent class.

If the things are found to be concentrated in a small
area of the region of each class in the measurement space
then the deviations will be small, and with reference to
the average class properties most of the information
about a thing is given by naming the class to which it
belongs. In this case the information may be recorded
much more briefly than if a classification had not been
used. We suggest that the best classification is that
which results in the briefest recording of all the attribute
information.

In this context, we will regard the measurements of
each thing as being a message about that thing.
Shannon (1948) showed that where messages may be
regarded as each nominating the occurrence of a par-
ticular event among a universe of possible events, the
information needed to record a series of such messages
is minimised if the messages are encoded so that the
length of each message is proportional to minus the
logarithm of the relative frequency of occurrence of the
event which it nominates. The information required is
greatest when all frequencies are equal.

The messages here nominate the positions in measure-
ment space of the 51 points representing the attributes of
the things. If the expected density of points in the
measurement space is everywhere uniform, the positions
of the points cannot be encoded more briefly than by a
simple list of the measured values. However, if the
expected density is markedly non-uniform, application
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Measure of classification

of Shannon's theorem will allow a reduction in the total
message length by using a brief encoding for positions
in those regions of high expected density.

If we consider the universe of all possible sets of D
experimental measurements, we can form no reasonable
expectation of the expected density in measurement
space. However, if the observed distribution of the S
given points is markedly non-uniform, the economics of
Shannon's theorem can be realised in part by adding to
the 5 messages a further message which approximately
describes the average density distribution of the S
points, and using this approximate non-uniform dis-
tribution as the basis for encoding the attribute messages.
The message length needed to describe the average
density distribution must be considered as adding to the
lengths of the messages now used to encode the attributes
of the things, because the receiver of the composite
message has no a priori knowledge of the distribution.

The greater the detail given about the distribution, the
more efficiently may the attributes of individual things
be encoded. The 'best' classification will result from an
optimum compromise between the efficiency of attribute
encoding and the length of message needed to specify
the distribution.

We regard a classification as one means, among many,
of stating and exploiting a non-uniform density distri-
bution in measurement space. For instance, factor
analysis may perhaps be regarded as a technique for
describing and exploiting a concentration of the points
near a flat subspace. A classification sets up a model of
the distribution in which the space is divided, not
necessarily by planes, into regions (classes), the distri-
bution within each region being described by a separate,
simple, distribution function centred on an area of high
density.

A thing within a particular region has its attributes
encoded on the basis of the density, in its neighbourhood,
of the distribution function for that region. That is, it
is regarded as a member of the 'class' corresponding to
the region, and the message describing it is encoded on
the basis of the expected distribution of attribute values for
members of that class, and contains the name of that class.

The S X D measurements are thus encoded into a
message having five component parts:

1. the number of classes;
2. a dictionary of class names;
3. a description of the distribution function for each

class;
4. for each thing, the name of the class to which it

belongs;
5. for each thing, its attribute values in the code set

up for its class.

We assume already known, and not included in the
message, the following:

(a) The number of things 5.
(b) The number of attributes D.
(c) The nature (discrete, continuous, etc.) of each

attribute.

We now proceed to discuss the form of the component
messages 1 to 5 above.

3. Class identification format
3.1 Number of classes

We prefer to make no assumption about the expected
frequency of different numbers of classes, and will
therefore encode the number of classes on the basis that
all values with a range of say 1 to 100 are equally likely.
The message length is therefore constant and this com-
ponent will henceforth be ignored.

3.2 Dictionary of class names
In the message about each thing is included a class

name or label to identify the density distribution used to
encode its attributes. To keep the total length of these
labels as short as possible, the label for each class will
be chosen with a length dependent on the relative
abundance of that class. The labels are therefore not
known a priori and must be described in a dictionary.

If there are n[t] members of class t (t = 1, 2, . . ., T)
then the label used in the description of a thing to say
that it belongs to class t will occur n[t] times in the total
message. If we estimate the relative frequency of class

/ T \
t as p[t] ( £ p[t] = 1) then the information needed to

V=i '

quote the class membership of all things is
-in[t]lnp[t]. (1)

The choice of p[t] values which minimises (1) is
p[t] = n[t]/S.

