
800 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 8, AUGUST 1991 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
An Information Retrieval Approach For

Automatically Constructing Software Libraries
Yoelle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. Maarek, Daniel M. Berry, and Gail E. Kaiser

Abstract- Although software reuse presents clear advantages
for programmer productivity and code reliability, it is not prac-
ticed enough. One of the reasons for the only moderate success
of reuse is the lack of software libraries that facilitate the
actual locating and understanding of reusable components. This
paper describes a technology for automatically assembling large
software libraries which promote software reuse by helping the
user locate the components closest to her/his needs. Software
libraries are automatically assembled from a set of unorganized
components by using information retrieval techniques. The con-
struction of the library is done in two steps. First, attributes are
automatically extracted from natural language documentation by
using a new indexing scheme based on the notions of lexical affini-
ties and quantity of information. Then a hierarchy for browsing is
automatically generated using a clustering technique which draws
only on the information provided by the attributes. Thanks to
the free-text indexing scheme, tools following this approach can
accept free-style natural language queries. This technology has
been implemented in the GURU system, which has been applied to
construct an organized library of AIX utilities. An experiment was
conducted in order to evaluate the retrieval effectiveness of GURU
as compared to INFOEXPLORER a hypertext library system for
AIX 3 on the IBM RISC System/6000 series. We followed the
usual evaluation procedure used in information retrieval, based
upon recall and precision measures, and determined that our
system performs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA15% better on a random test set, while being
much less expensive to build than INFOEXPLORER. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Index Terms-Automatic indexing, clustering, information re-
trieval, lexical affinities, software libraries, software reuse.

I. INTRODUCTION

oftware reuse is widely believed to be a promising means S for improving software productivity and reliability zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[141,
and therefore is an issue of growing interest in software
engineering. Unfortunately, not enough adequate libraries of
reusable software components are available. By adequate, we
mean that the library:

Provides a sufficient number of components, over a
spectrum of domains, that can be reused as is (black-box

Manuscript received August 28, 1989; revised March 25, 1991. Rec-
ommended by D. Barstow. Y. S. Maarek was partially supported by a
Gutwirth Fellowship. G. E. Kaiser was supported by the National Science
Foundation through Grants CDA-8920080, CCR-8858029, and CCR-8802741,
and through Grants from AT&T, BNR, Citicorp, DEC, IBM, Siemens, Sun,
and Xerox, and by the Center for Advanced Technology and the Center for
Telecommunications Research.

Y. S. Maarek is with the IBM Thomas J. Watson Research Center, P.O.
Box 704, Yorktown Heights, NY 10598.

D. M. Berry is with the Department of Computer Science, Technion, Israel
Institute of Technology Haifa, 32000, Israel.

G. E. Kaiser is with the Department of Computer Science, Columbia
University, New York, NY 10027.

IEEE Log Number 9101141.

reuse) or easily adapted (white-box reuse)
Is organized such that the existing code closest to the
users’ needs is easy to locate. In particular, the library
should provide mechanisms to help the reuser look for
“functionally close” components which meet some given
requirements.

This paper is concerned with the second adequacy issue, and
more generally with library systems which provide means for
representing, storing, and retrieving reusable components.

The first stage in building a library consists of indexing
the objects to be stored in it, that is, producing a set of
characterizing attributes, or profile, for each of these objects.
The profile for each object represents the reusable object.
Therefore the quality of indexing is crucial to the quality of the
library. Functionality is an important aspect of software com-
ponents. Thus it is necessary to include conceptual information
about functionality in the indices. Unfortunately, conceptual
information is difficult to obtain. Few programmers provide
conceptual indices for their code. Moreover, even if provided,
they can hardly be expressed under a common formalism,
since pieces of code typically originate from multiple sources.
One solution is to manually index software components a
posteriori according to a given classifying scheme, but this
task is expensive.

As an alternative, we propose to automatically identify
indices by analyzing the natural-language documentation, in
the form of manual pages or comments, usually associated
with the code. Natural-language documentation is clearly a rich
source of conceptual information. However, this information
is contained only implicitly, in an unstructured way, and is
not usable as such. In order to extract usable information
from free-style documentation we propose to use information
retrieval techniques. Once the indices have been produced,
components can be automatically classified, stored, and re-
trieved according to their profiles.

The classifying stage in the construction of a library consists
of gathering objects into classes such that the members of the
same class share some set of properties. The basic motivation
for classifying is to facilitate browsing among similar com-
ponents in order to identify the best candidates for reuse, or
at least a set of potentially adaptable components that can
be easily located. Browsing is more important for software
libraries than for other kind of libraries, since there rarely
exists a component perfectly matching a user’s query. More-
over, local browsing allows the user to discover unanticipated
opportunities for reuse.

We have designed and implemented a tool, GURU, that

0098-5589/91/080~0800$01.00 0 1991 IEEE

MAAREK et al.: AUTOMATICALLY CONSTRUCTING SOFTWARE LIBRARIES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA80 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1

embodies the above approach. GURU automatically assembles
conceptually structured software libraries from a set of unin-
dexed and unorganized software components. In the first stage,
GURU extracts the indices from the natural language documen-
tation associated with the software components to be stored by
using a new indexing scheme. This indexing scheme is based
on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlexical afinities and their statistical distribution. It identifies
a set of attributes for each document to represent a functional
description of the associated software unit. In the second
stage, GURU assembles the indexed objects into a browsing
hierarchy by using a hierarchical clustering technique which
draws information exclusively from the indices identified
in the previous stage. Thus GURU supports both classical
linear retrieval, in which candidates are ranked according to
a numerical measure that evaluates how well they answer
the query, and cluster-based retrieval in which the browse
hierarchy directs the search for the best candidate.

Section I1 briefly compares the artificial intelligence and
information retrieval approaches to construction of software
libraries and explains why we follow an IR approach. Section
I11 describes the indexing method. Section IV presents the
classification approach and the clustering technique used for
assembling the library. Section V deals with the retrieval stage.
Section VI gives results using our GURU implementation and a
formal evaluation based on usual methodology for evaluating
information retrieval systems. Finally, Section VI1 summarizes
the main contributions of this work. Related work is discussed
as relevant throughout the paper.

11. AI VERSUS IR APPROACH

Previous efforts for building reuse systems can be roughly
classified into two groups according to the approach' adopted,
the free-text indexing approach as defined in information
retrieval (IR), and the knowledge-based approach as defined
in artifical intelligence (AI).

The IR free-text approach2 consists of drawing information
only from the structure of some documents which provide
information about the software components. No semantic
knowledge is used and no interpretation of the document is
given. The reuse tool attempts to characterize the document
rather than understand it. There are currently very few software
library systems that follow such an approach or use existing
IR techniques. Among them, the RSL [6] system, for instance,
automatically scans source code files and extracts comments
explicitly labeled for reuse with attributes such as keyword,
author, date created, etc. The keyword attribute provides a
list of free-text single-term indices very much like those used
in IR tools. The REUSE [3] system provides a menu-driven
front end to an information-retrieval system. Thus all kinds of
software objects, including user menus and system thesauri,
are stored as textual documents. These two systems use some

'Another approach is the hypertext approach (see [15] for a survey). We
do not address this approach here because we are concerned with the type of
information used to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbuild a library rather than with searching. The hypertext
approach is orthogonal to the approaches described here; and hypertext tools
can easily he integrated with most IR- or AI-based reuse tools.

2For brevity we will refer to this approach as the 1R approach even though
some IR techniques do not use free-text indexing.

kind of IR-related technique. However, the only system, to
our knowledge, which applies a pure IR free-text approach
is the system proposed by Frakes and Nejmeh [16]. They
use the CATALOG information-retrieval system for storing and
retrieving C software components. Each component is charac-
terized by a set of single-term indices that are automatically
extracted from the natural-language headers of C programs.
Therefore the construction of the C components repository
is done automatically and does not require any pre-encoded
knowledge, as in RSL, for instance.

