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Abstract- Although software reuse presents clear advantages 
for programmer productivity and code reliability, it is not prac- 
ticed enough. One of the reasons for the only moderate success 
of reuse is the lack of software libraries that facilitate the 
actual locating and understanding of reusable components. This 
paper describes a technology for automatically assembling large 
software libraries which promote software reuse by helping the 
user locate the components closest to her/his needs. Software 
libraries are automatically assembled from a set of unorganized 
components by using information retrieval techniques. The con- 
struction of the library is done in two steps. First, attributes are 
automatically extracted from natural language documentation by 
using a new indexing scheme based on the notions of lexical affini- 
ties and quantity of information. Then a hierarchy for browsing is 
automatically generated using a clustering technique which draws 
only on the information provided by the attributes. Thanks to 
the free-text indexing scheme, tools following this approach can 
accept free-style natural language queries. This technology has 
been implemented in the GURU system, which has been applied to 
construct an organized library of AIX utilities. An experiment was 
conducted in order to evaluate the retrieval effectiveness of GURU 
as compared to INFOEXPLORER a hypertext library system for 
AIX 3 on the IBM RISC System/6000 series. We followed the 
usual evaluation procedure used in information retrieval, based 
upon recall and precision measures, and determined that our 
system performs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA15% better on a random test set, while being 
much less expensive to build than INFOEXPLORER. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Index Terms-Automatic indexing, clustering, information re- 
trieval, lexical affinities, software libraries, software reuse. 

I. INTRODUCTION 

oftware reuse is widely believed to be a promising means S for improving software productivity and reliability zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 141, 
and therefore is an issue of growing interest in software 
engineering. Unfortunately, not enough adequate libraries of 
reusable software components are available. By adequate, we 
mean that the library: 

Provides a sufficient number of components, over a 
spectrum of domains, that can be reused as is (black-box 
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reuse) or easily adapted (white-box reuse) 
Is organized such that the existing code closest to the 
users’ needs is easy to locate. In particular, the library 
should provide mechanisms to help the reuser look for 
“functionally close” components which meet some given 
requirements. 

This paper is concerned with the second adequacy issue, and 
more generally with library systems which provide means for 
representing, storing, and retrieving reusable components. 

The first stage in building a library consists of indexing 
the objects to be stored in it, that is, producing a set of 
characterizing attributes, or profile, for each of these objects. 
The profile for each object represents the reusable object. 
Therefore the quality of indexing is crucial to the quality of the 
library. Functionality is an important aspect of software com- 
ponents. Thus it is necessary to include conceptual information 
about functionality in the indices. Unfortunately, conceptual 
information is difficult to obtain. Few programmers provide 
conceptual indices for their code. Moreover, even if provided, 
they can hardly be expressed under a common formalism, 
since pieces of code typically originate from multiple sources. 
One solution is to manually index software components a 
posteriori according to a given classifying scheme, but this 
task is expensive. 

As an alternative, we propose to automatically identify 
indices by analyzing the natural-language documentation, in 
the form of manual pages or comments, usually associated 
with the code. Natural-language documentation is clearly a rich 
source of conceptual information. However, this information 
is contained only implicitly, in an unstructured way, and is 
not usable as such. In order to extract usable information 
from free-style documentation we propose to use information 
retrieval techniques. Once the indices have been produced, 
components can be automatically classified, stored, and re- 
trieved according to their profiles. 

The classifying stage in the construction of a library consists 
of gathering objects into classes such that the members of the 
same class share some set of properties. The basic motivation 
for classifying is to facilitate browsing among similar com- 
ponents in order to identify the best candidates for reuse, or 
at least a set of potentially adaptable components that can 
be easily located. Browsing is more important for software 
libraries than for other kind of libraries, since there rarely 
exists a component perfectly matching a user’s query. More- 
over, local browsing allows the user to discover unanticipated 
opportunities for reuse. 

We have designed and implemented a tool, GURU, that 
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embodies the above approach. GURU automatically assembles 
conceptually structured software libraries from a set of unin- 
dexed and unorganized software components. In the first stage, 
GURU extracts the indices from the natural language documen- 
tation associated with the software components to be stored by 
using a new indexing scheme. This indexing scheme is based 
on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlexical afinities and their statistical distribution. It identifies 
a set of attributes for each document to represent a functional 
description of the associated software unit. In the second 
stage, GURU assembles the indexed objects into a browsing 
hierarchy by using a hierarchical clustering technique which 
draws information exclusively from the indices identified 
in the previous stage. Thus GURU supports both classical 
linear retrieval, in which candidates are ranked according to 
a numerical measure that evaluates how well they answer 
the query, and cluster-based retrieval in which the browse 
hierarchy directs the search for the best candidate. 