However, the p[t] are not known a priori and hence
neither are the labels. It is shown in the appendix that
when the information needed to describe the labels (class
name dictionary) is taken into account, the overall
information cost is minimised by tolerating an error of
order \ls/S in a choice of p[t], thus reducing the
information needed for the class name dictionary, but
causing the value of (1) to be on average slightly above
its optimum. With the optimum choice of accuracy in
selecting the p[t], the information needed by the class
name dictionary is found in the appendix to be
approximately

The expected additional cost due to the non-optimum
selection of p[t] is shown in equations (22) and (23) of
the appendix to be about

The total length of class identification labels and class
name dictionary is given from (1), (la) and (16) as

We estimate p[t] by n[t]/S.
(2)
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4. The class distribution model
We here treat only two kinds of attribute, continuous

measurements (e.g. length) and unordered multistate
(e.g. colour or sex). The treatment of ordered multi-
state data will be deferred to another communication, as
it appears to warrant rather more discussion than is
appropriate here.

In common with most workers in the field, we pre-
sume that within a single class, attributes are uncor-
related. The measure can, however, be extended to
accommodate correlations, and we hope in another paper
to show that considerable advantages might follow from
such an extension.

Having assumed no correlation, the distribution within
a class can be separated into independent distributions
for each attribute. In calculating the information
required for recording attribute values, we assume for
simplicity that missing values are noted by a message
element of fixed length, independent of the classification.
Their contribution to the total message length can then
be ignored.

4.1 Multistate attributes
For each class, the distribution of a multistate attribute

is specified by the relative probability of occurrence of
each state within the class. A label is created to nominate
each state of the attribute, and the value of this attribute
is specified for members of this class by including in their
attribute messages the label nominating the appropriate
state. Different labels will in general be used in different
classes to nominate the same state of the same attribute.

In order that the labels used within a class may be
recognised, the description of the class itself must include
a description of the labels used for each state.

The considerations applying to the choice of state
labels and their description are exactly analogous to
those applying to the choice of class labels and the class
name dictionary. However, if the number of things in
class t having value m for multistate attribute d is
n[m, d, t], the relative frequency of occurrence of state
m of attribute d in class t will be estimated by

p[m, d, t] = (n[m, d, t] + l)/(n[d, t] + M[d]) (3)

where M[d] is the number of states possible for attribute
d, and n[d, t] is the number of members of class t having
known values for attribute d, i.e.

M[d]

S n[m, d, t].
m= 1

If some values are missing, n[d, i] < n[t].
The slight bias towards (l/M[d]) introduced by (3)

into the estimate of p[m, d, t] has the useful effect that
newly-measured things not in the original sample S are
not absolutely prevented from being assigned to class t
by having a value for attribute d not possessed by any
existing member of the class. Also, our approximate
estimate of total message length (eqn. 4 below) will
diverge if any p[m, d, t] is esimated as zero. Biased

estimates of the form (3) are discussed by Good (1965).
The total information needed to encode values of

attribute d in class t, including the description of the
labels used within the class, is given by the expression,
analogous to (2):

(In(n[d, t]/12) + 1) - In(M[d] - 1)!
Mid]

- 2 («K d, t] + i) In p[m, d, t]. (4)

4.2 Continuous attributes
We assume that within a class the values of a con-

tinuous attribute d are normally distributed with mean
lj.[d, t] and standard deviation a[d, t]. Other forms of
distribution could be used without any difficulty, in
principle. In fact, the classification could allow a
selection of forms, in which case further class description
messages would be needed to specify the form employed.

To simplify the following discussion, d and t subscripts
will be dropped, as we will be referring for the rest of
Section 4.2 to the distribution of a single continuous
attribute within a single class.

It is assumed that the range of measurement for the
population as a whole is known a priori as is the accuracy
of measurement. If a measurement x[s] is quoted to a
least count e, i.e. to an accuracy of ±je, then the
probability of getting such a measurement from the
distribution (ji, a) is approximately

Ke

where

exp {-{x[s\ -

K = 1/V(2ir).

(5)

The information used to encode the n — n[t] such
measurements is therefore

[In (a/Ke) + (x[s] - (6)

Here, the values fj, and a are the values quoted in the
description of the class and used as the basis for the
encoding of the measurements, and will not in general
be fully accurate, because quotation to full accuracy
would require an excessive amount of information.