In contrast, in the knowledge-based approach the reuse tool
aims at understanding the queries and functionality of compo-
nents before providing an answer. Knowledge-based systems
are often smarter than IR systems. Some of them are context
sensitive and can generate answers adapted to the user's
expertise. As a trade-off, they require some domain analysis
and a great deal of pre-encoded semantic information, which is
usually provided manually. They are based upon a knowledge
base which stores semantic information about the domain
and about the language itself in case of a natural-language
interface. The main problem of applying this approach in the
context of software libraries is that many domains cannot be
easily circumscribed and the domain analysis is very difficult
[lo]. This makes the construction of such systems very tedious
and expensive. Examples of AI or knowledge-based reuse tools
are numerous; e.g., [32], [41], [2] , [l l] , [39].

The AI approach can be useful in some applications. How-
ever, we prefer the IR approach for reasons of

Cost: the library system is built entirely automatically
Transportability: the library system can be rebuilt for any
domain, since it does require manually provided domain
knowledge
Scalability: the repository can be easily updated when
new components are inserted, either by recompiling the
indices or by applying incremental techniques; the index-
ing task is entirely mechanical.

We therefore apply a pure IR approach, in the same direction
as that of Frakes and Nejmeh, by automatically building free-
text indices that characterize software components. For more
effective retrieval we also use a free-text method which is
richer than the single-term indexing used in the IR-based tools
described above. The following section explains our source of
information and how the indexing is performed.

111. THE INDEXING STAGE

The major advantage of automatic indexing over manual
indexing, besides the obvious cost considerations, is that it
allows a unified scheme which ensures that indices will be
compatible with each other. The idea is to extract attributes
from an existing source of information; i.e., the code and
natural-language documentation. Some work has been done
toward extraction of primitive functional information from
the code (281, [36]; however, the richer source of functional
information is the natural-language documentation, assuming
that any is available.

An examination of numerous samples of code allowed us
to reach the conclusion that some useful information can be

802 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVOL. 17, NO. 8, AUGUST 1991

extracted from programs written in a high-level language using
good programming style, whereas little conceptual information
can be found in typical real-world code chosen at random
[26]. Unfortunately, even when dealing with well-written code,
there is a very low probability that the programming styles of
the various pieces of code will be consistent. Even a single
programmer may use totally different identifiers for expressing
the same concept from one day to another. Since software
components come from multiple sources in the context of
large software libraries, extracting attributes from code would
necessitate as many indexing schemes as there are code
sources. Another limitation comes from the fact that there
are many more possibilities for identifiers than for natural-
language words, since they do not follow any morphological
or syntactic rules.

In other words, when there is no way to guarantee good, let
alone consistent and compatible, programming styles, extract-
ing attributes from raw code does not give significant results.
Therefore we prefer concentrating on the other possible source
of information; i.e., the natural-language documentation either
inserted into the code- the comments---or associated with
the code, e.g., manual pages.

Comments are intended to help programmers understand the
code and thus may provide functional information. They deal
with specific parts of the code into which they are inserted and
they may give information on various parts at various levels of
abstraction. Extracting functional information from comments
entails two activities:

Defining an indexing scheme which allows extracting
attributes from natural language phrases or sentences
Relating comments to the portion of code they concern.

The second activity is very complex in free-style code.
Indeed, in free-style programming, programmers can insert
comments wherever and in any format and any length they
wish. Although comments usually describe the containing
routine or the one just below, in general it is impossible to
automatically determine what part of the code is covered. A
solution would be to consider that all the comments inserted
in a specific piece of code constitute a global natural-language
description of the considered code. Unfortunately, this is
not the case. Comments rank from low-level implementation
details to high-level description. For instance, in the r m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. c
source file in Berkeley UNIX, one can find comments as various
as: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I* current pointer to end of path *I, or
/* rm - for ReMoving files, directories & trees.
*I

The first conveys no useful functional information, while the
second hits the mark exactly. In general, there are many more
low-level-and useless for our purpose-comments than high-
level ones, and there is no way to automatically distinguish
between them. Therefore, so long as no style is enforced, it is
very difficult to extract useful information from comments.

Let us note, however, that any piece of natural language,
from comments inserted in the code to design specifications,
that is specifically related to software code and whose level
of abstraction is known can bring useful information. Thus

we are currently working on extracting functional information
from comments in the framework of RPDE [18], a structured
software development environment, in which comments are
linked to the portion of code they describe. In the following,
though, we try to remain as general as possible and we do
not assume that any commenting style is enforced. Therefore,
although our indexing scheme is applicable to any piece of
natural-language that brings some functional information, we
will exemplify it through the analysis of manual pages clearly
related to reusable components, such as UNIx-like manual
pages.

In the rest of this paper the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAIX documentation is taken as
our corpus, since it fulfills the requirement of being structured
into manual pages. Moreover, the AX documentation can be
seen as a regular real-world documentation database, since it
is of average quality as far as commenting style is concerned.
Many even consider the AX documentation of poor quality
when compared to Berkeley UNIX documentation due to typos,
inconsistent style, poor vocabulary, etc.

A. A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARicher Indexing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUnit: The Lexical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAffinity

There has been much work in IR dealing with natural-
language text: a large variety of techniques have been devised
for indexing, classifying, and retrieving documents [33], [34].
One of the main concerns in IR is the automatic indexing of
documents, which consists of producing for each document a
set of indices that form a profile of the document. A profile is
a short-form description of a document, easier to manipulate
than the entire document, that plays the role of a surrogate at
the retrieval stage.

Several issues need to be addressed when indexing a doc-
ument with respect to the nature and form of the produced
indices. More precisely, the indexing vocabulary can be ei-
ther controlled or uncontrolled. In the controlled vocabulary
approach only a restricted set of indices are authorized (for
example, in MEDLARS [34]), whereas in the uncontrolled
vocabulary or free text approach, there is no constraint on the
nature of the indices. It has been shown that both approaches
are comparable in terms of performance [14], [34]; however,
we prefer the uncontrolled vocabulary approach in the context
of software reuse for the same reasons of cost, portability, and
scalability. Indeed, defining an adequate controlled vocabulary
is a manual domain-dependent task and therefore suffers from
the same drawbacks as the encoding of a knowledge-base.

Another important issue in automatic indexing is the nature
of the indices. The most usual form is a single-term index,
each of which is a single word without contextual information.
It has also been proposed to use term phrases as indexing
units rather than single terms so as to refine the meaning of
constituent words. However, the use of word co-occurrences
has not brought good results. As expressed by Salton [33, p.
2961:

“ . . . a phrase-formation process controlled only
by word co-occurrences and the document fre-
quencies of certain words is not likely to gener-
ate a large number of high-quality phrases.”

A possible solution to this problem is to use syntactic

MAAREK zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.: AUTOMATICALLY CONSTRUCTING zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASOFTWARE LIBRARIES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA803

information such as part-of-speech derived from specially
formatted dictionaries [23] in order to provide further control
over phrase formation or more refined analysis including
semantics [38]. But [33, p. 2981:

“The available options in phrase generation ap-
pear limited, and the introduction of costly and
refined methodologies may bring only marginal
improvements.”

We are more optimistic and believe that indexing units richer
than single terms can be used, and that they can bring signif-
icant improvement at low cost. The atomic unit we propose
to use in order to demonstrate this is derived from the notion
of lexical affinity. In linguistics, a syntagmatic lexical affinity
(LA), also termed a lexical relation, between two units of
language stands for a correlation of their common appearance
in the utterances of the language [8]. The observation of LA’s
in large textual corpora has been shown to convey information
on both syntactic and semantic levels and provides us with a
powerful way of taking context into account [37].

We propose to use the notion of LA for indexing purposes
and restrict the above definition by observing LA’s within a
finite document rather than within the whole language so as
to retrieve conceptual affinities that characterize the document
rather than purely lexical ones. Moreover, we only consider
LA’s involving open-class words as meaning-bearing, whereas
LA’s involving closed-class words3 are not.

Ideally, LA’s are extracted from a text by parsing it, since
two words share a lexical affinity if they are involved in a
modifier-modified relation. Unfortunately, automatic syntactic
parsing of free-style text is still not very efficient [35]. Instead,
we make use of simple co-occurrence. It has been shown by
Martin et al. that 98% of lexical relations relate words which
are separated by at most five words within a single sentence
[30]. Therefore most of the LA’s involving a word w can be
extracted by examining the neighborhood of each occurrence
of w within a span of five words (-5 words and +5 words
around w).

