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Cognitivemodels have been increasingly successful at
accounting for complex data sets on problem solving
(Anderson & Lebiere, 1998; Meyer & Kieras, 1997a,
1997b; Pew & Mavor, 1998). Largely, these cognitive
models have focused on latency and accuracy and, usu-
ally, only final times and accuracies. These models often
specify rather complex sequencesof unseen processes tak-
ing place over many seconds. Even when the pattern of
data they fit is correspondingly complex, one is naturally
wary of a chain of inferences about unseen processes. It
would be better to have data about these intervening pro-
cesses. Basically, a greater amount of converging data
would be better. This article will demonstrate the poten-
tial of functional magnetic resonance imaging (fMRI)
data to provide one source of converging evidence. Sym-
metrically, the article will show the potential of cognitive
models to give a precise account of the significance of
the blood oxygen level dependent (BOLD) response.

The ACT–R theory (Anderson & Lebiere, 1998), par-
ticularly in its current 5.0 version, has made itself open
to such data. Figure 1 illustrates the basic architecture of
that system. The external world and the internal system
interact through a set of cortical buffers that hold infor-
mation. Particularly important to this article are the goal
buffer, the imaginal buffer, the motor buffer, and the re-
trieval buffer. The goal buffer keeps track of one’s inter-
nal intentions in solving a problem. The imaginal buffer
essentially keeps a visual image of the problem state; all
problem state representations need not be visual, but they
are in the algebraic tasks that we will be investigating.
The manual buffer (Byrne & Anderson, 1998) is used to
program hand movements and is based on the EPIC
(Meyer & Kieras, 1997a, 1997b) manual processor. The
retrieval buffer requests information from declarative
memory and holds the retrieval results. The ACT–R 5.0
specifies when these buffers will be active during the
performance of such a task and for how long.

Our main concern in this article is with the activity of
these buffers in ACT–R and their corresponding cortical
correlates, but we will say a little about how we assume
they interact with the rest of the system shown in Fig-
ure 1. These cortical areas project to the striatum, which
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we hypothesize performs a pattern recognition function
(in line with other proposals; e.g., Amos, 2000; Frank,
Loughry, & O’Reilly, 2000; Houk & Wise, 1995; Wise,
Murray, & Gerfen, 1996). The basal ganglia more gen-
erally are hypothesized to implement production rules in
ACT–R, which recognize and act on patterns of activity
in the cortical areas. Since production rules represent
ACT–R’s procedural memory, this also corresponds to
proposals that the basal ganglia subserve procedural
learning (Ashby & Waldron, 2000; Hikosaka et al.,
1999; Saint-Cyr, Taylor, & Lang, 1988). An important
function of the production rules is to update the buffers
in the ACT–R architecture. The well-characterized or-
ganization of the brain into segregated cortico-striatal-
thalamic loops is consistent with this hypothesizedfunc-
tional specialization. Thus, the critical cycle in ACT–R
is one in which the buffers hold representations deter-
mined by the external world and internal modules, pat-
terns in these buffers are recognized and a production
fires, and the buffers are then updated for another cycle.

The plan of this article will be to take tasks for which
there already exist well-specified ACT–R models, de-
termine the predictions about buffer activities, and look
for neural correlates. We will describe two experiments
based on the research of Anderson, Reder, and Lebiere
(1996) and Blessing and Anderson (1996), which were
modeled in older versions of ACT–R. Anderson et al.’s
paper looked at the solving of algebraic equations of dif-
ferent complexity, with or without a concurrent memory
load. The processes we will propose for their solution do

not require any mathematics-specific faculties but re-
quire general faculties, such as those for goal mainte-
nance, visual representation of problem state, motor pro-
gramming, and declarative retrieval. To confirm that the
neural correlates found in the first experiment are not
specific to mathematical problem solving, we looked at
the symbol manipulation task of Blessing and Anderson
that removed all of the arithmetic content from algebra.
This pairing of two tasks allows a strong converging test
of our theory, because we can use the regions of interest
(ROIs) uncovered in the one experiment to organize the
fMRI data for the other experiment.

Before describing these experiments, we would like to
discuss the cortical regions that we expect to see corre-
sponding to the buffers in Figure 1. The goal and the re-
trieval buffers are rather difficult to separate, both in the
behavior of ACT–R and in terms of their localization.
Both retrieval operations and goal-setting operations
have been associated with the prefrontal cortex. The
hemispheric encoding retrieval asymmetry (HERA)
model (Nyberg, Cabeza, & Tulving,1996;Tulving,Kapur,
Craik, Moscovitch, & Houle, 1994) associates episodic
and semantic retrieval with the right and the left prefrontal
cortex, respectively. In their recent review, Cabeza and
Nyberg (2000) usually found that retrieval tasks produced
activation in classic prefrontal areas, such as Brodmann
areas (BAs) 9, 44, 45, and 46. These same areas also tend
to be active in tasks that involve goal manipulations,
such as task switching (Sohn, Ursu, Anderson, Stenger,
& Carter, 2000), Stroop (MacDonald, Cohen, Stenger, &

Figure 1. A representation of the information flow in ACT–R 5.0.
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Carter, 2000), and the Wisconsin card sorting task
(Berman et al., 1995; Goldberg et al., 1998). In ACT–R,
goal changes often require retrieval of relevant informa-
tion. Thus, the predictions for the two buffers are often
correlated. We will focus on the behavior of the retrieval
buffer, because its behavior is somewhat easier to quan-
tify in ACT–R, leaving open the possibility that the ef-
fects we attribute to retrieval might also be attributed to
the goal buffer. In any case, the hypothesis is that use of
the retrieval buffer will be correlated with activity in the
prefrontal cortex. Note that the assumption is that the re-
trieval buffer holds the products of the retrieval but that,
in line with other proposals, the actual memories are likely
to be stored in other brain structures.

The visual imagery buffer holds a representation of vi-
sual problems during the course of their solution. Given
that skilled algebraic manipulation is thought to be
highly visual and spatial (Awtry & Kirshner, 1994;Kirsh-
ner, 1989), we would expect to see changes in the mental
state of the equation represented by changes in that buffer.
The literature on spatial imagery associates that with the
posterior parietal cortex (BAs 7, 39, and 40). In their re-
view, Cabeza and Nyberg (2000) noted that these regions
are active in almost every study of imagery. Reichle, Car-
penter, and Just (2000) found that there was greater ac-
tivation in this area when participants engaged in an im-
agery strategy during language processing and that this
was more concentrated in the left parietal regions. Perhaps
it is concentrated on the left because of its connection
with symbolic processing in their task. Since algebra is
likewise a meaningful symbol system, our hypothesis is
that activationin the left parietal region will track changes
in the imaginal buffer, which in turn will reflect changes
to the equation representation.

With respect to the manual buffer, it is devoted in
ACT–R to representing and monitoring hand movement,
usually as part of motor programming. It would be nat-
ural to associate it with the region of the motor cortex that
in fact controls the hand. Including the manual buffer
provides us with an anchor point in our interpretationand
model fitting, since there is good prior localizationof the
region that is responsible for hand movements.