Section I1 briefly compares the artificial intelligence and 
information retrieval approaches to construction of software 
libraries and explains why we follow an IR approach. Section 
I11 describes the indexing method. Section IV presents the 
classification approach and the clustering technique used for 
assembling the library. Section V deals with the retrieval stage. 
Section VI gives results using our GURU implementation and a 
formal evaluation based on usual methodology for evaluating 
information retrieval systems. Finally, Section VI1 summarizes 
the main contributions of this work. Related work is discussed 
as relevant throughout the paper. 

11. AI VERSUS IR APPROACH 

Previous efforts for building reuse systems can be roughly 
classified into two groups according to the approach' adopted, 
the free-text indexing approach as defined in information 
retrieval (IR), and the knowledge-based approach as defined 
in artifical intelligence (AI). 

The IR free-text approach2 consists of drawing information 
only from the structure of some documents which provide 
information about the software components. No semantic 
knowledge is used and no interpretation of the document is 
given. The reuse tool attempts to characterize the document 
rather than understand it. There are currently very few software 
library systems that follow such an approach or use existing 
IR techniques. Among them, the RSL [6] system, for instance, 
automatically scans source code files and extracts comments 
explicitly labeled for reuse with attributes such as keyword, 
author, date created, etc. The keyword attribute provides a 
list of free-text single-term indices very much like those used 
in IR tools. The REUSE [3] system provides a menu-driven 
front end to an information-retrieval system. Thus all kinds of 
software objects, including user menus and system thesauri, 
are stored as textual documents. These two systems use some 

'Another approach is the hypertext approach (see [15] for a survey). We 
do not address this approach here because we are concerned with the type of 
information used to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbuild a library rather than with searching. The hypertext 
approach is orthogonal to the approaches described here; and hypertext tools 
can easily he integrated with most IR- or AI-based reuse tools. 

2For brevity we will refer to this approach as the 1R approach even though 
some IR techniques do not use free-text indexing. 

kind of IR-related technique. However, the only system, to 
our knowledge, which applies a pure IR free-text approach 
is the system proposed by Frakes and Nejmeh [16]. They 
use the CATALOG information-retrieval system for storing and 
retrieving C software components. Each component is charac- 
terized by a set of single-term indices that are automatically 
extracted from the natural-language headers of C programs. 
Therefore the construction of the C components repository 
is done automatically and does not require any pre-encoded 
knowledge, as in RSL, for instance. 

In contrast, in the knowledge-based approach the reuse tool 
aims at understanding the queries and functionality of compo- 
nents before providing an answer. Knowledge-based systems 
are often smarter than IR systems. Some of them are context 
sensitive and can generate answers adapted to the user's 
expertise. As a trade-off, they require some domain analysis 
and a great deal of pre-encoded semantic information, which is 
usually provided manually. They are based upon a knowledge 
base which stores semantic information about the domain 
and about the language itself in case of a natural-language 
interface. The main problem of applying this approach in the 
context of software libraries is that many domains cannot be 
easily circumscribed and the domain analysis is very difficult 
[lo]. This makes the construction of such systems very tedious 
and expensive. Examples of AI or knowledge-based reuse tools 
are numerous; e.g., [32], [41], [ 2 ] ,  [ l l ] ,  [39]. 

The AI approach can be useful in some applications. How- 
ever, we prefer the IR approach for reasons of 

Cost: the library system is built entirely automatically 
Transportability: the library system can be rebuilt for any 
domain, since it does require manually provided domain 
knowledge 
Scalability: the repository can be easily updated when 
new components are inserted, either by recompiling the 
indices or by applying incremental techniques; the index- 
ing task is entirely mechanical. 

We therefore apply a pure IR approach, in the same direction 
as that of Frakes and Nejmeh, by automatically building free- 
text indices that characterize software components. For more 
effective retrieval we also use a free-text method which is 
richer than the single-term indexing used in the IR-based tools 
described above. The following section explains our source of 
information and how the indexing is performed. 

111. THE INDEXING STAGE 

The major advantage of automatic indexing over manual 
indexing, besides the obvious cost considerations, is that it 
allows a unified scheme which ensures that indices will be 
compatible with each other. The idea is to extract attributes 
from an existing source of information; i.e., the code and 
natural-language documentation. Some work has been done 
toward extraction of primitive functional information from 
the code (281, [36]; however, the richer source of functional 
information is the natural-language documentation, assuming 
that any is available. 