The extraction technique consists of sliding a window over
the text and storing pairs of words involving the head of the
window (if it is an open-class word) and any of the other
open-class elements of the window. The window is slid word
by word from the first word of the sentence to the last, the
size of the window decreasing at the end of the sentence so as
not to cross sentence boundaries4, since lexical affinities cannot
relate words belonging to different sentences. The window size
being smaller than a constant, the extraction of LA’s is linear
in the number of words in the document. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn algorithm for
the sliding window technique is presented in Fig. 1. Maarek
and Smadja have used a similar technique in [29], which was
also based on Martin’s results [30], but more adapted to the
analysis of large corpora.

In summary, the first stage in indexing a manual page
consists of extracting all the potential LA’s by using the
sliding window technique. Once extracted, the potential LA’s

In general, open-class words include nouns, verbs, adjectives, and ad-
verbs, while closed-class words are pronouns, prepositions, conjunctions, and
interjections.

4The isolation of sentences is the only parsing performed.

For zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAeach sentence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS the document zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd

For each word U in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.Y from the beginning to the end of .i

t i - l,~,,,,l,afw)

(where lemma(ii) represents the inflectional root of I W)

EIMIFo~

For each lemma 2 , ’ in .C lrom the beginning to the end 01 .C

If w IS an open-class word theti

, 1 8 Let U , , ,

(where I ! = 5 except when the end of the sentence is reached earlie

For 2 = 1 t,o ri

be the n words immediately following IO in S

If IS an open-class word Llioii

G<,t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj . frequency count of (I , , ? c ,)

(f = 0 when the LA has not been encountered before)

Sthrp (w , w ,) with a frequency count of f + I

EiiilIf

Eii<IFor

EiidIf

Ei~dFor

SndFor

Fig. 1. Sliding window technique.

are stored under their canonical form, in which each word is
represented by its inflectional root, or lemma, i.e., the singular
form for nouns and the infinitive form for verbs. The potential
LA’s extracted from the manual page of mv in AX and ranked
by frequency of occurrence are presented in Table I. For the
sake of the comparison, a list of the single words extracted
from the same manual page is shown in the first column, also
ranked by frequency of appearance.

Among the extracted lexical relations, some correspond
to abstractions of the considered document and some do
not. In a first stage, we isolate actual affinities by using
frequency criteria. It has been demonstrated that the frequency
of occurrence of a term within a document is related to its
importance in the text [25]. This is also true for the common
appearance of pairs of words and even more for lexical
affinities.

B. From LA’s to Indices

When analyzing a document, many potential lexical affini-
ties are thus identified. Some of these lexical affinities are
conceptually important and some are not. As seen in Table
I, frequency of appearance is a good indicator of relevance.
However, some noise exists, mainly due to words appearing
too often in a given context. In order to reduce the influence
of such words it is necessary in the second stage to select from
among the lexical affinities identified only the most represen-
tative ones; i.e., those containing the most information.

We have defined a measure evaluating the resolving power
of an LA. It is based upon the quantity of information of each
of the words involved in the LA as well as upon the frequency
of appearance of this LA within the considered document. The
quantity of information of a word within a corpus is defined as:

INFO(W) = - logz(P{w})

where P{w} is the observed probability of occurrence w in
the corpus [4], [34]. Therefore the more frequent a word is in
a domain, the less information it carries. From this definition
we infer the definition of the quantity of information of an

804 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON SOFTWARE ENGINEERING, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVOL. 17, NO. 8, AUGUST 1991

TABLE I

MANUAL PAGE

Open-class Frequency LA’s Frequency

KEYWORDS AND LEXICAL AFFINITIES CLASSIFIED BY FREQUENCY IN THE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmV

Words

file 30

directory 14

mv 11

files 8

new 7

name 7

move 7

newname 6

is 6

system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5

one 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
.

file move

be file

directory file

file system

file overwrite

file mv

file name

name path

do file

directory move

different file

9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8

I

5

5

5

4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3

3

3

3

LA (w ~ , w2) as:

To simplify the computation of this factor in the rest of
this work, we consider words within the textual universe as
independent variable^.^ Thus we use the following formula for
computing the quantity of information of an LA:

Then we define the resolving power of an LA in a given
document as follows: Let (w l , w2, f) be a tuple retrieved while
analyzing a document d, where (wl, w2) is an LA appearing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf
times in d. The resolvingpower6 of this LA in d is defined as:

p ((u 1 1 , ~ ~ 2 , f)) = f X INFO((Wi ,w2)) . (4)

The higher the resolving power of a lexical affinity is, the more
characteristic of the document it is. The resolving power allows
us to evaluate the importance of a lexical affinity within a text
by taking into account both its frequency of appearance in the
text and the quantity of information of the words involved.

This assumption represents only an approximation, since words in English
are definitely not independent but are distributed according to the rules of the
language.

6This notion is related to that of mutual information [4].

TABLE I1
COMPARISON OF FREQUENCY AND VALUE FOR THE LA’S IN mv

LA’s Frequency LA’s P

file move

be file

directory file

file system

file overwrite

file mv

file name

name path

do file

directory move

9

8

7

5

5

5

4

3

3

3

file move

file mv

directory file

file overwrite

directory move

file system

mv rename

move mv

different file

name path

8.38

4.36

4.03

3.87

1.98

1.95

1.71

1.58

1.40

1.33

Thus, even though the lexical affinity (be f i l e) appears
very often in an Arx manual page, it has only a small resolving
power, simply because the quantity of information of both the
words “file” and “be” in the Ax documentation is low.

In order to be able to compare the relative performances in
terms of resolving power of different documents, we transform
the raw p score into a standardized score. The standardized
score, or z-score, is defined as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApt = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(p - p)/., where p and
o are the average and standard deviation of the p-values. This
transformation does not alter the distribution and allows us to
evaluate the relative status of the score in the p distribution.
In the rest of this paper, the p-values we give as examples will
therefore represent the z-score rather than the raw score.

Table I1 compares the list of LA’s for the mv manual page
ranked by frequency and resolving power. In it, the LA (file
move) has a greater resolving power than any of the following
LA’s. Moreover, some noisy LA’s such as (do file) or (be file)
(in italic fonts in the table) have disappeared because both
words involved in the LA’s are highly frequent in the corpus
and thus have a low quantity of information.

For each document, we select as indices those LA’s with
the highest resolving power. More precisely, we are interested
in the LA’s which represent peaks in the distribution of p -
values. Therefore we keep as indices only the LA’s whose p
value is one standard deviation above the mean; i.e., such that
p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 p + U , where j? represents the mean and 0 the standard
deviation of the distribution of p values within one document.

MAAREK zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.: AUTOMATICALLY CONSTRUCTING SOFTWARE LIBRARIES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA805

TABLE I11
LA’S RANKED BY p-VALUES FOR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACp

TABLE IV
LA’s RANKED BY p-VALUES FOR mkdir

LA’s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP Z LA’s P

copy file zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6.49 directory make 5.08

directory file 2.41 create mkdir 2.74

file source 2.15 directory mkdir 2.55

infile subdirectory 1.98 directory permission 1.48

contain subdirectory 1.30 directory write 1.03

COPY CP 1.30

copy regular 1.02

The choice of such a threshold7 is reflected in Tables 11-IV,
where only LA’s with a z-score greater than 1 are presented.

The set of LA’s of a document, selected by ranking p-values
and taking those one standard deviation above the mean, forms
the profile of the document. The major contribution of this
technique consisted in adapting the notion of lexical affinity
for indexing purposes. We gave some intuitive indications on
how an LA-based indexing scheme is richer than a single-
word scheme. We will demonstrate later that it ensures a better
retrieval effectiveness.

The next section explains how software components can
be stored and classified using the profiles produced at the
indexing stage.