EXPERIMENT 1

Table 1 illustrates the six conditions of the first ex-
periment, which were closely modeled on Anderson
et al. (1996), although some changes were made to meet
the methodological demands of the magnet. The equa-
tions required zero, one, or two algebraic transforma-

tions to solve. Orthogonal to this, the equations could
have two letter constants in them, and the participants
would have to substitute values they had just learned for
these constants. Figure 2 illustrates the basic structure of
the fMRI trial. The trial began with 3 sec for study of as-
signments for three constants. Then an equation was ex-
posed, which might or might not involve two of these
constants, and it remained on for 7.5 sec. This was fol-
lowed by a white * for 7.5 sec, to allow the hemodynamic
response to settle, and this was followed by a red + for
3 sec, to alert the participant to the next upcoming trial.

Anderson et al. (1996) found that this task could be
understood by tracking its retrieval requirements.1 There
are two types of retrievals, which they found weighted
equally in determining accuracy and latency. One type
involved arithmetic retrievals, which had two subtypes:
retrieving arithmetic facts such as 6 * 3 = 18 and retriev-
ing information about operator inverses (e.g., 2 is the
opposite of +, a fact that is required to undo a plus oper-
ation). The other major type was retrieval of the assign-
ments just made of values to constants (such as b = 5).
Although ACT–R treats these two retrievals as being of
the same kind, it was not obvious that they would be so
treated by the brain. Indeed, on the basis of the HERA
model, one might categorize the first type of retrieval as
semantic and predict that it would occur in the left pre-
frontal cortex and the second as episodic and predict that
it would occur in the right prefrontal cortex.

Method
Task and Procedure. Table 1 shows samples of the equations

used in this experiment. The participants’ task was to solve the

equation (i.e., isolate the x) and key in the correct answer. The an-
swers ranged from 6 to 9. The participants used the right index,

middle, ring, and little f ingers in a response glove to indicate 6

through 9, respectively.
At the beginning of a trial, a memory set of three integers was

presented for 3 sec, which was replaced by an algebra equation. The
participants were instructed to rehearse these integers until the

equation appeared. Half of the algebra equations required substitu-
tion of constants with these integers, but the participants had no

warning of which equations would use constants. No additional

tasks were required regarding the memory set, other than the sub-
stitution. The equation itself remained on the screen for 7.5 sec. If

no response was given during this time, the trial was scored as in-
correct. The equation then was replaced by an asterisk (*) for

7.5 sec of rest. Finally, a plus sign (+) appeared for 3 sec of warn-

ing for the next trial.
Parametric design. Two factors were manipulated. First, the equa-

tions differed in computational complexity. The zero-transformation
problems did not require any algebraic transformations. These equa-

tions always contained 1 as the slope and 0 as the intercept (e.g.,
1x + 0 = 06). Therefore, the answer would be the integer on the

Table 1
Example of the Materials in the Algebra Experiment Extension of

Anderson, Reder, and Lebiere (1996)

Transformations No Substitution Substitution

0 1x + 0 = 06 ax + 0 = c (a = 1; c = 6)
1 2x + 0 = 12 or 1x + 9 = 18 ax + 0 = c (a = 2; c = 12)

2 3x + 5 = 23 ax + b = 23 (a = 3; b = 5)



244 ANDERSON, QIN, SOHN, STENGER, AND CARTER

right-hand side of the equation. The one-transformation problems

required removing either the intercept or the slope from the left-hand

side of the equation, but not both. Solving the two-transformation
problems required removing both the intercept and the slope. The

rather unusual presentation format of algebra equations that we
adopted (such as representing 1 and 0 in the simpler problems) was

to keep the visual fields of the stimuli as constant as possible across
different problem complexities.

Second, the integers for an equation either were directly avail-

able from the equation (no substitution) or had to be retrieved from
the memory set (substitution). The memory set consisted of three

integers. The participants were instructed to treat them as the val-
ues for the constants a, b, and c, in left-to-right order. In the substi-

tution condition, the subsequent equation contained two of these

constant letters (e.g., a x 2 b = 12), and a participant had to retrieve
the values for these constants to solve the equation.

Prescan practice. The participants took about 30 min of prescan
practice on the day before the scan. At first, a key practice program

was run to acquaint them with the finger-to-key mapping with a
hand-held response glove (press the index finger for 6, the middle

finger for 7, the ring finger for 8, and the little finger for 9). Then

there were four blocks of task practice, 18 trials for each block. The
feedback on accuracy and latency was given at the end of each trial

in the first two blocks. In the last two blocks, no trial-by-trial feed-
back was given to correspond to the procedure in the scanner.

Event-related fMRI scan. Event-related fMRI data were col-
lected by using a single-shot spiral acquisition on a GE 3T scanner,

1,500-msec TR, 18-msec TE, 70º flip angle, 20-cm FOV, 28 axial
slices/scan with a 3.2-mm-thick 64 3 64 matrix, and with AC–PC

on the 8th slice from the bottom. There were 14 scans (21 sec) for

each trial, 18 trials for a block, and eight blocks for each participant.
There was no trial-by-trial feedback. The protocol of each trial of

scan is illustrated in Figure 2.
Images acquired were analyzed using the NIS system.2 Images

first were realigned using 12-parameters AIR (Woods, Grafton,
Holmes, Cherry, & Mazziotta, 1998) and then cross-registered to a

common reference brain by minimizing signal intensity difference,

after which functional images were set to a standard mean inten-
sity, smoothed (8-mm FWHM 3-D Gaussian kernel) and pooled

across participants to improve signal-to-noise ratio. Spatial F maps
were generated using an analysis of variance (ANOVA). ROIs were

identified by thresholding spatial F maps of condition (with the re-

quirement of six contiguous voxels, p £ .01, with degrees of free-
dom corrected by Greenhouse–Geisser).

Participants. The participants were 8 right-handed native En-
glish speakers (4 females). Their ages ranged from 19 to 23 years,

with an average of 21.5.

Results
Average accuracy was 84.7%, and accuracy showed a

strong negative correlation with latency (r = 2.878).
Only correct trials were analyzed. Figure 3 shows the la-
tency results from the experiment. There were large and
significant effects of both number of transformations
[F(2,14) = 260.44, MSe = 81,806, p < .0001] and substi-
tution [F(1,7) = 135.14, MSe = 154,207, p < .0001] and
no interaction between these factors [F(2,14) = 0.83,
MSe = 74,115]. As can be seen, these latency effects are
consistent with the ACT–R model that we will present.