Suppose that the nominal mean \x is quoted to a least
count of b, and hence does not exactly equal the true

1 "
mean m = - 2 (x[s]). Then if the mean is assumed to

be in a range of size a, but no a priori assumption of its
probability distribution within this range is made, the
information required to encode /x is

In (7)

Writing/= /x — w,/may be assumed to be uniformly
distributed over a range —b/2 to +b/2, and

Expectation p = - ( - ) = ub
2. (8)
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Measure of classification

Likewise, suppose that the nominal standard deviation a
is quoted to a least count of c within a range 0 to p.
The information required for its encoding is

in*. (9)

The total information requirement for dimension d of
type t is found by summing (6), (7) and (9).

I = In* + l n | + i (ln - £ + (*, - M)2/2<72)

Z (xt — m - / ) 2 / 2 C T 2

Ke
= \nP- +

CO J = i

= In *? + n In ̂  + («z2 + «/2)/2a2 (10)

where z is the true sample standard deviation, and

nz2 = S (x[s] - m)2.
s = l

We now find the optimum value of b.
The expectation value E{I) of / may be found by

replacing/2 by its expectation 62/12. The parts of E{1)
dependent on b are then found from (10) to be

- In b + nb2/24a2. (11)

Differentiating (11) with respect to b gives for the best b

b = aV(12/«). (12)

Substituting (12) in (10) and putting/2 = 62/12 = o2/n
gives

£•(/) = In * + In -a A / ( ^ ) + n In | - + «z2/2a2 + \.

(13)
We now determine the optimum value of a.
The parts of (13) dependent on a are

— In a + n In a + nz2/2a2 = (n — 1) In a + nz2/2a2.
(14)

Differentiating (14) with respect to a gives for the best a

a = zV [ « / (« - ! ) ] (15)

Now a is quoted to a least count c, and hence will in
general differ from the value given by (15). Write

o = zV[nKn-l)]+g (16)

where \g\ < c/2, and the expectation of g2 is c2/12.
We now determine the optimum value of c. The parts

of (13) depending on c or a are

- In c + (n - 1) In a + nz2/2a2. (17)

Before substituting (16) in (17) it will be simpler to
rewrite (16) as

a = w(l + h) (18)

where w = zV [« / («- 1)] (19)

and h = g/w. (20)

Substituting (18) in (17) gives

- In c + (n - 1) In w + (n - 1) In (1 + h)

+ «z2/2w2(l + h)2. (21)

The parts of (21) dependent on the choice of c are

- In c + (n - 1) In (1 + h) + nz\\ + h)~2/2w2. (22)

Since h, the fractional error in quoting a, is expected to
be small, we expand (22) in powers of h up to h2, to give

- lnc + (n - 1)(A - /i2/2) + «z2(l - 2/* + 3h2)/2w2...

= - In c + /i[(» - 1) - HZ2/H>2]

+ h2 [- {n - l)/2 + 3nz2/2w2]. (23)

From (19), we have nz2/w2 — (n — 1), and so (23)
becomes

- In c + h2[- (« - l)/2 + 3(n - l)/2]

= - In c + h\n - 1). (24)

Now, h = g/w and the expectation of g2 is c2/12.
The expectation of (24) is therefore

- In c + (« - I)c2/12w2. (25)

Differentiating (25) with respect to c gives for the best c

c = in/[6/(n-l)]. (26)

With this choice of c, the expected value of h2 is

c2/12w2 = i(« - 1). (27)

The expected value for / with the optimum choice of
b, a and c is found by substitution in (13)

= l n
ln 12/

w(l +
«z2/2w2(l + h)2

(28)

Expanding (28) in powers of h up to h2 gives

ww
+ n ln j r + (AI - l)h2 + n/2 + Oh3.

Ke

Substituting the expectation of h2 from (27) gives

= In °* « (ln

(29)
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Measure of classification

In the latter form, the three major terms of (29) show
respectively the information required to encode the mean,
standard deviation and individual variations about the
mean.

In practice we take the ranges within which the mean
and standard deviation are quoted to be 4ap and ap
respectively, where ap is the standard deviation of the
population as a whole.

The form (29) is an approximation based on the
assumption of a large class population, and requires
some modification for classes having very few members.