An examination of numerous samples of code allowed us 
to reach the conclusion that some useful information can be 
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extracted from programs written in a high-level language using 
good programming style, whereas little conceptual information 
can be found in typical real-world code chosen at random 
[26]. Unfortunately, even when dealing with well-written code, 
there is a very low probability that the programming styles of 
the various pieces of code will be consistent. Even a single 
programmer may use totally different identifiers for expressing 
the same concept from one day to another. Since software 
components come from multiple sources in the context of 
large software libraries, extracting attributes from code would 
necessitate as many indexing schemes as there are code 
sources. Another limitation comes from the fact that there 
are many more possibilities for identifiers than for natural- 
language words, since they do not follow any morphological 
or syntactic rules. 

In other words, when there is no way to guarantee good, let 
alone consistent and compatible, programming styles, extract- 
ing attributes from raw code does not give significant results. 
Therefore we prefer concentrating on the other possible source 
of information; i.e., the natural-language documentation either 
inserted into the code- the comments---or associated with 
the code, e.g., manual pages. 

Comments are intended to help programmers understand the 
code and thus may provide functional information. They deal 
with specific parts of the code into which they are inserted and 
they may give information on various parts at various levels of 
abstraction. Extracting functional information from comments 
entails two activities: 

Defining an indexing scheme which allows extracting 
attributes from natural language phrases or sentences 
Relating comments to the portion of code they concern. 

The second activity is very complex in free-style code. 
Indeed, in free-style programming, programmers can insert 
comments wherever and in any format and any length they 
wish. Although comments usually describe the containing 
routine or the one just below, in general it is impossible to 
automatically determine what part of the code is covered. A 
solution would be to consider that all the comments inserted 
in a specific piece of code constitute a global natural-language 
description of the considered code. Unfortunately, this is 
not the case. Comments rank from low-level implementation 
details to high-level description. For instance, in the r m  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. c 
source file in Berkeley UNIX, one can find comments as various 
as: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I* current pointer to end of path *I, or 
/* rm - for ReMoving files, directories & trees. 
*I 

The first conveys no useful functional information, while the 
second hits the mark exactly. In general, there are many more 
low-level-and useless for our purpose-comments than high- 
level ones, and there is no way to automatically distinguish 
between them. Therefore, so long as no style is enforced, it is 
very difficult to extract useful information from comments. 

Let us note, however, that any piece of natural language, 
from comments inserted in the code to design specifications, 
that is specifically related to software code and whose level 
of abstraction is known can bring useful information. Thus 

we are currently working on extracting functional information 
from comments in the framework of RPDE [18], a structured 
software development environment, in which comments are 
linked to the portion of code they describe. In the following, 
though, we try to remain as general as possible and we do 
not assume that any commenting style is enforced. Therefore, 
although our indexing scheme is applicable to any piece of 
natural-language that brings some functional information, we 
will exemplify it through the analysis of manual pages clearly 
related to reusable components, such as UNIx-like manual 
pages. 

In the rest of this paper the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAIX documentation is taken as 
our corpus, since it fulfills the requirement of being structured 
into manual pages. Moreover, the AX documentation can be 
seen as a regular real-world documentation database, since it 
is of average quality as far as commenting style is concerned. 
Many even consider the AX documentation of poor quality 
when compared to Berkeley UNIX documentation due to typos, 
inconsistent style, poor vocabulary, etc. 

A. A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARicher Indexing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUnit: The Lexical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAffinity 

There has been much work in IR dealing with natural- 
language text: a large variety of techniques have been devised 
for indexing, classifying, and retrieving documents [33], [34]. 
One of the main concerns in IR is the automatic indexing of 
documents, which consists of producing for each document a 
set of indices that form a profile of the document. A profile is 
a short-form description of a document, easier to manipulate 
than the entire document, that plays the role of a surrogate at 
the retrieval stage. 

Several issues need to be addressed when indexing a doc- 
ument with respect to the nature and form of the produced 
indices. More precisely, the indexing vocabulary can be ei- 
ther controlled or uncontrolled. In the controlled vocabulary 
approach only a restricted set of indices are authorized (for 
example, in MEDLARS [34]), whereas in the uncontrolled 
vocabulary or free text approach, there is no constraint on the 
nature of the indices. It has been shown that both approaches 
are comparable in terms of performance [14], [34]; however, 
we prefer the uncontrolled vocabulary approach in the context 
of software reuse for the same reasons of cost, portability, and 
scalability. Indeed, defining an adequate controlled vocabulary 
is a manual domain-dependent task and therefore suffers from 
the same drawbacks as the encoding of a knowledge-base. 