Analysis of fMRI data was also restricted to trials on
which the participants were accurate. ROIs were selected
according to the interaction term in a 6 conditions 3 14
scans ANOVA. To have a conservative test that dealt

Figure 2. The 21-sec structure of an fMRI trial in Experi-

ment 1.
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with nonindependence of successive scans, we used the
correction of assigning only five degrees of freedom to
the numerator in the F statistic for the interaction term
(the Greenhouse–Geisser correction for nonindependence
of conditions). The interaction was examined in each
voxel, and the selected regions met the criteria of a min-
imum of six contiguous voxels with a significant inter-
action at p £ .01 (Forman et al., 1995). Figure 4 and Ta-
ble 2 give the seven regions that achieved this level of
significance. Figure 4 displays only the top 16 slices,
since no significant ROIs were found lower in the brain.
ROI 1 is the intraparietal sulcus, which has been found
to be active in almost all studies of mathematical think-
ing (e.g., Dehaene, Spelke, Pinel, Stanescu, & Tsivkin,
1999;Gruber, Indefrey, Steinmetz, & Kleinschmidt,2000;
Menon, Rivera, White, Glover, & Reiss, 2000; Rickard
et al., 2000; Zago et al., 2001). ROI 2 is the anterior cin-
gulate gyrus. ROI 3 is the precuneus, which has also
been found to be active in a number of studies of math-
ematical thinking (e.g., Dehaene et al., 1999; Zago et al.,

2001). ROI 4 is the left inferior frontal gyrus (BA 44),
which again has been found to be active in almost all
studies of mathematical thinking. ROI 5 is a prefrontal
region at the border between BAs 45 and 46, which has
also been found to be active in some studies (Gruber
et al., 2000; Zago et al., 2001). Regions 6 and 7 are the
left and the right supramarginal gyrus (BA 40). Except
for ROI 2, which is central, and ROI 6, which is right, the
areas of activation are in the left cortex. This lateraliza-
tion is typical of imaging studies of mathematical tasks.
Damage in the vicinity of ROIs 1, 3, and 7 has also been
shown to be associatedwith acalculiaor dyscalculia (Graf-
man & Rickard, 1996; Jackson & Warrington, 1986;
Rosselli & Ardila, 1989).

Figure 5 shows the activation functions for these seven
regions, averaged over conditions, as a function of the 14
scans. The dependent measure is percentage of activa-
tion over the baseline set by the average of Scans 1 and
2 (before the equation) and Scans 13 and 14 (by which
time the BOLD signal should return to baseline). ROIs

Figure 4. Activation map for the top 16 slices showing areas in Experiment 1 with a significant
interaction between scan and condition. Only regions with more than six contiguous voxels and p <

.01 are shown. See Table 2 for identification of the regions. The AC–PC line is 5 slices below Slice 16
in this figure. This observes the radiological convention of displaying the left side of the brain on the

right.
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1–5 show relatively similar rises and falls. Table 3 shows
the intercorrelations among the 84 observations (14
scans 3 6 conditions) of the percentage of change ob-
tained for each of the seven ROIs. The posterior parietal
ROIs 1 and 3 are quite similar, with correlations over .9,
as are the frontal ROIs 4 and 5. Although these are the
highest intercorrelations, the intercorrelations are posi-
tive and fairly strong, except for those with the supra-
marginal ROIs 6 and 7, which do not correlate strongly
with any region except each other. In Figure 5, ROIs 6
and 7 display somewhat peculiar but similar average
functions, first falling below zero and then rising above
zero. Rickard et al. (2000) and Zago et al. (2001) found
deactivation in these regions when participants perform
calculations.

We will focus our analyses on ROI 1 and ROI 5. Both
ROIs 1 and 3 are from the left posterior parietal region
that we would expect to be associated with the imaginal
buffer in ACT–R. ROI 1 was chosen because it is larger
and more reliable, but note its high correlation with
ROI 3. The two frontal regions, ROI 4 and ROI 5, also

behave similarly. We have chosen to focus on ROI 5 be-
cause it is more clearly prefrontal. We also chose a third
area for investigation, which did not prove to yield a sig-
nificant interaction in this experiment but did in the next
experiment. This is a region that covers the motor and
sensory regions corresponding to the right hand. Its exact
coordinates will be given as part of Experiment 2 (see
ROI 1 in Table 7). These three regions of interest are il-
lustrated in Figure 6.

Figure 7 contrasts the behavior of these three regions
in the two extreme conditions—no transformation with
no substitution versus two transformations with substi-
tution. All the regions show effects of conditionbut show
different patterns. The posterior parietal and the pre-
frontal particles are quite similar in the most complex
conditionof two transformations with substitution.How-
ever, they are dramatically different in the simplest con-
dition of no transformations and no substitution. In this
simplest condition, the posterior parietal particle shows
about half the rise of that in the most complex condition,
whereas the prefrontal particle appears to show no effect.

Table 2
Regions of Interest, Location of Centroids, and Significances for Experiment 1

Stereotaxic

Coordinates

Brodmann Voxel (mm) F

Region of Interest Area Count x y z Maximum Average

1. Left posterior parietal 39, 40 190 230 255 38 5.50 4.09

2. Anterior cingulate 32 32 21 215 39 4.56 3.98
3. Left precuneus 7 10 22 266 45 4.27 3.98

4. Left inferior frontal gyrus 44 62 243 24 23 5.19 4.19
5. Left prefrontal 45/46 29 242 228 18 4.78 4.02

6. Right supramarginal gyrus 40 33 258 218 22 4.13 3.81
7. Left supramarginal gyrus 40 36 251 220 19 4.41 3.86

Figure 5. Average activation functions for the seven regions of interest from

Experiment 1.
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Thus, the prefrontal particle is more sensitive to our
complexity manipulations. The motor particle does not
show greater magnitude of response in the more com-
plex condition but shows a greater delay in peaking and
a wider distribution, which would be consistent with the
execution of a later and more variably timed response.

PREDICTING THE BOLD SIGNAL

In this section, we will first describe how to map the
activity of an information-processing model onto pre-
dictions of the BOLD signal, and we will then describe
the ACT–R predictions. Figure 8 illustrates the behavior
of the three relevant buffers in ACT–R. Each box in that
figure reflects a period of time during which that buffer
(buffers correspond to columns of the figure) is active,
and the vertical length of the box reflects the duration
that the buffer is active. In the next section, we will dis-
cuss how one goes from charts like this to predictions of
the BOLD function. In the subsequent section we will
discuss the ACT–R model that produces the behavior il-
lustrated in Figure 8.

Mapping Buffer Activity Onto the BOLD
Function

Figure 9 illustrates the general idea about how we map
from events in an information-processing model, such as

those illustrated in Figure 8, onto the predictions of the
BOLD function. Each buffer will generate a BOLD
function in an associated region, and Figure 9 represents
the events in one hypothetical buffer and the resulting
BOLD function. In this hypotheticalcase, we assume that
the buffer is active for 150 msec from 0.5 to 0.65 sec, for
600 msec from 1.5 sec to 2.1 sec, and for 300 msec from
2.5 to 2.8 sec. The bars at the bottom of the graph indi-
cate when the buffer is active.