IV. THE CLASSIFYING STAGE

Normally, when a user wants to use a software library,
he/she first has to access a library which might contain the
desired component, then has to provide a formal description
of the researched component according to the vocabulary
understood by the library system. Unfortunately, in most cases
this ideal scenario does not work out. The main reason is that
in real life applications the component perfectly matching the
user’s requirements does not exist in the library, or that it is
not indexed as the user had guessed it would be.

In such cases, a traditional database management system
fails to help the user. Indeed, to be retrieved from the database,
a component must exactly match the query.8 Such strict
matching is inappropriate in a software library system, since
the user often cannot know the exact characteristics of the

desirable component and, even when helshe does, there is
rarely a perfect match.

Software libraries should not only permit retrieving candi-
date components which perfectly or partially match the query,
but also permit browsing among components that share some
functionality. It is therefore desirable to structure the library
for making the search, retrieval, and browsing mechanisms as
fast and convenient as possible in order to make the access to
the library attractive.

We propose here to perform the search and retrieval op-
erations using a conventional inverted index file structure,
and to cluster the library in order to facilitate the browsing
operation. Section IV-A explains how the index repository is
built using an inverted file structure, and Section IV-B presents
the clustering technique used to build the browse hierarchy.
Section V explains how they are used to perform the search
and browsing operations.

A. Building the Index Repository

The goal is to allow fast and easy identification of candidate
components during retrieval. Thus an inverted file index is
derived from the profile repository built during indexing. Index
LA’s are defined as tuples (w, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAid) in which w precedes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw’ in
the lexicographic order. The reason for ordering w and w’ is
to avoid duplicate LA’s by forcing every LA into a canonical
form. Moreover, we also store w and w’ as individual indices
in order to detect partial matching, only one word in common,
between query LA’s and document LA’s.

Every index points toward a list of pairs (d , p) in which d
is the document whose profile contains the index and p is its
corresponding normalized resolving power. The information
associated with each index is accessed through a trie data
structure. Using a trie data structure is advantageous in our
case because of the numerous repeated prefixes.

’This classical threshold guarantees to keep only a small percentage of the
sample elements in most distributions.

‘A notable exception is ARES [20], a relational database which allows
flexible interpretation of queries. In ARES, the similarity between elements
can be evaluated via a lookup in a table that has to be provided beforehand,
ARES is not discussed here, since its purpose is not to classify software.
Further, it has the drawback of requiring a great deal of pre-encoded
knowledge.

The stored information is used to retrieve and rank candi-
dates as explained in Section V.

B. Building the Browse Hierarchy

As previously, browsing is in software
library systems. The most common way to make browsing

806 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 8, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAUGUST 1991

operations possible is to group items judged to be similar by
using clustering operations [33]. Jardine and van Rijsbergen
[21] pointed out that “associations between documents convey
information about the relevance of documents to requests.”
They demonstrated that cluster-based retrieval strategies are
as effective as linear strategies, and much more efficient.
Thus many clustering methods have been used for information
retrieval [21], [7], [17]. The most popular clustering methods
are the hierarchical agglomerative clustering (HAC) methods,
because their search and construction techniques are more
efficient than for most nonhierarchical methods [21].

The following sections define some terminology in cluster
analysis, describe the algorithms we used to build the browse
hierarchy, and present some samples of the browsing hierarchy
obtained for the Arx library. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I) Some Terminology in Cluster Analysis: Classification by
cluster analysis has been of long-standing interest in statistics
as well as various other fields. It can be traced back to the work
of Adanson in 1757 [1], who used numerical clustering for
classifying botanic species. Statisticians and taxonomists have
widely developed the field since then. Cluster analysis now
offers a wide range of techniques for identifying underlying
structures in large sets of objects and revealing links between
objects or classes of objects. One particular application of
classification is the building of libraries.

There is no strict definition of cluster, but it is generally
agreed that a cluster is a group of objects whose members are
more similar to each other than to the members of any other
group. Typically, the goal of cluster analysis is to determine a
set of clusters, or a clustering, such that intercluster similarity
is low, and intracluster similarity is high. The similarity
between objects is evaluated via a numerical measure called a
dissimilarity index defined as follows.

Let 0 be a set of objects. A dissimilarity
index zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS over R2 is a function from R x R to R+ that satisfies
the following properties:

Definition 1:

Note that a distance is a dissimilarity index, but that a
dissimilarity index does not necessarily satisfy the triangle
inequality and therefore is not a distance.

The dissimilarity index between objects is used as the basic
criterion to determine clusters. Clustering techniques allow
identifying not only clusters, but also relationships among
them. The structure of the set of clusters as well as their
internal structure vary with the clustering technique. Clustering
methods are usually classified’ according to the structure of the
set of clusters produced-e.g., hierarchical, flat, overlapping,
etc.-as well as the technique used-e.g., divisive, agglomer-
ative, incremental, etc. As explained previously, hierarchical
agglomerative techniques are very convenient for building

With the recent introduction of conceptual clustering [31], another distinc-
tion has been introduced according to the definition of the clusters obtained
in extension (Le., by enumeration of its members) for regular (or numerical)
clustering and in intension (i.e., by membership rules) as well as in extension
for conceptual clustering.

browse hierarchies. The basic principle that these techniques
follow is presented below.

Hierarchical numerical clustering aims at building hier-
archies over a set of objects in which each internal node
corresponds to a cluster of objects and each leaf represents
an individual object, or more precisely, a singleton cluster.
Most hierarchical clustering methods are based upon the
same general method, called the Hierarchical Agglomerative
Clustering (HAC) method [121, which consists of iteratively
gathering objects into clusters until only one cluster remains.

The HAC general method iteratively builds a sequence
of partitions or level clusterings of R; that is, a sequence
of disjoint clusters covering the original set of objects R.
The level clusterings form coarser and coarser partitions
by an iterative process, beginning with the level clustering
formed by the set of singletons in the power set p(R),
i.e., {{ol), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ 0 2 } , . . . , {on}> , and ending up with the coarsest
partition of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR, i.e., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0). The final output of this clustering
process is a particular form of hierarchy called a dendogram.
The HAC general method can be expressed as follows:

Start with the subset of p(R) formed by singleton
elements
Repeat the following steps iteratively until there is only
one cluster

a.
b.

Identify the two clusters that are the most similar
Merge them together into a single cluster.

The HAC method requires a measure of similarity not only
over the set of objects, but also over the set of clusters. The
dissimilarity index between clusters is usually derived from
a user-given dissimilarity index S between objects. The way
of defining A has a direct influence on the final form of
the hierarchy obtained. Once a dissimilarity index zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS between
objects is provided, HAC methods differ only by the choice
of this measure. The most commonly used HAC methods are
the single link and complete link [12]. Many other methods
such as the centroid method, Ward’s method, etc., define
still other dissimilarity indices, but most of them require the
dissimilarity index over R to be a distance; that is, to satisfy
the triangle inequality. The reader should consult [13], [12] for
an extensive survey of the HAC methods. The time complexity
of the HAC algorithm is at most O(n2 logn), where n is the
number of objects involved. For some particular definitions of
A, it can be reduced to O(n2) .
2) Adapting a Clustering Technique for Building a Browse
Hierarchy: As explained above, we propose to use a HAC
technique to generate a browse hierarchy. In this perspective,
we: (i) need to define a measure of similarity between the
objects considered, e.g., the documents, and (ii) explain how
to make a browse hierarchy out of the dendogram generated
by the HAC technique. Let us address these two points.

In information retrieval, numerous measures of similarity
between documents, also termed measures of association or co-
efficients of association, have been defined [40]. The simplest
of all is defined as:

IX fl YI (7)

h4AAREK zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.: AUTOMATICALLY CONSTRUCTING SOFTWARE LIBRARIES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA807

Fig. 2. Principle of selection of level clusterings. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX and Y are the profiles of two documents. This mea-
sure represents the number of common index units. Various
other measures [40] have been defined such as:

21x Dice's coefficient
1x1 + IYI

I x " Jaccard 's coefficient (9) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I x '1 ~a l ton 's Cosine coefficient. (10)

IXUYI

1x1 x IYI

They can all be considered as normalized versions of (7), since
they are functions of the cardinality of X, Y, X n Y, or X U Y.