4.3 Notes on class descriptions
Forms (4) and (29) include the lengths of messages

needed to specify the distributions of attributes within
each class. As written, these forms assume that each
class is described independently of all others. That is,
the classes are not embedded in an hierarchic structure.
Further economies can in some cases be achieved by
describing the class distributions in terms of classes of
classes, etc., but as the derivation of the resulting
message lengths is rather tedious, it will be deferred to a
later communication.

It might be thought an unnecessary extravagance to
quote a different standard deviation for the same
attribute in different classes. However, we have found,
e.g. in the classification of six species of fur seals, that
significant differences of standard deviation can occur
between species. Further, there may be instances in
which a difference in standard deviation is a significant
aid in distinguishing two classes. Where no significant
difference in standard deviation exists between two
rather similar classes, an hierarchic description of their
attributes could well allow the same value to be used
for both classes.

5. Probabilistic interpretation
Combining the results (2), (4) and (29), we see that the

total message can be separated into two major parts,
one concerned with the dictionary of class names and
the description of class properties, and of length at most
logarithmically dependent on S, the other comprising
a message for each thing giving its class and attributes.

The latter, which will dominate the total length for
large S, can be written, for a member s of class /, as

- In (n[t]/S)

- 2 In [{n[x[d, s], d, t] + i)f(n[d, t] + M[d])]
a multistale

+ 2 [ln(a[d
d continuous

- t,[d, t}Yj2{a[d, t]Y] (30)
where x[d, s] is the value (discrete or continuous) of
attribute d of the thing.

If the set of S things may legitimately be treated as a
sample from a much larger population, then the first
term above can be regarded as minus the logarithm of
the probability that an arbitrary thing belongs to class /,

where a slightly biased estimate of this probability has
been used. The second and third terms can be regarded
as minus the logarithm of the probability that an
arbitrary member of class t would have the attribute
values found for thing s, where again slightly biased
estimates have been used.

The value of (30) is therefore minus the logarithm of
the probability that an arbitrary member of the whole
population would be found to be in class t and to have
the measurements x[d, s]. That is, (30) is minus the
logarithm of the estimated population density in
measurement space of class / in the neighbourhood of s.
A classification which minimises the information measure
will therefore assign each thing to the class with the
highest expected density in the neighbourhood of the
thing. The classes will not overlap in measurement
space, and so (30) will represent minus the logarithm
of the probability that an arbitrary member of the
population would have measurements x[d, s].

The total length of all attribute messages, found by
summing (30) over all s, represents the probability of
obtaining all the observed measurements given the
following complex hypothesis about the set of S things:

(a) The set of S things is a sample drawn from a
population which is the union of Tsubpopulations.

(b) Each subpopulation t occurs with a certain
relative abundance, estimated by n[t]/S.

(c) Within each subpopulation t, measurements
x[d, s] are distributed normally or multistate with
parameters as estimated in Sections 4.2 and 4.1.

(d) Within each subpopulation, different measure-
ments are uncorrelated.

(e) Each thing is a member of a particular sub-
population.

Minimisation of (30) by choice of the class name
labels, class distribution parameters and assignment of
things to classes is therefore equivalent to a maximum-
likelihood estimation of the relative abundance, distri-
bution parameters, and membership of the sub-
populations. However, the number of classes T could
not be so estimated, as the value of (30) decreases
monotonically with increasing number of classes.

The length of the class name dictionary and class
description parts of the total message, which is not
included in (30), can now be seen to play the role of
minus the logarithm of the a priori probability of the
hypothesis elements (a) to (c). Minimisation of the
total message length is equivalent to choosing the
hypothesis to maximise the posterior probability includ-
ing these a priori factors.

The inclusion of any form of prior probability
function may be considered objectionable on the grounds
that its form is unknowable. However, it should be
noted that, if the prior probability that some parameter
lies in the neighbourhood of a value x is written as

the form employed by us corresponds to the assumption
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that f{x) is uniform over a range based on the spread
of values observed in the whole set. The important
parts of our form arise from the factor dx, not from the
shape of/(x).