A number of researchers (e.g., Boyton, Engel, Glover,
& Heeger, 1996; Cohen, 1997; Dale & Buckner, 1997)
have proposed that the BOLD response to an event varies
according to the following function of time, t, since the
event:

where estimates of the exponent have varied between 2
and 10 (and we will constrain our estimates within these
bounds). This is essentially a gamma function that will
reach maximum a time units after the event. As is illus-
trated in Figure 9, this function is slow to rise, reflecting
the lag in the hemodynamic response to neural activity.

We propose that while a buffer is active, it is con-
stantly producing a change that will result in a BOLD re-
sponse according the above function. The observed
fMRI response is integrated over the time that the buffer
is active. Therefore, the observed BOLD response will
vary with time as

where M is the magnitude scale for response, s is the la-
tency scale, and i(x) is 1 if the buffer is occupied at time
x and 0 otherwise. Note that because of the scaling fac-
tor, the prediction is that the BOLD function will reach
maximum at roughly t = a * s sec.3 Note that the function
reaches a maximum and comes down because the period
of activity in the buffer is brief. If there were sustained

CB t M i x B t x

s
dx

t

( ) ( ) ,= -æ
è
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Table 3
Intercorrelations Among the Activation Functions in the

Various Regions of Interest Identified in Experiment 1

ROI 2 ROI 3 ROI 4 ROI 5 ROI 6 ROI 7

ROI 1 .824 .918 .814 .703 2.364 2.2010
ROI 2 .686 .609 .404 2.325 2.0080

ROI 3 .632 .600 2.207 2.3040
ROI 4 .908 2.536 2.0508

ROI 5 2.551 2.0495
ROI 6 2.6990

Motor

Prefrontal

Posterior Parietal

Figure 6. An illustration of the three left regions of interest for modeling.
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activity in the buffer, the BOLD response would reach a
maximum level and sustain it. The prediction of the
maximum at t = a * s is only relatively precise when the
duration of the activity is relatively brief.

As Figure 9 illustrates, one can think of the observed
BOLD function in a region as reflecting the sum of sep-
arate BOLD functions for each period of time the buffer
is active. Each period of activity is going to generate a
BOLD function according to a gamma function, as has
been illustrated. The peak of the BOLD functions reflects
roughly when the buffer was active but is offset because
of the lag in the hemodynamic response. The height of
the BOLD function reflects the duration of the event,
since the integration makes the height of the function
proportional to duration over short intervals.

Note that this model does not reflect a frequent assump-
tion in the literature (e.g., Just, Carpenter, & Varma,
1999) that a strongerBOLD signal reflects a higher rate of
metabolic expenditure. Rather, the assumption is that it
reflects a longer duration of metabolic expenditure. The
two assumptions are relatively indistinguishable in the
BOLD functions they produce, but the time assumption
more naturally maps onto an information-processing
model that assumes stages taking different durations of
activity. Since these processes are going to take longer,
they will generate higher BOLD functions, without our
having to make any extra assumptions about different
rates of metabolic expenditure. The total area under the
curve in Figure 9 will be directly proportional to the pe-
riod of time that the module is active. If a module is active
for a total period of time T, the area under the BOLD func-
tionwill be M*G(a + 1) * T, where G is the gamma function
[in the case of integer a, note that G(a + 1) = a!].

Since the area under the BOLD function reflects the
proportion of time the region is engaged, it is useful to
try to come up with empirical estimates of the area under

the function. For the 18 conditions defined by crossing
the three ROIs illustrated in Figure 6 with the 6 condi-
tions of the experiment, we estimated the area under the
BOLD function as the amount Scans 3–12 were above
the baseline defined by Scans 1 and 2 (before the equa-
tion was given) and Scans 13 and 14 (by which time the
BOLD function should have returned to baseline).

Figure 10 gives the resulting estimates of area under
the curves for the three regions as a function of condi-
tion. As can be seen, there are three quite distinct pat-
terns. Both the posterior parietal region and the pre-
frontal region show a strong effect of condition, but the
difference is that the prefrontal region has effectively no
area in the simplest condition, implying that the region
is not at all active. In contrast, the posterior parietal re-
gion is about half as active in the simplest condition as
in the most complex condition. The motor area does not
seem to vary substantially with condition. [Note that the
curves being measured for the extreme conditions (zero
transformations, zero substitutions vs. two transforma-
tions, two substitutions) are illustrated in Figure 7.]

ACT–R Predictions
We will now describe the ACT–R model that we de-

veloped to fit the behavior profile in Figure 3 and the
BOLD responses for the three selected regions. A com-
plete ACT–R model for performing the experiment and
all the conditions is available at the Published ACT–R
Models link from http://act.psy.cmu.edu. It was based on
the model in Anderson et al. (1996) but has been updated
from ACT–R 2.0 to ACT–R 5.0. Its two essential aspects
are a sequence of transformations of the internal repre-
sentation of the equation and retrievals. Figure 8 illus-
trates these for the most complex condition of two trans-
formations with substitution(see Table 1). Although there
are other internal computations, the critical steps involve

Figure 7. Contrasting behavior of the three focus regions in the two most extreme condi-

tions of the experiment.
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imaginal transformations, which take 200 msec each, re-
trieval operations, which take an estimated 600 msec, and
a final motor operation, which takes 400 msec. Only the
retrieval time of 600 msec was estimated to fit the be-
havioral data, and the other values derive from default pa-

rameters in ACT–R. ACT–R has a theory of the micro-
structure of these retrievals, but for present purposes, we
can treat them as simply taking this fixed time.

The equations have four significant symbols that have
to be encoded: the term on the right (the c in Figure 8),
the first term on the left (the 3 in Figure 8), the operator
(the + in Figure 8), and the term before the X (the a in
Figure 8). Each time one of these symbols is encoded,
there is a transformation in the visual image of the equa-
tion. The other two symbols (the X and the =) are pre-
dictable and are encoded into the equation as part of one
of these transformations. In addition, the visual image is
transformed if there is a substitution or an algebraic
transformation. Thus, depending on condition, the num-
ber of transformations of the visual image is

V = 4 + 2S + A,

where S = 0 if there are no substitutions and 1 if there are
and A is the number of algebraic transformations.

Two retrievals are required in the case of substitution,
one for each algebraic fact retrieved and one to retrieve
the inverse of the + or 2. (We assume that an inverse op-
erator need not be retrieved in the case of the second oper-
ation, because it is always divide.) Thus, the number of
retrievals is

R = 2S + 1.5A,

where the 1.5 reflects the fact that two retrievals are re-
quired to remove the intercept but only one to remove the
slope.

Finally, there is always just one motor action, and its
timing varies with the timing of the response. The fact
that there is just a single action may explain why the
motor area did not appear as a significant region in this
experiment. It will be significant in the next experiment,
where five fingerpresses will be required.