In our context, we have more information than just the
presence or absence of index units in the profile, and therefore
we propose to take into account the p-values of LA'S in the
evaluation of the measure of association between documents.
For any profile X = { (i , p) } , p (X) is the projection set
of X over the set of indices. Then the simplest measure is
Ip(X) np(Y)1; i.e., the number of indices in common in both
profiles. In order to take into account the resolving power of
indices as well, we define our measure 6 for two profiles X
and Y , such that X # Y , as: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

qx, Y) = (P X (i) x PY (2)) (11)
iEP(X)nP(Y)

where p ~ (i) is the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp value of the index i in the profile X , and
similarly for Y . Note that 6 is a measure of similarity rather
than a measure of dissimilarity. Its inverse is a measure of dis-
similarity as long as 6 (X , X) is set to a sufficiently large arbi-
trary value so that its inverse can be considered essentially null.

Given such a measure of similarity between profiles, we
define a measure of similarity between clusters according to
the single link or complete link techniques, for instance, and
then use the hierarchical agglomerative clustering algorithm in
order to build a browse hierarchy of software components. Let
us note that we also made some experiments in earlier versions
of GURU using an incremental conceptual clustering technique
[27] for constructing the browse hierarchy. However, despite
interesting results, the cost of building and maintaining the
hierarchy was prohibitive (exponential time like for most
conceptual clustering techniques) when compared to regular
clustering techniques, and did not appear to be better in terms
of retrieval effectiveness.

~~ ~

Fig. 3. Selection of level clusterings.

All the HAC techniques build a binary hierarchy. Not all
levels of the hierarchy are equally significant; therefore the
usual approach is to select manually the most significant level
clusterings, this task being usually performed by a data analyst.
The following proposes a method for automatically identifying
the most useful level clusterings and thus producing a not-
necessarily binary hierarchy.

This method of selection is based on the following principle.
Each level clustering in the dendogram corresponds to the
merging of two clusters in the previous level clustering and
therefore to a particular value of the similarity measure. If
we label the dendogram with these values, yn, . . . ,y1, n
being the number of objects, from the bottom to the top
of the hierarchy, it can easily be shown that the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAyi's are
(nonstrictly) monotonic (increasing for dissimilarity measures
and decreasing for similarity measures) for the single and
complete link-clustering methods. We propose to select those
levels which correspond to the gap in the distribution of yi7s
by (i) plotting the segment connecting the pairs y;+1, y; from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i = n- 1 to i = 1, and (ii) keeping the levels which correspond
to the steepest slopes. This represents the intuitive method
that a data analyst would apply. Fig. 2 gives an intuitive
presentation of the method via an example, whereas Fig. 3
gives the formal algorithm. The time complexity of the latter
is linear in the number of objects.

C. Some Examples

Portions of the browse hierarchy built from the AIX doc-

808 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON SOFIWARE ENGINEERING, VOL. 17, NO. 8, AUGUST 1991

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. Portion of AIX hierarchy (single link, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0.5) .

Fig. 5. Portion of AIX hierarchy (single link, k = 0.5) .

umentation are shown in Figs. 4 and 5. In Fig. 4, some
interesting clusters are isolated. Thus in the figure we have
a cluster that gathers commands related to the manipulation of
regular expressions, and a cluster that gathers editors. These
two clusters are also part of the same supercluster, mainly
because these editors permit the manipulating of regular ex-
pressions. Then there are two outliers which could not be
included in a cluster: makekey and termdef. Then a small
cluster groups ps and kill, which are strongly related since
they give information about processes or handle them. Finally,
there are two big clusters, one for yellow pages commands and
another for SCCS routines. The clustering is not always of such
good quality either because of the nature of the documentation
or the principle of clustering itself. For instance, as can be seen

in Fig. 5, the commands xcalc and dc, which are calculators,
belong to the same cluster, but bc has been forgotten in this
cluster. This is due to the fact that the manual page of bc does
not refer to the concept of calculator at all, but defines bc as an
interpreter for an arithmetic language. The real problem with
clustering is illustrated with the third cluster in this figure,
which gathers batch, at, crontab, date and istat.
This cluster has been formed because all these commands are
related to the notion of date or time; unfortunately, this is not
the main functionality of all of these commands and therefore
this cluster is somehow misleading. Let us note, however, that
the lower level cluster including at and batch is a good one.

The hierarchy thus generated is used as an aid to browse
when nothing relevant has been retrieved via linear retrieval or
in order to increase recall, since there is no way to be sure that
all the relevant components have been retrieved at the linear
retrieval stage. It can also be used as the basic repository to be
searched during retrieval, but we prefer to use the traditional
linear-retrieval technique instead, because it is clearly more
trustable considering the problems described above.

By nature, this indexing technique suffers from noise, since
it is based on only statistical observations. Noisy indices
involve generally misspelled or unmeaningful strings of char-
acters that are mixed with natural language (for describing
instructions, for instance), or "side-concepts'' such as the time,
day, and month in the example cited above. This noise cannot
be avoided when dealing with free-style text.

Fortunately, these noisy LA's do not cause real trouble at the
linear retrieval stage, since there is a very low probability that
the user would use unmeaningful character strings in her/his
queries. So noisy LA's are part of the profiles of components
but rarely lead to the selection of the considered component.
On the other hand, noisy LA's might induce the formation
of poor quality clusters, but generally only higher levels of
the hierarchy are affected, since "side concepts" are not given
much weight when evaluating similarity. Section V-C explains
how this browsing hierarchy is used at the retrieval stage.

V. THE RETRIEVAL STAGE

The previous sections explained how libraries of reusable
components are assembled. We also need to be able to re-
trieve the components which match the requirements when at
least one exists, or to assist in the selection of the closest
components via a browsing facility.

The usual scenario when retrieving a component is the
following:

1) Query specification: The user expresses a query accord-
ing to the authorized vocabulary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2) Linear retrieval: A search locates the candidate com-
ponents and the candidates are ranked according to their
degree of match with the query

3) Browsing: Cluster-based retrieval is initiated when no
adequate components have been found by the linear
retrieval.

The following explains how these three stages are supported
in our approach.

MAAREK et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.: AUTOMATICALLY CONSTRUCTING SOFIWARE LIBRARIES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA809

Fig. 6. Linear retrieval technique.

A. Query Specification

Using uncontrolled-vocabulary indexing, as we do, presents
clear advantages at the query specification stage. Indeed, a
minimum of constraint is put on the user as helshe expresses
hislher query. The user does not have to learn a specific index
language or understand the organization of the library. Helshe
can express hislher query in natural language, and then the
indexing component is applied in order to translate the query
into attributes understandable by the system. Exactly the same
technique is used for extracting LA’s from natural-language
queries as from natural-language documentation. This provides
a very convenient and user-friendly interface between the user
and library system, because the user is not constrained by any
rigid formalism.

The queries can be expressed in free-style natural language.
However, the user must be aware of the fact that queries
are not really interpreted, but are rather considered as a
description of the functionality of the desired component. For
instance, the user could express queries of the form, “how
can I do such and such,” since only the “such and such”
would be considered for indexing, the rest being either closed-
class words or words with a low quantity of information.
Formulating a query which necessitates some understanding,
such as a query including negations such as “but not,” would
only lead to wrong interpretation. Let us note that it would
be possible at this point to allow some simple interpretation
of the queries by allowing, for instance, the usual Boolean
connectors (“and”, “or”, “but not”). This would clearly boost
the performance of the library system. However, since our
point here is to show how far we can go without understanding
either the queries or documents, we do not discuss these
possible enhancements.

B. Linear Retrieval

In order to retrieve the best candidates for a given query
we apply the usual IR method, which consists of considering
the query as a document and retrieving the components in the
repository whose profile is the most similar to the profile of
the query. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA possible measure of similarity is the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 measure
defined in (11). The most similar components are then returned
to the user, ranked in order of decreasing similarity with the
query. The linear retrieval technique is presented in Fig. 6.