The effect of including a priori factors on the estimates
of subpopulation distribution parameters is to introduce
a small bias into the estimates of continuous standard
deviations and multistate probabilities. The normal
maximum likelihood estimate of standard deviation

becomes from (15)

- xYHn - 1)

which is actually a less biased estimate. Likewise, the
encoding system derived in the appendix for the class
description of multistate attributes effectively yields
estimates of the relative probabilities of occupation of
different states slightly different from their observed
relative frequency of occupation. Although we have
not investigated this question in detail, it appears that
the estimates are on average biased slightly towards
equality of probability in all states. The bias appears
to be similar in form to, although rather less than, the
bias we deliberately introduce for other reasons in (3).

The relative effects of the above biases decrease with
increasing S, but the inclusion of the class description
message length has the important result that the total
message length exhibits a minimum with respect to T,
the number of classes. Thus, minimisation of the
information measure produces a classification having a
number of classes determined by the measure itself, and
not by the introduction of an arbitrary stopping rule
such as is used in association analysis (Lance and
Williams, 1965) or by the arbitrary selection of a certain
similarity level on a dendrogram.

As S increases, the decreasing relative importance of
the class description information makes it more likely
that weakly separated classes will be distinguished in the
classification which minimises the information measure.
In effect, the increasing information content of the data
makes the weak difference between the classes become
significant.

6. Discussion
There are obvious similarities between the information

measure and methods employed by others. For instance,
the information statistic of Lance and Williams (1966)
gives a measure between two groups of things which is
the information needed to encode their (discrete)
attributes on a code based on the union of the groups
minus the information needed using different codes for
each group. However, it does not include the informa-
tion needed to specify the class membership of each
thing, nor that needed to specify the codes.

The method of cluster analysis based on centroid
sorting with a squared Euclidean distance similarity
coefficient, in so far as it leads to a classification which

minimises the total over classes of squared distances
from class centroids, may be regarded as a maximum
likelihood estimation of class membership and centroid
positions of the class distributions, using the simplifying
assumptions of:

(a) uncorrelated normal distribution of each attribute
within each class;

(b) distribution standard deviations equal over all
attributes and classes;

(c) all classes of equal abundance.
A classification which minimises the information

measure will assign each thing to the class having the
highest estimated population density in the neighbour-
hood of the thing. This assignment is that suggested by
Sebestyen (1962) in his Bayesian approach to pattern
recognition.

Most previous numerical classification systems have
been based on one sort or another of inter-individual
similarity measure. The wealth of measures proposed
in the literature suggests that the notion of similarity has
proved difficult to quantify, and difficult to relate to
rigorous statistical concepts. It is interesting to note
that in a recent comparison of several different similarity
coefficients and clustering strategies applied to species of
the genus Stylosanthes, L. 't Mannetje (1967) found the
best correspondence with accepted taxonomy to be
achieved by a coefficient and strategy which are purely
empirical, and have no obvious basis in statistical or
probability theory.

The information measure does not involve any attempt
to measure similarity, either between individuals or
between classes. Rather, it is based on comparisons
between an individual, on the one hand, and a class on
the other, and uses the well-defined concept of the
probability that a member of a class of known distri-
bution would be found to have certain measured
attributes. The question of how in a given context one
can best measure the similarity between two individuals
is therefore replaced by the question of how in a given
context, the distribution of a class can best be described.
We have in this paper tried to use the most colourless
possible class distribution descriptions. However, in a
particular context, such as the classification of species,
one might well be able, by appeal to the theory of
evolution which is supposed to account for interspecific
variation, to find a form of class distribution which more
nearly models the observed distributions than do our
assumed forms. The form of distribution in measure-
ment space to be expected of a class in a particular
context appears to us to be more amenable to systematic
investigation than does the form of similarity measure,
if any, appropriate to that context.

7. Results
We have not as yet applied the information measure

to classifications arrived at by other numerical methods.
We have, however, written a program for the University
of Sydney KDF 9 computer which attempts to minimise
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the information measure. The only data body so far
submitted to the program for which there existed an
established classification is a set of some 30 measure-
ments of 217 seal skulls, the sample comprising six
species. (See Table 1.)

Table 1

Description of seal skull sample

A. tropicalis tropicalis
A. australis
A. tropicalis gazella
A. pusillus
A. doriferus
A.forsteri

MALE

15
31
60
13
34
16

FEMALE

9
3

18
6

10
2

The program did not have access to either the sex of
the skulls or the location of capture.