Figure 11 shows the amount of time each buffer is active
in each condition. This should be compared with Fig-
ure 10, which gives the area under the BOLD functions

Figure 8. The approximate time line for the buffer activity in

the ACT–R model of Experiment 1. The processing is illustrated
beginning 3 sec after the study of the constant assignments and

with presentation of the equation (see Figure 2).
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for the three regions. Recall that the area under the curve,
by hypothesis, is proportional to the time the region is
active. Therefore, we asked how close the time patterns
(Ti ) for various buffers in Figure 11 matched the areas
(Ai ) for various regions in Figure 10. To do this, we cal-
culated the analogue of an R2 measure for proportionality:

Note that in the definition of the standard R2, one re-
places the raw scores in the above by the deviations from
the mean. Table 4 reproduces the measures of propor-
tionality between various regions and the time of the
buffer. It clearly confirms the association of the parietal
region with the imaginal buffer, the prefrontal region
with the retrieval buffer, and the motor region with the
manual buffer. It is worth emphasizing that, whereas the
fits we will display depend on parameter estimation, this
proportionality test is a parameter-free prediction de-
pending only on the number of transformations, re-
trievals, or motor actions. It does not depend on the pa-

Proportionality =
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Figure 10. The area under the BOLD function for the six different conditions
for each of the regions of interest. Trans, transformation; sub, substitution.

Figure 11. The total amount of time that an ACT–R buffer is in use for the

six different conditions for each of the regions of interest. Trans, transforma-
tion; sub, substitution.
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rameters a and s that we estimate to characterize the
exact size and shape of the BOLD function. It also does
not depend on the estimated duration of the imaginal, re-
trieval, and manual operations; rather, it depends only on
the number of these operations.

So far, we have produced evidence for the hypothe-
sized association among regions and buffers. These as-
sociations are based just on the correspondence between
the activity of the buffer and the area under the BOLD
function. We have yet to show that the behavior of
ACT–R’s buffers can account for the detailed time course
of the BOLD signal. Establishing the correspondence in
Table 4 is a necessary but not sufficient condition for the
ACT–R buffers to predict the BOLD signals.4 We will
now see whether we can fit BOLD functions to the func-
tions for each condition in each region, assuming the hy-
pothesized association of buffers to regions. Since there
were three ROIs, six conditions, and 14 scans, this means
we were fitting 3 3 6 3 14 = 252 observations. To fit
these data required estimating the basic parameters of
the BOLD function, which are M, s, and a. We estimated
separate parameters for each region because there is ev-
idence that the exact form of the BOLD function can
change from region to region (e.g., Huettel & McCarthy,
2000; Kastrup, Krüger, Glover, Neumann-Haefelin, &
Moseley, 1999).

The parameters used in fitting the BOLD functions
are reproduced in Table 5. These parameters were esti-
mated by trying to minimize the following quantity:

where Bijk is the mean BOLD response,B̂ijk is the predicted
response, and s

i
2 is the mean error in the BOLD response

for ROI i calculated by the interaction between the 84
values (6 conditions 3 14 scans) and the 8 participants.
Under the hypothesis that all deviationsare normally dis-
tributed noise, this quantity is distributed as a chi-square
with degrees of freedom equal to the number of observa-
tions (252) minus parameters (9)—that is, 243 degrees
of freedom. The value of this quantity is 340.83, which
is quite significant, indicating, not surprisingly, that
there are things in the data not predicted by the model.
On the other hand, it is not radically different from its
expected value of 243 (i.e., the degrees of freedom), in-
dicating that we are capturing most of the systematic
variance.5

Figures 12–14 reproduce the fits of the model to the
data. As can be seen, the actual quality of the f its are
generally good, with correlations from .955 to .998. The

fits of the imaginal buffer activity are particularly good,
probably reflecting the large size of the posterior pari-
etal particle and, hence, accurate estimate of the means.
The fits to the prefrontal particle are quite good and again
capture the relative magnitude, which is a parameter-free
prediction of number of retrievals. In this case, we have
a confirmation of Anderson et al.’s (1996) production
system model’s assumptions about number of retrievals.
The fits to the motor region are slightly less good, re-
flecting the relatively poor signal-to-noise ratio. Still, the
prediction is confirmed that the peak of the BOLD re-
sponse would shift with the time of the response.

Both the prefrontal particle and the motor particle
show some evidence that, at the end, the BOLD response
actually goes below zero and then comes back up. This is
the major source of the systematic deviations in the fits
of the functions. Glover (1999) has found similar behav-
ior in the motor region, and he is able to predict this as the
difference of two separately parameterized BOLD func-
tions. We did not want to add such complications to our
model for this article. At the end of the article, we will re-
turn to this and other complications that could be added
to the mathematical treatment of the BOLD response.

EXPERIMENT 2

Our explanation of the BOLD functions did not de-
pend on the mathematical content of the problems. As was
noted, other researchers have associated left parietal and
left prefrontal regionswith arithmetic processing.The sec-
ond experiment was performed to confirm that our chosen
areas would show similar responses in problems without
real mathematical content. This second experiment was
similar to the first in that it involved symbol manipulation,
but it did not involve the calculationof arithmetic facts and
used characters as arbitrary symbols (although the char-
acters were still digits, to facilitate finger mapping). This
experiment also served as an independent test of the func-
tional assignment of the three areas of interest.

The experiment was adapted from the paradigm of
Blessing and Anderson (1996), who were interested in
how college students would learn to perform transfor-
mations like those in algebra.6 Our experiment did not

( ˆ ) / ,
kji

ijk ijk iB B s
ÎÎÎ
ååå -
ScansConditionsROIs

2 2

Table 4
Measures of Proportionality Between Buffer Activity and Area

Under the BOLD Function in Experiment 1

Buffer Parietal Prefrontal Motor

Imaginal .994 .822 .852
Retrieval .872 .951 .622

Manual .954 .662 .917

Table 5
Parameters of the BOLD Function Estimated for

Experiments 1 and 2

Parameter Imaginal Retrieval Manual

Experiment 1

Scale (s) 1.647 0.691 0.635
Exponent (a) 3.054 8.180 7.431

Magnitude: M G(a + 1)* 3.486 0.933 3.826

Experiment 2

Scale (s) 2.158 0.543 1.687
Exponent (a) 2.559 10.000 2.732

Magnitude: M G(a + 1)* 2.379 0.657 4.798

*This is a more meaningful measure, since the height of the function is
determined by the exponent as well as by M.
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involve as much training as that in Blessing and Ander-
son, and so our interest was not in learning, but only in
the effect of number of transformations. Table 6 illus-
trates the conditions of our experiment. The participants
saw strings that were divided into a left and a right side
by a «. On both sides of this symbol was a sequence of
symbols that consisted of operators and operands. Oper-
ators were encased in circles. The participants’ task was
to isolate the special symbol P on the left and then type
all of the symbols that appeared on the right. In the zero-
transformation condition, the string was already in this
format, and the participants simply had to type the four
symbols on the right. In the one-transformation condi-
tion, there was an operator on the left before the P , which
had to be removed by undoing. There were four opera-
tors, and each had different rules for undoing: was un-
done by switching all operators on the right to and
vice versa; was undone by switching the order of the
two operands on the right; was undone by switching
all operators on the right to and vice versa; and
could be undone by simply removing it.