Fig. 7. Example of linear retrieval

In case of low recall-that is, if the user is not satisfied
with the retrieved candidates-a more fuzzy search can be
performed that also considers partially matching LA’s. In
that case, only LA’s which partially match a query LA (i.e.,
have one word in common) are considered. This significantly
increases the recall, but as a trade-off drastically decreases
the precision. It should therefore be used only when the user
considers that nothing relevant has been retrieved with the
initial query. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn example of linear retrieval is given in Fig. 7.

In Fig. 7 the candidates are ranked in order of decreasing
similarity with the query (“How can I locate regular expres-
sions in a file”). Therefore the top candidates usually answer
the query the best. In the example shown in Fig. 7, all the
candidates retrieved deal more or less strongly with regular
expressions. Even the two last candidates, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdos first and
dosnext, do not answer the query but are very slightly
related, since they allow locating DOS files which match a
pattern.

C. Browsing, Cluster-Based Retrieval

The retrieval stage in classical library management systems
is often limited to locating a set of components exactly
matching the user’s query or, when such components do not
exist, related components. Library systems do not usually
provide any further assistance.

In our approach, the user may communicate interactively
with the system in order to direct the browsing when he/she is
not satisfied with the first retrieval yielded. The linear search
retrieves the most related candidates, and then the browsing
process begins.

Typically, the user starts from one of the candidates re-
trieved by the linear search and explores the hierarchy bottom-
up. Consider the browse hierarchy given in Fig. 4 and suppose
that a user gives a query asking about ways “to identify a
process.” If the first candidate retrieved at the retrieval search
is kill, then the user can access the browse hierarchy and
explore the clusters that include kill in order to determine
which components are strongly related. In our example, the
user will find ps as the most related component, which is
clearly a better candidate for this given query than the one
retrieved by the linear search. Another example is illustrated
in Fig. 8. The two relevant candidates in AIX for the query
“establish a new password” are passwd and yppasswd.

810 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 8, AUGUST 1991

Fig. 8. Browsing in the hierarchy.

However, the linear retrieval retrieves only zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApas swd simply
because the query had no intersection with the profile of
yppasswd. At this point the user could reformulate the query,
but helshe might not be aware that he/she has missed some
relevant candidates. Using the browse hierarchy is therefore
more convenient in order to check if some unexpected can-
didates have been missed. In the example, both passwd and
yppasswd are strongly related: their profiles share the LA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(change passwd)" and therefore belong to the same low-level
cluster in the browsing hierarchy. Browsing in the hierarchy
from passwd allows the user to retrieve the other relevant
candidate. These two examples show how a browse hierarchy
can help improve the finding of possible candidates that could
be missed via linear retrieval.

At any point the user can consult the profile of a component
in order to have more information about its functionality.
Fast access to profiles is achieved via the profile repository.
The user can also provide, at any stage, further information
in order to get a finer retrieval. By browsing, helshe gets
more information about components and learns how to provide
discriminating queries.

VI. EMPIRICAL RESULTS

The approach described in the previous sections has been
embodied in a tool, GURU, which has been fully implemented,
in C, under AIX on an RS16000. The system has reached a
satisfactory first stage and the implemented version yields
quality results.

We have tested our system on the entire AX documentation
available to us, which describes approximately 1100 AX
components. When building the index repository, we therefore
processed the entire documentation which forms a corpus of
more than 800000 words, and we identified 18000 LA's for
the 1100 profiles.

In order to evaluate GURU'S performance, we used the
following criteria:

User effort. This consists of all the effort which must be
expended by the user in order to use the library system. It
is very difficult to formally measure user effort. However,
thanks to the uncontrolled vocabulary approach which we
applied, we believe that the effort which must be invested
for using GURU is minimal. Queries can be formulated in
natural language, and therefore the user is not required to
learn any index language and formalism
Maintenance effort. This consists of all the effort which
is necessary to keep the system working and up to date.

"Note that "passwd here is a proper name and different from the noun
"password" mentioned in the query. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

.

This effort includes, in particular, indexing new compo-
nents and adding them to the library. The maintenance
stage is highly facilitated in GURU. The indexing is
performed automatically and insertion of new components
can be done incrementally. Kaplan and Maarek [22] have
proposed several algorithms for incrementally updating a
repository of LA-based indices when inserting, deleting,
or modifying components
Efficiency. This refers to the average interval between the
time a query is issued and the time an answer is given.
Efficiency becomes an issue only if a retrieval takes so
long that users start to complain. Our experience with
the system shows that efficiency is not an issue, as the
response time is reasonable. Profiling the execution of the
query program showed that the time to perform the query
was dominated by the time to map the repository file
into the address space of the query program. The lookup
operations and the printing of the LA-file name pairs
consumed almost no time in comparison. Test queries
involving from 5-15 LA's each took approximately 2.5 s
on an RT, and 0.15 s on an IBM RISC System16000. The
better performance of the latter is partly due to its more
efficient implementation of file mapping
Retrieval effectiveness. This is clearly the most impor-
tant performance criterion. It refers to the system's ability
to provide information services as needed by the user.

The next section focuses on evaluating the retrieval effec-
tiveness of GURU.

Measuring Retrieval Effectiveness zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1) Recall and Precision: The most widely used measures

for evaluating retrieval effectiveness are recall and precision
[34]. Recall is defined as the proportion of relevant material;
i.e., it measures how well the considered system retrieves all
the relevant components. Precision is defined as the proportion
of retrieved material which is relevant; i.e., it measures how
well the system retrieves only the relevant components. Recall
can also be interpreted as the probability that a relevant
component will be retrieved, and precision as the probability
that a retrieved component will be relevant [5].

Recall and precision can be defined more formally as
follows: Let C be the whole collection of components forming
the library. For each query, C can be partitioned into two
disjoint sets, R, the set of relevant material, and R, the set of
irrelevant material. Given the query, the system retrieves a set
of components c that can also be partitioned into relevant and
irrelevant material, respectively, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT and F . Recall and precision
are defined as:

recall =

precision =

R

C

Recall and precision measurement require the ability
to distinguish between relevant and irrelevant material.
Relevance judgments are always debatable, and it is a
very tedious task to produce test collections with adequate
relevance judgments. To our knowledge, no test collection

MAAREK zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.: AUTOMATICALLY CONSTRUCTING SOFTWARE LIBRARIES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA811

for software documentation is available. Therefore we
produced such a test collection-i.e., a set of queries
and the associated set of relevant material-for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA X
documentation. The test collection is described in the next
section.

2) Experiments and Comparison: This section describes the
experiments which allowed us to evaluate the retrieval effec-
tiveness of GURU As a basis for comparison, we have consid-
ered INFOEXPLORER, which is an IBM RISC System/6000 CD-
Rom Hypertext Information Base Library zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[191. INFOEXPLORER
is a recent hypertext system that gives access to the docu-
mentation for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAIX and to associated programs. INFOEXPLORER
provides not only hypertext links between pieces of the AIX
documentation, but also search and retrieval facilities. Queries
can be expressed as single-word search or multiple-word com-
pound search with no control of vocabulary. The compound
search, which is the most elaborated, allows the user to express
a query as a word pattern formed of single words related
by three possible connectors, “and”, “or”, and “but not”.
Moreover, the user can restrict the search. He/she can give
constraints specifying if the pattern words must appear within
the same article or within the same paragraph, the proximity
of these words within a paragraph, and the search fields and
search categories.

When given such a query, INFOEXPLORER returns a list
of candidates that exactly fit the query, ranked according to
the frequency of the pattern in the considered document. No
profile is built for the documents examined: all words appear-
ing in the text are considered during the search. Therefore,
INFOEXPLORER can be expected to have a much higher recall
but lower precision than GURU. We do not need to also com-
pare efficiency; i.e., retrieval speed. GURU is, independently
of implementation, much faster than INFOEXPLORER, since it
does not explore the entire textual database but a much smaller
repository formed by the profiles.

INFOEXPLORER is thus a commercial IR tool which rep-
resents a good reference for comparison purposes, since it
is specifically for AX. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAlso, INFOEXPLORER encodes a great
deal of manually provided information about the structure of
the documentation. The system has to know about paragraphs,
titles, etc., and thus has been much more expensive to build
than GURU. Providing this structural information to our system
would greatly enhance its performance, but our point here is
to show that even without such information, our system can
perform nicely thanks to its indexing scheme.