The program distinguished seven classes which cor-
responded fairly closely to those male and female groups
of the six species which were represented by a sample of
reasonable size. (See Table 2.)

There are three main exceptions: first, the two species
A. pusillus and A. doriferus were indistinguishable to the
program. The only division was on the basis of sex.
This indistinguishability is apparent from an inspection
of the skulls themselves. It is difficult to note any
difference for either sex between skulls from the two
species. Further, an inspection of the means and
standard deviations of the measurements shows that the
differences between pairs of means of the same measure-
ment for a particular sex are seldom greater than about
0 • 3 standard deviations.

Secondly, half of the group of 15 A. tropicalis
tropicalis males were grouped with the females. These

seven males are the younger members of the group and
tend to look more like females. This same fact of age
could explain a number of other small misclassifications.
The four A. pusillus and six A. doriferus males grouped
with the A. aus tralis males are both collections of the
younger members of their respective groups, and like-
wise for the three A.forsteri males misclassified.

Thirdly, the grouping of the A. tropicalis tropicalis and
A. forsteri males is probably due to a combination of
too small sample size and notable similarity between the
two groups. Their means for the same measurement
seldom differ by more than about 0-5 standard
deviations.
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Appendix
The optimum encoding of multistate data

The statement of the class of each thing and the
statement of values of multistate attributes present the
same problem of how to optimise the labels used to
encode this information and how to optimise the
description of the label set employed.

Given a set of N things, we wish to produce a message
saying in which of M states each thing lies. This
message may be regarded as the concatenation of N
'labels', one per thing, each 'label' being a code name

Table 2

Program versus zoological classification for six species of seals

PROGRAM
CLASSES

4
3
6
1

7
2
5

MALES

A Irop.
tropicalis

7

1

7

A.
australis

7
23

1

A. trop.
gazella

59

A.
pusillus

4

9

A.
doriferus

6

28

A.
forsteri

12
3

FEMALES

A. trop.
tropicalis

8
1

A.
australis

2

A. trop.
gazella

17
1

A.
pusillus

5

A.
doriferus

10

forsteri

I

I
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Measure of classification

for the state of the corresponding thing. For the M
names of the M states to be distinguishable from one
another, the length (in units of log2 e bits) of the name
for the with state must be — ln/?[w], where

S P[m] < 1. (1)

Maximum economy is achieved by choosing the p[m] to
satisfy the equality sign in (1).

If a number r[m] N things have state m, the total
length of the message giving all iV states is

M
— iV 2 r[m] In p[m]. (2)

Expression (2) is minimised by choosing p[m] = r[m\
However, the receiver of the message has no a priori
knowledge of r[m], and cannot deduce from the message
the labels employed. Thus he is unable to decode the
message as it stands.

Assume that the receiver has exact knowledge of N
and M, and that there has been prior agreement between
sender and receiver that for this N and M the labels
used will be based on one of an agreed finite set of
M-tuples {p[m]}. (A similar agreement, or agreement
on a general rule, is needed for any other values of M
and N. The complete collection of agreements, or the
general rule, constitutes the 'code book' for all such
communications.)

The message of length (2) must be preceded by an
additional message (the 'class name dictionary') which
tells the receiver which one of this finite set of M-tuples
has been selected by the sender. The sender will choose
that M-tuple of p[m] values which most nearly matches
the relative abundances r[m] in order most nearly to
minimise (2). If the agreed set of M-tuples contained
one M-tuple {/>[m]} for each possible M-tuple {>"[«?]},
then the minimum of (2) could always be achieved.
However, there is a large number of possible M-tuples
{/•[m]}, and the length of the class name dictionary which
nominates the particular M-tuple {/>[m]} being used
would therefore become considerable.

A better compromise is to agree on a relatively small
set of M-tuples {/>[»?]}, thus reducing the average length
of the class name dictionary. In general, the values p[m]
adopted will no longer exactly equal the values r[m],
and so on average the length of the main part of message,
as given by (2), will be slightly greater than the minimum
possible.

We would like to determine how many M-tuples
{/>[/M]} should be employed, over what range of values
of {r[w]} each should be used, how much information will
be needed to nominate a particular M-tuple, and by
how much the expression (2) will on average exceed its
minimum.