The participants had to memorize these four rules for
undoing and apply them. In the third condition (two
transformations) there were also an operator and an

operand after the P , which had to be removed. There were
additional rules for removing these, which involved in-
verting the operator and moving the inverted operator and
the operand over to the right. The and operators were
inverses of each other, as were the and operators.
Order of precedence required that these two symbols
first be moved over to the right side before the operator
before the P could be undone.

In all cases, four symbols had to be typed for the an-
swer. The participantswere required to complete all trans-
formations in their head before beginning to type the an-
swer. When they had done so and were ready to output
the answer, they pressed their thumb and then keyed the
four numbers in the answer with their other fingers. The
answers were always some sequence of the digits 2–5.

Imaginal Predicts Posterior Parietal

r = .995
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Figure 12. Ability of the imagery buffer to predict the posterior parietal particle:

(A) effects of number of transformations and (B) effects of substitution.

Table 6

Examples of the Materials in the Symbolic Reasoning
Experiment Based on Blessing and Anderson (1996)

Steps Equation Answer

0 P « 4 5 P « 4 5

1 P « 4 5 P « 4 5
2 P 4 « 5 P « 5 4
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They were given 1.5 sec to key each digit, to discourage
efforts to compute the answers on the fly. In fact, the time
to key the four digits did not vary with condition, and
only the time for the thumbpress varied. The structure of
the fMRI trial is illustrated in Figure 15.

Method
Only one factor, computational complexity, was manipulated in

the data analysis of this experiment. The zero-step transformation
problems required no symbol arrangement, but simply copying the

answer. The one-step transformation problems required only elimi-

nation of the operator symbol. The two-step transformation problems
required first moving terms over to the left side and then elimination.

Trial procedure. A trial began with a prompt, which was a col-
umn of two rectangles. In the first rectangle, there was an indica-

tion of the complexity of the upcoming problem. After 1.5 sec, the

first rectangle was filled with the problem. The participants were
instructed to solve the problem mentally and to press the thumb key

when they were ready to key in the final solution, at which time the
problem in the first rectangle disappeared. The thumbpress pro-

vided a measure of the planning time. If the plan time exceeded
18 sec, the trial was scored as incorrect. After the thumbpress, they

had 1.5 sec to press a key for each of four symbols in the answer.

The correct answer appeared on the second rectangle as the partic-
ipants typed in, even when they typed in a wrong answer or missed

the 1.5-sec response window. The full answer remained on the

screen for another 1.5 sec, followed by a 6-sec rest period with a vi-
sual stimulus as a column of two empty rectangles.

Prescan practice . On the day before the scan day, there was a
prescan session that lasted about 45 min. The participants were in-

troduced to the set of rules, practiced finger-to-key mappings, and
practiced actual problem solving. They first practiced 12 problems

from the most complex two-step transformation problems with a

detailed step-by-step solution, then 24 problems of all three prob-
lem complexities with a detailed step-by-step solution, and then 12

more problems from all three complexities with no step-by-step so-
lution.

Event-related fMRI scan. The parameters of the event-related

fMRI scan were the same as those in the algebra equation solving
experiment. There were 15 blocks in the functional scan, with 5 min

and 30 sec for each block. We analyzed the first 12 scans, starting
from the 1 scan before the presentation of the prompt.

Participants. Group analysis was done from 8 participants’ data
(right-handed native English speakers, 3 males/5 females, from 18

to 27 years of age, with an average of 20.6).

Results
Figure 16 shows the latency results from the experi-

ment. There were large and significant effects of number
of transformations [F(2,14) = 153.12, MSe = 256,156,
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Figure 13. Ability of retrieval buffer to predict the prefrontal particle: (A) effects of

number of transformations and (B) effects of substitution.
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p < .0001]. As can be seen, these latency effects are con-
sistent with the ACT–R model that we will present. A
trial was scored as correct if the thumbpress occurred
within 18 sec and the remaining four keys were all cor-
rect and occurred within their allotted 1.5-sec intervals.
Overall accuracy was 75.1% and showed a strong nega-
tive correlation with latency (r = 2.987). Again, our
analysis of latency and fMRI was restricted to trials in
which the participant was correct.

ROIs were selected according to the interaction term
in a 3 conditions 3 12 scans ANOVA. The 12 scans con-
sisted of the two 1.5 scans before presentation of the
equation and the 10 scans afterward (see Figure 15). To
have a conservative test that dealt with nonindependence
of scans, we used the Greenhouse–Geisser correction of
assigning only two degrees of freedom to the numerator
in the F statistic for the interaction term. The interaction
was examined in each voxel, and the selected regions
met the criteria of a minimum of six contiguous voxels,
with a significant interaction at p £ .01. Figure 17 and
Table 7 give the eight regions that achieved this level of

significance.7 Many of the regions overlap with those
found in the first experiment. ROI 2 in this experiment
is a large bilateral posterior parietal region, which in-
cludes ROIs 1 and 3 from the previous experiment.ROI 5
in this experiment is a left prefrontal particle somewhat
intermediate between the similarly behaving ROIs 4 and
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Figure 14. Ability of manual buffer to predict the motor particle: (A) effects of num-

ber of transformations and (B) effects of substitution.

Figure 15. The 18-sec portion of an fMRI trial that was ana-
lyzed in Experiment 2. In the answer, 1 represents the thumb-

press.
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5 from the previous experiment. ROIs 6 and 7 in this ex-
periment correspond to the regions with the same num-
bering as that from the previous experiment. There is no
region corresponding to ROI 2 (anterior cingulate) from
the previous experiment. On the other hand, this experi-
ment has ROI 1, which represents a motor area, and ROI 4,
which is a polar frontal particle. There are also two small
particles, ROIs 3 and 8.

Figure 18 shows the average responses in these eight
ROIs as percentages of activation over the baseline de-
fined as the average of Scans 1–3 (where the function
seemed relatively flat), except for ROI 1. In the case of
the motor ROI 1, the BOLD response seemed to be still
coming down on Scan 1, and so we set the baseline to be
defined by Scans 2–4, which seemed relatively flat. The
parietal (ROIs 2 and 3), prefrontal (ROI 5), motor
(ROI 1), and supramarginal (ROIs 6 and 7) regions show
behavior similar to that observed in the first experiment.
The polar frontal region (ROI 4) shows a large negative
response, as has been observed in other studies (Gusnard
& Raichle, 2001).

To provide consistency with our prior modeling effort,
we will use the same ROIs as those in Experiment 1—the
posterior parietal particle and the prefrontal particle
(ROIs 1 and 5 from the first experiment), along with the
motor particle (ROI 1 in this experiment). They are il-
lustrated in Figure 6. Figure 19 displays the behavior of
these three particles as a function of scan and condition.
The figure also contains the predictions of the model that
we will describe shortly. The three regions are quite dis-
tinct in their behavior. Both the parietal particle and the
prefrontal particle show a response that varies in magni-
tude with number of transformations. However, the pari-
etal particle shows a substantial response even in the
presence of no transformations, whereas the prefrontal
particle shows no response in this case. The motor parti-
cle does not show a differential magnitude of response
but shows a differential delay in the response as a func-
tion of number of transformations.