Another important issue in automatic indexing is the nature 
of the indices. The most usual form is a single-term index, 
each of which is a single word without contextual information. 
It has also been proposed to use term phrases as indexing 
units rather than single terms so as to refine the meaning of 
constituent words. However, the use of word co-occurrences 
has not brought good results. As expressed by Salton [33, p. 
2961: 

“ . . . a phrase-formation process controlled only 
by word co-occurrences and the document fre- 
quencies of certain words is not likely to gener- 
ate a large number of high-quality phrases.” 

A possible solution to this problem is to use syntactic 
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information such as part-of-speech derived from specially 
formatted dictionaries [23] in order to provide further control 
over phrase formation or more refined analysis including 
semantics [38]. But [33, p. 2981: 

“The available options in phrase generation ap- 
pear limited, and the introduction of costly and 
refined methodologies may bring only marginal 
improvements.” 

We are more optimistic and believe that indexing units richer 
than single terms can be used, and that they can bring signif- 
icant improvement at low cost. The atomic unit we propose 
to use in order to demonstrate this is derived from the notion 
of lexical affinity. In linguistics, a syntagmatic lexical affinity 
(LA), also termed a lexical relation, between two units of 
language stands for a correlation of their common appearance 
in the utterances of the language [8]. The observation of LA’s 
in large textual corpora has been shown to convey information 
on both syntactic and semantic levels and provides us with a 
powerful way of taking context into account [37]. 

We propose to use the notion of LA for indexing purposes 
and restrict the above definition by observing LA’s within a 
finite document rather than within the whole language so as 
to retrieve conceptual affinities that characterize the document 
rather than purely lexical ones. Moreover, we only consider 
LA’s involving open-class words as meaning-bearing, whereas 
LA’s involving closed-class words3 are not. 

Ideally, LA’s are extracted from a text by parsing it, since 
two words share a lexical affinity if they are involved in a 
modifier-modified relation. Unfortunately, automatic syntactic 
parsing of free-style text is still not very efficient [35]. Instead, 
we make use of simple co-occurrence. It has been shown by 
Martin et al. that 98% of lexical relations relate words which 
are separated by at most five words within a single sentence 
[30]. Therefore most of the LA’s involving a word w can be 
extracted by examining the neighborhood of each occurrence 
of w within a span of five words (-5 words and +5 words 
around w). 

The extraction technique consists of sliding a window over 
the text and storing pairs of words involving the head of the 
window (if it is an open-class word) and any of the other 
open-class elements of the window. The window is slid word 
by word from the first word of the sentence to the last, the 
size of the window decreasing at the end of the sentence so as 
not to cross sentence boundaries4, since lexical affinities cannot 
relate words belonging to different sentences. The window size 
being smaller than a constant, the extraction of LA’s is linear 
in the number of words in the document. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn algorithm for 
the sliding window technique is presented in Fig. 1. Maarek 
and Smadja have used a similar technique in [29], which was 
also based on Martin’s results [30], but more adapted to the 
analysis of large corpora. 

In summary, the first stage in indexing a manual page 
consists of extracting all the potential LA’s by using the 
sliding window technique. Once extracted, the potential LA’s 

In general, open-class words include nouns, verbs, adjectives, and ad- 
verbs, while closed-class words are pronouns, prepositions, conjunctions, and 
interjections. 

4The isolation of sentences is the only parsing performed. 

For zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAeach sentence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS the document zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd 
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Fig. 1. Sliding window technique. 

are stored under their canonical form, in which each word is 
represented by its inflectional root, or lemma, i.e., the singular 
form for nouns and the infinitive form for verbs. The potential 
LA’s extracted from the manual page of mv in AX and ranked 
by frequency of occurrence are presented in Table I. For the 
sake of the comparison, a list of the single words extracted 
from the same manual page is shown in the first column, also 
ranked by frequency of appearance. 

Among the extracted lexical relations, some correspond 
to abstractions of the considered document and some do 
not. In a first stage, we isolate actual affinities by using 
frequency criteria. It has been demonstrated that the frequency 
of occurrence of a term within a document is related to its 
importance in the text [25]. This is also true for the common 
appearance of pairs of words and even more for lexical 
affinities. 