GURU and INFOEXPLORER were compared for retrieval
effectiveness. In order to claim this test to be valid, we
must fulfill the usual test procedure requirements [34]. These
requirements are for:

the queries to be used for test purposes must be user
search requests actually submitted and processed by both
systems,
the test collection must consist of documents originally
included in the library, chosen in such a way that any
advance knowledge concerning the retrievability of any
given component by either system is effectively ignored,
the number of components considered to be retrieved by
the two systems must be subject to the same cutoff.

To fulfill the first requirement, we conducted a survey
among graduate students in the Department of Computer
Science at Columbia University in November 1988. This
survey provided us with a collection of typical queries on
UNIx-like systems, as formulated by UNIX users ranging
from naive users to expert programmers. A typical query
was expressed as a natural-language sentence with an aver-
age of 3.7 open class words per query describing a desired
functionality. This kind of query could directly be fed to
GURU but not to INFOEXPLORER, since the latter’s compound
search facility accepts only Boolean queries. Therefore feeding
the queries to INFOEXPLORER required some supplementary
effort-first choosing the right connectors between open-class
words extracted from the queries, and possibly dropping some
words when the recall was too low. In our interaction with
the compound search facility we had to refine and retry
the query formulation several times. We kept only the best
result for comparison purposes, since we wanted to compare
the tools’ indexing schemes rather than their querying facil-
ities. GURU’S querying facility requires less user effort than
INFOEXPLORER’S, but the latter’s could be greatly improved
if it did not require perfect matches between the Boolean
query and the candidates, using a similarity measure between
candidate and query, for instance. The average number of
open-class words used for questioning INFOEXPLORER was 3.

As far as the second requirement is concerned, the collection
considered for test has been the entire AIX library. We con-
sulted with several AIX experts at IBM in order to determine
for each query the set of existing relevant components in
the AIX library so as to be able to evaluate the recall and
precision. As our test collection was composed of about
1100 components, we selected 30 queries from among all
the queries provided by our survey. This ratio corresponds
to the same number-of-queries per number-of-documents ratio
as the one which has been used in standard test sets such
as MED (collection of medical abstracts, 30 queries for 1033
documents) or CISI” (information science abstracts, 35 queries
for 1460 information abstracts).

As far as the third requirement is concerned, since both
systems ranked the retrieved candidates, we were able to
compare recall and precision at the same ranks.

The comparison was performed by measuring, for both
systems, precision at several levels of recall. We followed the
usual procedure [40], [34], which consists of

1) Plotting precision-recall curves for each test query with
each plot corresponding to a given cutoff value

2) Extrapolating these curves so as to obtain precision
values for recall values which were not effectively
achieved

3) Deriving from the curves computed in stage (2) the
average precision values at fixed recall intervals so as
to obtain a single average precision recall curve for the
system considered.

We have built such curves for both GURU and INFOEXPLORER
and plotted them on the same axes (See Fig. 9). The best

“These test sets have been used for evaluating several IR systems such as
LSI [9].

812 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON SOFJWARE ENGINEERING, VOL. 17, NO. 8, AUGUST 1991

Fig. 9. Precision-recall curves (means across queries).

performance is reached by the system whose curve is closest
to the area where both precision and recall are maximized, the
upper right corner of the graph. As was mentioned, because
of the indexing scheme of both systems we could expect that
INFOEXPLORER would achieve a lower precision but higher
recall than GURU. It turned out that the maximum recall, all
ranks included, achieved by both systems was approximately
the same, around 88% on the average, but from the graph
presented in Fig. 9, it is clear that GURU had 15%, on average
better precision than INFOEXPLORER.

These results show that for the sample tested, GURU achieves
higher precision than INFOEXPLORER without losing in recall.
For this sample, the recall rate is increased when we make use
of the GURU browse facility. For instance, in several cases,
some related components were not retrieved during linear
retrieval, but only during browsing.

The results of this evaluation should not be seen as final
definitive results, but only as an indication of what can be
expected from the GURU system. Until more test collec-
tions specifically designed for software documentation become
available, it is not possible to produce statistically significant
results. Producing large-scale collections requires a great deal
of effort and is out of the scope of this work, but we hope
that our work, as well as the work of others, will motivate
this effort. In the meantime, however, our results are very
promising.

VII. CONCLUSION

We have presented a method for automatically construct-
ing software libraries from a collection of documented but
unindexed software components. We discussed the advan-
tages of using natural-language documentation as opposed to

source code, assuming that any documentation is available,
as a source of functional information. We then described a
new free-text indexing scheme for automatically producing
document profiles based upon a richer unit than single terms,
the lexical affinity. All associated software components could
then be classified, stored, compared, and retrieved via linear
or cluster-based techniques according to these indices.

These methods and schemes are embodied in a new tool
which has been implemented and evaluated for retrieval
effectiveness. The evaluation compared GURU with the
INFOEXPLORER hypertext library, built specifically to help
find software components in the Arx system. The average
recall-precision curves of both tools were computed. The
results of this test indicate that GURU ’s performance was
better than INFOEXPLORER. This result is very encouraging,
since INFOEXPLORER was much more expensive to build and
specifically tailored to the AIX library.

The major contribution of this work consists of bringing
classical and new information retrieval techniques to bear in
software reuse. This involved:

1) Designing a new indexing scheme based on high infor-
mation content lexical affinities

2) Adapting classical numerical cluster analysis techniques
for assembling software components into browse hier-
archies

3) Designing retrieval mechanisms specifically adapted to
the LA-based indexing scheme so as to provide a com-
plete storage and retrieval framework.

Finally, the evaluation we have performed seems to indicate
that Salton’s statement about the limitation of the “phrase
generation” approach in indexing (see Section 111-A) is overly
pessimistic, and that significant improvements over single-term
techniques can be achieved at relatively low cost.

ACKNOWLEDGMENT

The authors would like to thank M. Kennedy, who helped in
the design and implementation of GURU’S retrieval component.

REFERENCES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[1) M. Adanson.Jiistoire Naturelle du Senegal. Coquillages. Avec la relation

abregee zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd’un voyage fait en ce pays, pendant les zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAanntes 1749,50,51,52
et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA53. Paris: Bauche, 1757.

[2] B. P. Allen and S. D. Lee, “A knowledge-based environment for the
development of software parts composition systems,” in Proc. 11th ICSE
(Pittsburgh, PA), May 1989, pp. 104-112.

[3] S. P. Amold and S. L. Stepoway, “The reuse system: Cataloging
and retrieval of reusable software,” in Software Reuse: Emerging
Technology, W. Tracz, Ed. Los Alamitos, CA: IEEE Computer Soc.,

New York: Wiley-Interscience, 1965.
1987, pp. 138-141.

[4] R. Ash, Information Theory.
[5] D. C. Blair and M. E. Maron, “An evaluation of retrieval effectiveness

for a full-text document retrieval system,” Commun. ACM, vol. 28, no.
3, pp. 289-299, Mar. 1985.

[6] B. A. Burton, R. Wienk Aragon, S. A. Bailey, K. D. Koelher, and L. A.
Mayes, “The reusable software library,” in Software Reuse: Emerging
Technology, W. Tracz, Ed. Los Alamitos, CA: IEEE Computer Soc.,
1987, pp. 129-137.

[7] F. Can and E. A. Ozkarahan, “A clustering scheme,” in Proc. SlGlR’83
(Bethesda, MD), 1983, pp. 115-121. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[8] F. de Saussure, Cours de Linguistique GknCrale, Quatri2me Edition.
Paris: Librairie Payot, 1949.

MAAREK et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.: AUTOMATICALLY CONSTRUCTING SOFIWARE LIBRARIES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA813

[9] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R.
Harshman,” Indexing by latent semantic analysis,” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ . Amer. Soc. Inform.
Sci., vol. 41, no. 6, pp. 391407, 1990.