For some range of values of {/•[»?]}, we employ a fixed
M-tuple of names whose lengths are minus the logarithms
of {/>[»»]}, where 2/>[>"] = 1-

Write m

r[m] = p[m] + a[m] (m = 1, 2, . . . M) (3)

where
2 a[m] = 0. (4)

The additional cost D incurred in the length of the
main part of the message due to the use of the M-tuple
{/>[w]} instead of the optimum M-tuple {r[m]} is, from
(2), given by

D = -JV{2 (p[m] + a[m]) In p[m]
m

- 2 ip[m] + a[m]) In (p[m] + a[m])}
m

= N2 (p[m] + a[m]) In (1 + a[m]/p[m]). (5)

Since a[m]/p[m] is expected to be small, we expand (5)
to the second power of a[m]/p[m], and, using (4), obtain

N.
(6)

Now the possible M-tuples {r[m]} range over the
(M — 1) dimensional simplex G defined by

2 r[m) = 1 (7)
m

r[m] > 0 (all m) (8)

The density of M-tuples is uniform throughout G.

If we assume that all M-tuples within the simplex are
equally likely to be encountered, the information
needed to nominate the use of a particular label set
{/>[>"]} vvill, in the best encoding, be the minus the
logarithm of the fraction of the volume of G over which
the labels {/>[m]} are employed. We therefore wish to
choose the region of G within which {/>[w]} is used, to
have the largest volume for a given average value of D
over the region. The regions of application of different
M-tuples {p[m]} must not overlap, and must together fill
G. We choose regions of hyper-parallelepiped shape,
since they can be packed together. We now attempt to
find the optimum dimensions of the region of application
of a particular M-tuple {p[nt\}.

The contour in G of points yielding a given additional
cost D is the intersection of the M-dimensional ellipsoid
F defined by (6) with the hyperplane (7) containing G.
The contour is an (M — 1) dimensional ellipsoid E.

The linear transformation T defined by

b[m] = a[m]/V(p[m])

and correspondingly

q[m] = /"

maps F into the sphere F' defined by

%Y>b\mY = D
*• m

and G into the simplex G' defined by

2 {V(p[m] q[m])} - 1 = 0
m

q[m] > 0 (all m).

(9)

(10)

(11)

(12)

(13)
192

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/11/2/185/378628 by guest on 21 August 2022



Measure of classification

Since the centre of F lies in G, the centre of F' lies in G'.
Thus the contour in G' of points with additional cost D,
namely the intersection of F' with the hyperplane (12),
is an (M — 1) dimensional sphere of radius R equal to
the radius of F\ hence

D = *R2- (14)

By virtue of the spherical symmetry in G' of the cost
D about the Af-tuple {b[m] — 0}, the optimum parallele-
piped region of application of this M-tuple must, under
T, map into an (M — 1) dimensional hypercube C in G'
centred on the point {b[m] = 0}. Let the length of the
sides of C be x. Since T is linear, all points within C are
equally likely to be encountered. The average squared
distance of all points in C from the centre of C is
2 M - 1 .x/2 x\l x\2
7M=I \dyi \dy2 . . . dyM_x{y\ + y\ + . . . + y2

M_l)x Jo Jo Jo
M - 1

12
(15)

where the y, are a set of (M — 1) rectangular coordinates
aligned with the edges of C.

Hence, from (14), the average additional cost D over
the region is

D av = N{M - l)*2/24. (16)

Since T is linear, the fraction of G' occupied by C
equals the fraction of G occupied by the region of
application of {/?[/w]}. To find the message length
needed to nominate the choice of {p[m]}, we must find
the volumes of C and G'.