B. From LA’s to Indices 

When analyzing a document, many potential lexical affini- 
ties are thus identified. Some of these lexical affinities are 
conceptually important and some are not. As seen in Table 
I, frequency of appearance is a good indicator of relevance. 
However, some noise exists, mainly due to words appearing 
too often in a given context. In order to reduce the influence 
of such words it is necessary in the second stage to select from 
among the lexical affinities identified only the most represen- 
tative ones; i.e., those containing the most information. 

We have defined a measure evaluating the resolving power 
of an LA. It is based upon the quantity of information of each 
of the words involved in the LA as well as upon the frequency 
of appearance of this LA within the considered document. The 
quantity of information of a word within a corpus is defined as: 

INFO(W) = - logz(P{w}) 

where P{w} is the observed probability of occurrence w in 
the corpus [4], [34]. Therefore the more frequent a word is in 
a domain, the less information it carries. From this definition 
we infer the definition of the quantity of information of an 
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TABLE I 

MANUAL PAGE 

Open-class Frequency LA’s Frequency 

KEYWORDS AND LEXICAL AFFINITIES CLASSIFIED BY FREQUENCY IN THE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmV 

Words 

file 30 

directory 14 

mv 11 

files 8 

new 7 

name 7 

move 7 

newname 6 

is 6 

system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 

one 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
. . .  . . .  

file move 

be file 

directory file 

file system 

file overwrite 

file mv 

file name 

name path 

do file 

directory move 

different file 

9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8 

I 

5 

5 

5 

4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 

3 

3 

3 

LA ( w ~ ,  w2)  as: 

To simplify the computation of this factor in the rest of 
this work, we consider words within the textual universe as 
independent  variable^.^ Thus we use the following formula for 
computing the quantity of information of an LA: 

Then we define the resolving power of an LA in a given 
document as follows: Let ( w l ,  w2,  f )  be a tuple retrieved while 
analyzing a document d, where (wl, w2) is an LA appearing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf 
times in d. The resolvingpower6 of this LA in d is defined as: 

p ( ( u 1 1 , ~ ~ 2 , f ) )  = f X INFO((Wi ,w2)) .  (4) 

The higher the resolving power of a lexical affinity is, the more 
characteristic of the document it is. The resolving power allows 
us to evaluate the importance of a lexical affinity within a text 
by taking into account both its frequency of appearance in the 
text and the quantity of information of the words involved. 

This assumption represents only an approximation, since words in English 
are definitely not independent but are distributed according to the rules of the 
language. 

6This notion is related to that of mutual information [4]. 

TABLE I1 
COMPARISON OF FREQUENCY AND  VALUE FOR THE LA’S IN mv 

LA’s Frequency LA’s P 

file move 

be file 

directory file 

file system 

file overwrite 

file mv 

file name 

name path 

do file 

directory move 

9 

8 

7 

5 

5 

5 

4 

3 

3 

3 

file move 

file mv 

directory file 

file overwrite 

directory move 

file system 

mv rename 

move mv 

different file 

name path 

8.38 

4.36 

4.03 

3.87 

1.98 

1.95 

1.71 

1.58 

1.40 

1.33 

Thus, even though the lexical affinity (be f i l e )  appears 
very often in an Arx manual page, it has only a small resolving 
power, simply because the quantity of information of both the 
words “file” and “be” in the Ax documentation is low. 

In order to be able to compare the relative performances in 
terms of resolving power of different documents, we transform 
the raw p score into a standardized score. The standardized 
score, or z-score, is defined as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApt = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( p  - p)/., where p and 
o are the average and standard deviation of the p-values. This 
transformation does not alter the distribution and allows us to 
evaluate the relative status of the score in the p distribution. 
In the rest of this paper, the p-values we give as examples will 
therefore represent the z-score rather than the raw score. 

Table I1 compares the list of LA’s for the mv manual page 
ranked by frequency and resolving power. In it, the LA (file 
move) has a greater resolving power than any of the following 
LA’s. Moreover, some noisy LA’s such as (do file) or (be file) 
(in italic fonts in the table) have disappeared because both 
words involved in the LA’s are highly frequent in the corpus 
and thus have a low quantity of information. 