[lo] P. Devanbu, “Re-use of software knowledge: A progress report,” pre-
sented at the 3rd Ann. Workshop: Methods and Tools for Reuse,
Syracuse, NY, June 1990.

I l l] P. Devanbu, P. G. Selfridge, B. W. Ballard, and R. J. Brachman,
“A knowledge-based software information system,” in Proc. IJCAI ’89
(Detroit, MI), Aug. 1989, pp. 11CK11.5.

I121 E. Didav, J. Lemaire. and F. Testu. Elements d’ilnalvse des Donntes. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L 1

Paris: Dunod, 1982.
I131 B. Everitt, Cluster Analysis. New York: Halsted. 1980
i14j W. B. Frakes and P. B. Gandel, “Classification, storage and retrieval of

reusable components,” in Proc. SIGIR’89 (Cambridge, MA), June 1989,
N. J. Belkin and C. J. van Rijsbergen, Eds., pp. 251-254.

[15] W. B. Frckes and P. B. Gandel, “Representing reusable software,”
Inform. Sof iare Technol., Nov. 1990.

[16] W. B. Frakes and B. A. Nejmeh, “Software reuse through information
retrieval,” in Proc. 20thAnn. HICSS (Kona, HI), Jan. 1987, pp. 530-535.

[17] A. Griffiths, L. A. Robinson, and P. Willett, “Hierarchical agglom-
erative clustering methods for automatic document classification,” J.
Documentation, vol. 40, no. 3, pp. 175-205, Sept. 1984. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[181 W. Harrison, “A program development environment for programming
by refinement and reuse,” in Proc. 19th HICSS (Kona, HI), 1986, pp.
459469.

[19] IBM AIX Version 3 for RISC Systeml6000. Commands Refer-
ence. Yorktown Heights, NY: IBM, 1990.

[20] T. Ichikawa and M. Hirakawa, “Ares: A relational database with the
capability of performing flexible interpretation of queries,” IEEE Trans.
SofhYare Eng., vol. SE-12, pp. 624634, May 1986.

[21] N. Jardine and C. J. van Rijsbergen, “The use of hierarchic clustering in
information retrieva1,”Inform. Storage and Retrieval, vol. 7, no. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5, pp.
217-240, Dec. 1971.

[22] S. M. Kaplan and Y. S. Maarek, “Incremental maintenance of semantic
links in dynamically changing hypertext systems,” Interacting with
Computers, vol. 2, no. 3, Dec. 1990.

[23] P. H. Klingbiel, “Machine-aided indexing of technical literature,” In-
form. Storage and Retrieval, vol. 9, pp. 79-84, 1973.

[24] G. N. Lance and W. T. Williams, “A general theory of classificatory
sorting strategies,” Computer J . , vol. 9, pp. 373-380, 1967.

[25] M. Luhn, “The automatic creation of literature abstracts,” IBM J . Res.
Develop., vol. 2, no. 2, pp. 159-165, Apr. 1958.

[26] Y. S. Maarek, “Using structural information for managing very large
software systems,” Ph.D. thesis, Technion, Israel Instit.Technol., Haifa,
Israel, Jan. 1989.

[27] Y. S. Maarek, “An incremental conceptual clustering algorithm with
input-ordering bias correction, in Advances in Artificial Intelligence,
Natural Language and Knowledge Base Systems, M. C. Golumbic, Ed.
New York: Springer-Verlag, 1990.

[28] Y. S. Maarek and G. E. Kaiser, “On the use of conceptual clustering for
classifying reusable ada code,” in Proc. Ada Letters, Using Ada: ACM
SIGAda Int. Con$ (Boston, MA), Dec. 1987, pp. 208-215.

[29] Y. S. Maarek and F. A. Smadja, “Full text indexing based on lexical
relations, an application: Software libraries,” in Proc. SIGIR’89 (Cam-
bridge, MA), June 1989, N. J. Belkin and C. J. van Rijsbergen, Eds.,
pp. 198-206.

[30] W. J. R. Martin, B. P. F. Al, and P. J. G. van Sterkenburg, “On the
processing of a text corpus: From textual data to lexicographic infor-
mation,” in Lexicographiy: Principles and Practice (Applied Language
Studies Series), R. R. K. Hartmann, Ed.

1311 R. Michalski and R. Stepp, “Automated constructions of classifications:
London: Academic, 1983.

Conceptual clustering v&us numerical taxonomy,” IEEE Trans. Pattern
Anal. Machine Intell., vol. PAMI-5, pp. 39W09, July 1983.
R. Prieto Diaz and P. Freeman, “Classifying software for reusabil-
ity,”IEEE Software, vol. 4, pp. 6 1 6 , Jan. 1987.
G. Salton, Automatic Text Processing: The Transformation, Analysis and
Retrieval of Information by Computer. Reading, MA: Addison-Wesley,
1989.
G. Salton and M. J . McGill, Introduction to Modern Information Re-
trieval (Computer Series).
G. Salton and M. Smith, “On the application of syntactic methodologies
in automatic text analysis,” in Proc. SIGIR’89 (Cambridge, MA), June
1989. DD. 137-150.

New York: McGraw-Hill, 1983.

[37] F. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA. Smadja, “Lexical co-occurrence: The missing link,’% Assoc.
Literary and Linguistic Computing, vol. 4, no. 3, 1989.

[38] K. Sparck Jones and J. I. Tait, “Automatic search variant generation,”
J . Documentation, vol. 40, no. 1, pp. 5 M 6 , Mar. 1984.

[39] W. F. Tichy, R. L. Adams, and L. Holter, “NLHE: A natural-language
help system,” inProc. I l th ICSE (Pittsburgh, PA), May 1989, pp.
364-374.

[40] C. J. van Rijsbergen, Information Retrieval, 2nd ed. Stoneham, MA:
Butterworths, 1979.

[41] M. Wood and I. Sommerville, “An information retrieval system for
software components,” SIGIR Forum, vol. 22, nos. 314, pp. 11-25,
Spring/Summer 1988.

programming environmf

Yoelle S. Maarek graduated from the “Ecole Na-
tionale des Ponts et ChaussCes,” Paris, France, in
1985. She completed the D.E.A. (graduate degree)
in computer science from Paris VI University in
1985, and received the Doctor of Science degree
from the Technion, Israel Institute of Technology,
Haifa, in 1989.

She has been a Research Staff Member in the
Software Environments Department at the IBM T.
J. Watson Research Center, Yorktown Heights, NY,
since 1989, where her research interests include

mts, software reuse, and information retrieval.

Daniel M. Berry received the Ph.D. degree in
computer science from Brown University in 1973.

He was on the faculty of the Computer Science
Department at the University of Califomia, Los
Angeles, from 1972 to 1987. Since 1987 he has been
a Professor in the Faculty of Computer Science at
the Technion, Israel Institute of Technology, Haifa.
He is currently on leave from Technion at the
Software Engineering Institute, Pittsburgh, PA. He
has consulted with the Verification Group at Unisys,
Culver City, CA, since 1980. His areas of research

interest are in software engineering, with emphases on requirements elicitation
and programming environments and in multilingual word-processing.

Dr. Berry is a member of the Association for Computing Machinery and
the IEEE Computer Society.

Gail E. Kaiser received the Sc.B. degree from the
Massachusetts Institute of Technology, Cambridge,
and the M.S. and Ph.D. degrees from Carnegie
Mellon University, Pittsburgh, PA.

She is an Associate Professor of Computer Sci-
ence at Columbia University, New York City, and
has published over 50 papers in a wide range
of software areas, including software development
environments, testing and debugging tools, extended
transaction models, reusability, application of artifi-
cial intelligence technologv to software engineering.

I,

[36] R. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW.’ ichwanke, R. Z. Altucher, and M. A. Platoff, “Discovering,
visualizing and controllling software structure,” in Proc. 5th Int. Work-
shop on Software Specifications and Design (Pittsburgh, PA), May 1989,
pp. 147-150.

object-oriented languages and databases, and parallel and distributedsystemi.
Dr. Kaiser was selected as an NSF Presidential Young Investigator in

Software Engineering in 1988, and received a Digital Equipment Corporation
Incentives for Excellence Award in 1986.