Figure 20 illustrates the activity of the ACT–R mod-
ules during a solution of one of these equations. The en-
coding begins with the identification of « sign and then

Figure 16. Mean latency in Experiment 2 as a function of the number of

transformations.

Table 7
Regions of Interest, Locations of Centroid, and Significances for Experiment 2

Stereotaxic

Coordinates

Brodmann Voxel (mm) F

Region of Interest Area Count x y z Maximum Average

1. Left motor 1–4 290 240 224 49 16.10 9.56

2. Bilateral posterior parietal 39, 40 710 22 266 36 26.75 8.59
3. Left posterior parietal 40 6 233 249 43 6.95 6.70

4. Polar frontal 10 191 22 255 19 10.50 7.84
5. Left prefrontal 46/9 31 245 221 26 8.87 7.43

6. Right supramarginal gyrus 40 25 263 226 26 9.44 7.46
7. Left supramarginal gyrus 40 28 254 224 19 10.55 7.69

8. Right lingual gyrus 19 11 213 254 2 7.42 6.84
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the encoding of the symbols to the right of the sign. Then
begins the process of encoding the elements to the left of
the sign and their elimination in order to isolate the P .
This is similar to the process, in the previous algebra ex-
periment, of encoding the value to the right of the equal
sign, followed by undoing the operations to the left of
the sign in order to isolate the X. In the example in Fig-
ure 20, 6 operations are required to encode the string,
and an additional 2 operations to execute the transfor-
mation. If there were no transformations there would be
5 encoding operations, which is 3 less (one less symbol
on the screen and two fewer symbols to change). If there
were two transformations, there would be 10 operations,
because two additional symbols would have to be
changed. With respect to retrievals, two pieces of infor-
mation have to be retrieved to remove an operator from
the P , and three pieces of information to move the two
symbols after the P to the right side of the equation. In
the case of an operator before the P , one retrieval is re-
quired to retrieve the operation to perform (“flip” in Fig-
ure 20) and the other to retrieve the identity of the terms

to apply this operation to (argument position in Fig-
ure 20). In the case of an operator and an operand after
the P , one retrieval is required to retrieve the rule for the
operand (which is copy), one to retrieve the rule for the op-
erator (which is exchange), and one to retrieve the value
it is supposed to be changed to. Thus, there are 5, 8, or
10 visual operations and 0, 2, or 5 retrieval operations. In
all cases, there are the final 5 motor operations, but the
time to initiate them will vary with how long the overall
process takes. As in the previous experiment, the time
for the encoding operationswas 0.2 sec. To fit the latency
date in Figure 19, we estimated a mean retrieval time of
0.65 sec (as compared with 0.6 sec in Experiment 1).
The first motor action takes 0.4 sec, but because of fea-
tures saved in programming subsequent fingerpresses,
the remaining actions take 0.3 sec.

Table 8 reproduces the measures of proportionality
between the area under the BOLD function (for parietal
and prefrontal, height of Scans 4–12 above the baseline
set by Scans 1–3; for motor, height of Scans 5–12 above
the baseline set by Scans 2–4) and the time the buffers

Figure 17. Activation map for the top 16 slices showing areas in Experiment 2 with a significant

interaction between scan and condition. Only regions with more than six contiguous voxels and p <
.01 are shown. See Table 6 for identification of the regions. The AC–PC line is 5 slices below Slice 16

in this figure.



MODEL OF THE BOLD RESPONSE 257

were active. It again confirms the association of the pari-
etal region with the imaginal buffer, the prefrontal region
with the retrieval buffer, and the motor region with the
manual buffer. It is worth emphasizing that getting these
strong proportionality associations is a precondition for
the model-fitting enterprise. For instance, no amount of
parameter estimation will ever make the retrieval fit any
region other than the prefrontal region.

On the other hand, just getting these proportionality re-
sults does not guarantee that we can fit the actual BOLD
functions in the various regions with the behavior of the
correspondingbuffers. Thus, successfullyfitting the BOLD
functions is a more stringent test of the correspondence.
To determine these fits required estimation of the three
parameters of the BOLD function for each region. These
are reproduced in Table 5, to facilitate comparison with
Experiment 1. The parameters for the imaginal and re-
trieval buffers are quite similar across the two experi-
ments. The manual buffer parameters are quite different,
probably reflecting the poor signal-to-noise ratio in Ex-
periment 1 and, hence, unreliable parameter estimates.

The degrees of freedom are the 108 observations (3 re-
gions 3 3 conditions3 12 scans) minus the 9 parameters,
or 99. The chi-square deviation was 135.50, which is sig-
nificant and once again indicates that our fit is only ap-
proximate.Nonetheless,as can be seen from Figure 19, the
model does a good job in accountingfor the behaviorof the
three regions. In this experimentwith the five finger move-
ments, the behavior in the motor region provided a strong
signal that was well fit by the model. As was predicted, the
peak of the BOLD function shifts with condition.The fit
to the prefrontal particle may be again suffering from the
failure of the current BOLD function to predict an under-
shoot at the end of the BOLD response. The prediction for
the prefrontal particle in the zero-transformation condi-

tion is particularly dramatic—a flat function, because
there are no retrievals. Although the actual data for the
prefrontal region may show the slightest of rises and un-
dershoots in this condition, they provide a close approx-
imation to this strong parameter-free prediction.

GENERAL DISCUSSION

First, we would like to begin with some discussion of
the approximations in our mathematical treatment. As
has already been noted, we ignore the potential under-
shoot as the function goes back to baseline. In addition,
we have ignored the variability in the timing of responses
between and within subjects, and the model assumes a
single mean time for the processing in each condition.
The consequenceof this approximationperhaps shows up
most clearly in Figure 19C, where the longer and more
variable two-transformation condition resulted in a lower
and wider BOLD response. We think that these approxi-
mations are more than justified by the greater simplicity
and interpretability of the resulting model. We do not
think that they at all compromise the basic conclusions.

A more fundamental issue has to do with the assumption
that the BOLD response increases linearly with the length
of an event and is additive across multiple events. Al-
though there is evidence for this as an approximate char-

Figure 18. Average activation functions for the eight regions of interest from
Experiment 2.