For each document, we select as indices those LA’s with 
the highest resolving power. More precisely, we are interested 
in the LA’s which represent peaks in the distribution of p -  
values. Therefore we keep as indices only the LA’s whose p 
value is one standard deviation above the mean; i.e., such that 
p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 p + U ,  where j? represents the mean and 0 the standard 
deviation of the distribution of p values within one document. 
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TABLE I11 
LA’S RANKED BY p-VALUES FOR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACp 

TABLE IV 
LA’s RANKED BY p-VALUES FOR mkdir 

LA’s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP Z  LA’s P 

copy file zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6.49 directory make 5.08 

directory file 2.41 create mkdir 2.74 

file source 2.15 directory mkdir 2.55 

infile subdirectory 1.98 directory permission 1.48 

contain subdirectory 1.30 directory write 1.03 

COPY CP 1.30 

copy regular 1.02 

The choice of such a threshold7 is reflected in Tables 11-IV, 
where only LA’s with a z-score greater than 1 are presented. 

The set of LA’s of a document, selected by ranking p-values 
and taking those one standard deviation above the mean, forms 
the profile of the document. The major contribution of this 
technique consisted in adapting the notion of lexical affinity 
for indexing purposes. We gave some intuitive indications on 
how an LA-based indexing scheme is richer than a single- 
word scheme. We will demonstrate later that it ensures a better 
retrieval effectiveness. 

The next section explains how software components can 
be stored and classified using the profiles produced at the 
indexing stage. 

IV. THE CLASSIFYING STAGE 

Normally, when a user wants to use a software library, 
he/she first has to access a library which might contain the 
desired component, then has to provide a formal description 
of the researched component according to the vocabulary 
understood by the library system. Unfortunately, in most cases 
this ideal scenario does not work out. The main reason is that 
in real life applications the component perfectly matching the 
user’s requirements does not exist in the library, or that it is 
not indexed as the user had guessed it would be. 

In such cases, a traditional database management system 
fails to help the user. Indeed, to be retrieved from the database, 
a component must exactly match the query.8 Such strict 
matching is inappropriate in a software library system, since 
the user often cannot know the exact characteristics of the 

desirable component and, even when helshe does, there is 
rarely a perfect match. 

Software libraries should not only permit retrieving candi- 
date components which perfectly or partially match the query, 
but also permit browsing among components that share some 
functionality. It is therefore desirable to structure the library 
for making the search, retrieval, and browsing mechanisms as 
fast and convenient as possible in order to make the access to 
the library attractive. 

We propose here to perform the search and retrieval op- 
erations using a conventional inverted index file structure, 
and to cluster the library in order to facilitate the browsing 
operation. Section IV-A explains how the index repository is 
built using an inverted file structure, and Section IV-B presents 
the clustering technique used to build the browse hierarchy. 
Section V explains how they are used to perform the search 
and browsing operations. 

A.  Building the Index Repository 

The goal is to allow fast and easy identification of candidate 
components during retrieval. Thus an inverted file index is 
derived from the profile repository built during indexing. Index 
LA’s are defined as tuples (w, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAid) in which w precedes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw’ in 
the lexicographic order. The reason for ordering w and w’ is 
to avoid duplicate LA’s by forcing every LA into a canonical 
form. Moreover, we also store w and w’ as individual indices 
in order to detect partial matching, only one word in common, 
between query LA’s and document LA’s. 

Every index points toward a list of pairs ( d , p )  in which d 
is the document whose profile contains the index and p is its 
corresponding normalized resolving power. The information 
associated with each index is accessed through a trie data 
structure. Using a trie data structure is advantageous in our 
case because of the numerous repeated prefixes. 

’This classical threshold guarantees to keep only a small percentage of the 
sample elements in most distributions. 

‘A notable exception is ARES [20], a relational database which allows 
flexible interpretation of queries. In ARES, the similarity between elements 
can be evaluated via a lookup in a table that has to be provided beforehand, 
ARES is not discussed here, since its purpose is not to classify software. 
Further, it has the drawback of requiring a great deal of pre-encoded 
knowledge. 

The stored information is used to retrieve and rank candi- 
dates as explained in Section V. 

B. Building the Browse Hierarchy 

As previously, browsing is in software 
library systems. The most common way to make browsing 
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operations possible is to group items judged to be similar by 
using clustering operations [33]. Jardine and van Rijsbergen 
[21] pointed out that “associations between documents convey 
information about the relevance of documents to requests.” 
They demonstrated that cluster-based retrieval strategies are 
as effective as linear strategies, and much more efficient. 
Thus many clustering methods have been used for information 
retrieval [21], [7], [17]. The most popular clustering methods 
are the hierarchical agglomerative clustering (HAC) methods, 
because their search and construction techniques are more 
efficient than for most nonhierarchical methods [21]. 