The volume of C is
(17)rM-\

To find the volume of G', consider the Af-dimensional
simplex S having G' as one face and the origin
{q[m] = 0} as the opposite vertex. The other vertices of
S are the vertices of G', viz. the points (in ^-coordinates)

The volume of S is therefore

1
(18)

The volume of S is also given by Vh/M, where V is
the volume of G', and h is the perpendicular distance of
the origin from the plane (12). Since the sum of the
squares of the coefficients of q[m] in (12) is T,p[m] = 1,

m

h is found by substituting the coordinates {p[m] = 0}
of the origin into the left hand side of (12). Hence

h= 1

and from (18)

V = (19)

Combining (17) and (19), we get that the length of
message needed to nominate {/>[m]} is

- In mV(p[m])xM-l(M - 1)!} (20)

The total expected additional message length due to
the need to nominate {/>[m]} and to the non-optimum
match between {/>[/«]} and {/"[w]} is found by adding
(20) and (16) to be

N(M - l)*2/24 - i S ln/>M
m

- (M - 1) In x - In (M - 1)!. (21)

The value of (21) is minimised by choosing

x2 = 12/N (22)

giving (21) a minimum value of

M — 1
( M - l)/2 - I S \np[m] +

,M_- 1) (In JV/12

- \n{M- 1)!

- 1)!. (23)

The total additional cost incurred with any particular
set of abundances {r[m]} will depend on the difference
between {r[m\} and the nearest {p[m]}, and hence on the
details of how the parallelepiped regions are packed
together. We do not wish to consider these details for
all N and M, and in any case there are likely to be many
different packing patterns of near-optimum efficiency.
It would be appropriate to obtain the additional cost we
expect to incur with a particular {r[w]} by averaging the
additional cost over all M-tuples \p[m\} which include
{r[m]} in their ranges of application.

The additional cost incurred by using a particular
[p[m]}, given a particular [r[m]}, comprises two parts.
The first part, D, due to the non-optimum match between
the label set used and the relative frequencies of the
states, is given by (6). The second, due to the need to
nominate the label set used, is given by (20) substituting
the optimum value of x from (22), that is, by

M — 1
In (JV/12) - In (M - 1)! (24)

It is easily seen that the region in G including all the
{/>[m]} having {r[m]} in their ranges of application is
approximately centred on {r[m]}, and is similar in
position, size and shape to the region of application of
an Af-tuple {/>[w]} having p[m] = r[m]. Because this
region, over which we wish to average, is approximately
centred on {r[m}}, we may approximate the average
value of (24) in the region by substituting r[m] for p[m]
in (24). The value of (6) depends on the differences a[m]
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between p[m] and r[m], with a weighting dependent on
p[m]. If the variation in the weighting over the region
of averaging is neglected, (6) may be replaced by

N
D = =- S a[my/r[m].

*• tn

(25)

If now the region of averaging is taken as being identical
to the range of application of p[m] where p[m] = r[m],
the average value of (25) is given by (16), substituting the
optimum value of x from (22), as

(M - (26)

Combining (24) and (26) gives the expected additional
cost incurred with relative frequencies of states r[m] as

(M — 1
V 2

) (In AT/12 + 1) — i Z m r[m] - In (M - 1)!

(27)

This expression represents the expected total cost
additional to the message length which would be
required to give the states of the N things using optimum
label lengths of —In r[m]. The expected total message
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Correspondence
To the Editor
The Computer Journal

A new method for solving polynomial equations
Sir,

Reading the article about solving polynomial equations by
Garside, Jarratt and Mack (this Journal, Vol. 11, p. 87), I
wonder if the method can be further improved by successive
long divisions of F(Z) into a continued fraction with the
repeated roots consequently removed. In general, for an
nth order polynomial their

F(Z)=.
a\

*Z+bn

For a repeated root an should =0 and — bn be the repeated
root. Should an be very small it could cause unnecessary
trouble were it purely a round-off error. Consequently, if
small values of the coefficients are not to be ignored, they
should all be calculated to double length with only the single

length used later for evaluation of the continued fraction.
This would seem a small price to pay for separating out the
repeated roots.

It may happen that part of the way through the repeated
division process a leading coefficient (or coefficients) of the
numerator becomes zero. This will result in the next division
giving a second (or higher) order polynomial with corre-
spondingly less undone divisions. This must be catered for
in the program. Also if the leading coefficient is very small,
it could cause very large coefficients in the next stage. Should
this happen, all the coefficients should be sealed and this may
result in the leading one becoming zero.

In calculating the continued fraction, it may happen that
one denominator vanishes. This must make the next fraction
zero.

Yours sincerely,
J. P. O'BRIEN

English Electric Diesels Limited,
Newton-le-Willows
7 June 1968

(Further correspondence appears on pp. 172 and 240)
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