Table 8
Measures of Proportionality Between Buffer Activity and Area

Under the BOLD Function in Experiment 2

Buffer Parietal Prefrontal Motor

Imaginal .999 .678 .803
Retrieval .782 .984 .361

Manual .942 .445 .958
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acterization in some situations (e.g., Boyton et al., 1996;
Dale & Buckner, 1997), it does not seem to be universally
the case (e.g., Glover, 1999), with there being evidence
for sublinear growth with duration and subadditivity

across events.Potentially, this could seriously compromise
the logic of this and related research in a way that we
could not recover from without a basis for characterizing
the nonlinearities and nonadditivities. It remains an open
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Figure 19. BOLD response in Experiment 2 as a function of scan for 0, 1, and 2
transformations: (A) posterior parietal particle, (B) prefrontal particle, and (C) motor

particles.
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issue just how serious a matter this is, but in our mind, it
is the major question about the modeling methodology in
this article.

As an empirical summary, this research is largely con-
sistent with existing associations, in the literature, of the
parietal cortex with visual and imaginal processing, the
prefrontal cortex with retrieval, and the region of the motor
and somatosensory cortex that represents the right hand
with the manual buffer. Each of these associations de-
serves a little comment. First, although there was bilat-
eral activation of the parietal cortex, it was stronger in
the left, consistent with other research on arithmetic and
imagery processing in language.This is perhaps consistent
with the semantic and somewhat abstract nature of the
task. Perhaps the reason that the activation was more bi-
lateral in the second experiment is that we had removed
most of the semantic associationsand had made it a more
purely visual task.

Second, our prefrontal retrieval focus was found in left
BA 45/46. According to the HERA model, the left pre-
frontal cortex has been associated with semantic re-
trieval. However, much of what the participants in our ex-
periment were retrieving was not classically semantic
information. The algebraic knowledge and arithmetic
knowledge in the f irst experiment would seem classi-
cally semantic, but we also found an effect of retrieval of
just-memorized constant values in Experiment 1 and of
algebraic transformations just learned in Experiment 2. Al-
though our retrievals were not semantic in the sense of
havingbeen long-learned, they were semantic in the sense

of being decontextualized knowledge. So perhaps our re-
sults lend some definition to the association of the left
prefrontal cortex with semantic retrieval. Also, our re-
gion was anterior to BA 44, which seems to have mostly
been found in previous studies of semantic retrieval. We
did find a similar pattern of activation in superior BA 44
(as indicated by the correlation in Table 3 between ROIs 4
and 5). However, we focused on BA 45/46, in part because
it was more strongly related to number of transformations,
showing no rise at all when there were no retrievals re-
quired. Interestingly, episodic retrieval seems to activate
right BA 46 more often than right BA 44 (Cabeza & Ny-
berg, 2000). However, we should note that there are other
interpretations of the left–right asymmetry besides the
HERA model. For instance, it has been argued that the
right hemisphere is more related to the retrieval mode,
whereas the left is associated with past-retrieval prod-
ucts (e.g., Lepage, Ghaffar, Nyberg, & Tulving, 2000).
This would be consistent with ACT–R’s retrieval buffer
that holds the products of retrieval.

Third, we should comment on the association of our
manual buffer with activation in the somatosensory area
corresponding to the right hand, as well as with the motor
area. In fact, the motor ROI is similar to the region iden-
tified by Roland, Larsen, Lassen, and Skinhoj (1980)
when a finger is pressed. In the descending motor path-
way (Pyramidal tract) for voluntary movement, f ibers
come from both the precentral (BAs 4, 6) and the post-
central (BAs 3a, 5; Kolb & Wilshaw, 1990) areas.

This article is built around a tentative mapping from
ACT–R buffers to the BOLD response. Undoubtedly,this
mapping will have to be revised with further evidence.
However, we think the most important contribution of
this article is the conception it offers of how the detailed
processing of an information-processing theory such as
ACT–R can make precise predictionsabout the BOLD re-
sponse. We would hope that this conceptionwould survive
any revisions in ACT–R and its mapping to brain func-
tion. Indeed, we would hope that this same conceptioncan
be incorporated by other information-processing theories.

The basic idea is that the BOLD response reflects the
duration for which various cognitive modules are active.
The typical additive factors information-processing
methodology has studied how manipulations of various
cognitive components affect a single aggregate behav-
ioral measure, such as total time. If we can assign these
different components to different regions, we essentially
have a separate dependent measure to track each com-
ponent. Therefore, this methodology promises to offer
strong guidance in the development of an information-
processing theory.

Finally, we want to comment on the surprising match
of fMRI methodology to the study of complex tasks. A
problem with fMRI is its poor temporal resolution.
However, as is particularly apparent in the behavior of
our manual buffer (Figure 19C), the typical effect size in
a complex mental task is such that one can still make
temporal discriminations in fMRI data. One might have
thought that the outcome of such a complex task would

Figure 20. The approximate time line for the buffer activity in
the ACT–R model for Experiment 2.
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be purely uninterpretable. However, with the guidance of
a strong information-processing model and well-trained
participants, one can not only interpret, but also predict
the BOLD response in various regions of the brain.

The principal function of this article has been to show
how to relate an information-processing model such as
ACT–R to fMRI data. That connectionis a two-way street.
Going from modeling to fMRI data allows one to interpret
the significanceof the data in terms of precise information-
processing operations, rather than in terms of relatively
diffuse concepts. For instance, it makes clear how one can
conceiveof differences in the BOLD functionas reflecting
differences in duration of cognitive components, rather
than differences in intensity of cognitive components,as is
the more common conception. This is important because
standard information-processing theories have more
often been developed in terms of the effects of manipula-
tions on the durations of stages.

Going from the data to modeling, it means that we can
use such experiments to test predictions of the theory. For
instance, the theory would predict that, with practice, the
retrieval steps in charts like Figures 8 and 20 should
shorten, whereas the imaginal and retrieval steps should
stay relativelyconstant. Therefore, the theory predicts that
activationshould decrease in the prefrontal region but that
such a decrease would not occur in our parietal or motor
regions. Thus, we can perform tests on components of our
theory in a way that was not possible when we simply had
total latency to work with. It is certainly conceivable that
the greater level of identifiability will force revisions in
the theory that would not happen otherwise.
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NOTES

1. The earlier Anderson, Reder, & Lebiere (1996) studies were also
concerned with an interaction between the size of the load and the phys-

ical complexity of the equation. This is an issue that we will not be pur-
suing here, and indeed, we strive to keep the physical complexity of the

equation constant.
2. See http://kraepelin.wpic.pitt.edu/nis/index.html.

3. Basically, we are convolvingthe BOLD function with the function
i(x), giving the activity of that buffer.

4. Thus, it does establish that only the buffer associated with the re-
gion could predict the BOLD function in that region and that the other

buffers could not.
5. The chi-square is a measure of the amount the predictions deviate

from the noise, and this measure indicates that they deviate less than
50% greater than expected. By way of contrast, if we try to fit the man-

ual buffer to the prefrontal region, the retrieval buffer to the parietal re-
gion, and the imaginal buffer to the motor region, the chi-square is

1,079.66,which is more than four times greater than expected.
6. A model in an earlier version of ACT–R for a learning version of

this task is to be found in Blessing (1996).
7. ROI 8 is a small particle occurring in Slices 18–20, not shown in

Figure 17.
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