The following sections define some terminology in cluster 
analysis, describe the algorithms we used to build the browse 
hierarchy, and present some samples of the browsing hierarchy 
obtained for the Arx library. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I )  Some Terminology in Cluster Analysis: Classification by 
cluster analysis has been of long-standing interest in statistics 
as well as various other fields. It can be traced back to the work 
of Adanson in 1757 [1], who used numerical clustering for 
classifying botanic species. Statisticians and taxonomists have 
widely developed the field since then. Cluster analysis now 
offers a wide range of techniques for identifying underlying 
structures in large sets of objects and revealing links between 
objects or classes of objects. One particular application of 
classification is the building of libraries. 

There is no strict definition of cluster, but it is generally 
agreed that a cluster is a group of objects whose members are 
more similar to each other than to the members of any other 
group. Typically, the goal of cluster analysis is to determine a 
set of clusters, or a clustering, such that intercluster similarity 
is low, and intracluster similarity is high. The similarity 
between objects is evaluated via a numerical measure called a 
dissimilarity index defined as follows. 

Let 0 be a set of objects. A dissimilarity 
index zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS over R2 is a function from R x R to R+ that satisfies 
the following properties: 

Definition 1: 

Note that a distance is a dissimilarity index, but that a 
dissimilarity index does not necessarily satisfy the triangle 
inequality and therefore is not a distance. 

The dissimilarity index between objects is used as the basic 
criterion to determine clusters. Clustering techniques allow 
identifying not only clusters, but also relationships among 
them. The structure of the set of clusters as well as their 
internal structure vary with the clustering technique. Clustering 
methods are usually classified’ according to the structure of the 
set of clusters produced-e.g., hierarchical, flat, overlapping, 
etc.-as well as the technique used-e.g., divisive, agglomer- 
ative, incremental, etc. As explained previously, hierarchical 
agglomerative techniques are very convenient for building 

With the recent introduction of conceptual clustering [31], another distinc- 
tion has been introduced according to the definition of the clusters obtained 
in extension (Le., by enumeration of its members) for regular (or numerical) 
clustering and in intension (i.e., by membership rules) as well as in extension 
for conceptual clustering. 

browse hierarchies. The basic principle that these techniques 
follow is presented below. 

Hierarchical numerical clustering aims at building hier- 
archies over a set of objects in which each internal node 
corresponds to a cluster of objects and each leaf represents 
an individual object, or more precisely, a singleton cluster. 
Most hierarchical clustering methods are based upon the 
same general method, called the Hierarchical Agglomerative 
Clustering (HAC) method [ 121, which consists of iteratively 
gathering objects into clusters until only one cluster remains. 

The HAC general method iteratively builds a sequence 
of partitions or level clusterings of R; that is, a sequence 
of disjoint clusters covering the original set of objects R. 
The level clusterings form coarser and coarser partitions 
by an iterative process, beginning with the level clustering 
formed by the set of singletons in the power set p(R), 
i.e., {{ol), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ 0 2 } , .  . . , {on}> ,  and ending up with the coarsest 
partition of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR, i.e., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0). The final output of this clustering 
process is a particular form of hierarchy called a dendogram. 
The HAC general method can be expressed as follows: 

Start with the subset of p(R) formed by singleton 
elements 
Repeat the following steps iteratively until there is only 
one cluster 

a. 
b. 

Identify the two clusters that are the most similar 
Merge them together into a single cluster. 

The HAC method requires a measure of similarity not only 
over the set of objects, but also over the set of clusters. The 
dissimilarity index between clusters is usually derived from 
a user-given dissimilarity index S between objects. The way 
of defining A has a direct influence on the final form of 
the hierarchy obtained. Once a dissimilarity index zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS between 
objects is provided, HAC methods differ only by the choice 
of this measure. The most commonly used HAC methods are 
the single link and complete link [12]. Many other methods 
such as the centroid method, Ward’s method, etc., define 
still other dissimilarity indices, but most of them require the 
dissimilarity index over R to be a distance; that is, to satisfy 
the triangle inequality. The reader should consult [13], [12] for 
an extensive survey of the HAC methods. The time complexity 
of the HAC algorithm is at most O(n2 logn), where n is the 
number of objects involved. For some particular definitions of 
A, it can be reduced to O(n2) .  
2) Adapting a Clustering Technique for Building a Browse 
Hierarchy: As explained above, we propose to use a HAC 
technique to generate a browse hierarchy. In this perspective, 
we: (i) need to define a measure of similarity between the 
objects considered, e.g., the documents, and (ii) explain how 
to make a browse hierarchy out of the dendogram generated 
by the HAC technique. Let us address these two points. 

In information retrieval, numerous measures of similarity 
between documents, also termed measures of association or co- 
efficients of association, have been defined [40]. The simplest 
of all is defined as: 

IX fl YI (7) 
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Fig. 2. Principle of selection of level clusterings. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX and Y are the profiles of two documents. This mea- 
sure represents the number of common index units. Various 
other measures [40] have been defined such as: 

21x Dice's coefficient 
1x1 + IYI 

I x  " Jaccard 's coefficient (9) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I x  '1 ~a l ton 's  Cosine coefficient. (10) 

IXUYI 

1x1 x IYI 

They can all be considered as normalized versions of (7), since 
they are functions of the cardinality of X, Y, X n Y, or X U Y. 

In our context, we have more information than just the 
presence or absence of index units in the profile, and therefore 
we propose to take into account the p-values of LA'S in the 
evaluation of the measure of association between documents. 
For any profile X = { ( i , p ) } ,  p ( X )  is the projection set 
of X over the set of indices. Then the simplest measure is 
Ip(X) np(Y)1; i.e., the number of indices in common in both 
profiles. In order to take into account the resolving power of 
indices as well, we define our measure 6 for two profiles X 
and Y ,  such that X # Y ,  as: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

qx, Y) = ( P X ( i )  x PY (2)) (11) 
iEP(X)nP(Y) 

where p ~ ( i )  is the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp value of the index i in the profile X ,  and 
similarly for Y .  Note that 6 is a measure of similarity rather 
than a measure of dissimilarity. Its inverse is a measure of dis- 
similarity as long as 6 ( X ,  X )  is set to a sufficiently large arbi- 
trary value so that its inverse can be considered essentially null. 

Given such a measure of similarity between profiles, we 
define a measure of similarity between clusters according to 
the single link or complete link techniques, for instance, and 
then use the hierarchical agglomerative clustering algorithm in 
order to build a browse hierarchy of software components. Let 
us note that we also made some experiments in earlier versions 
of GURU using an incremental conceptual clustering technique 
[27] for constructing the browse hierarchy. However, despite 
interesting results, the cost of building and maintaining the 
hierarchy was prohibitive (exponential time like for most 
conceptual clustering techniques) when compared to regular 
clustering techniques, and did not appear to be better in terms 
of retrieval effectiveness. 

~~ ~ 

Fig. 3. Selection of level clusterings. 

All the HAC techniques build a binary hierarchy. Not all 
levels of the hierarchy are equally significant; therefore the 
usual approach is to select manually the most significant level 
clusterings, this task being usually performed by a data analyst. 
The following proposes a method for automatically identifying 
the most useful level clusterings and thus producing a not- 
necessarily binary hierarchy. 

This method of selection is based on the following principle. 
Each level clustering in the dendogram corresponds to the 
merging of two clusters in the previous level clustering and 
therefore to a particular value of the similarity measure. If 
we label the dendogram with these values, yn, . . . ,y1, n 
being the number of objects, from the bottom to the top 
of the hierarchy, it can easily be shown that the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAyi's are 
(nonstrictly) monotonic (increasing for dissimilarity measures 
and decreasing for similarity measures) for the single and 
complete link-clustering methods. We propose to select those 
levels which correspond to the gap in the distribution of yi7s 
by (i) plotting the segment connecting the pairs y;+1, y; from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i = n- 1 to i = 1, and (ii) keeping the levels which correspond 
to the steepest slopes. This represents the intuitive method 
that a data analyst would apply. Fig. 2 gives an intuitive 
presentation of the method via an example, whereas Fig. 3 
gives the formal algorithm. The time complexity of the latter 
is linear in the number of objects. 

C. Some Examples 

Portions of the browse hierarchy built from the AIX doc- 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. Portion of AIX hierarchy (single link, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0.5) . 

Fig. 5. Portion of AIX hierarchy (single link, k = 0.5) . 

umentation are shown in Figs. 4 and 5. In Fig. 4, some 
interesting clusters are isolated. Thus in the figure we have 
a cluster that gathers commands related to the manipulation of 
regular expressions, and a cluster that gathers editors. These 
two clusters are also part of the same supercluster, mainly 
because these editors permit the manipulating of regular ex- 
pressions. Then there are two outliers which could not be 
included in a cluster: makekey and termdef. Then a small 
cluster groups ps and kill, which are strongly related since 
they give information about processes or handle them. Finally, 
there are two big clusters, one for yellow pages commands and 
another for SCCS routines. The clustering is not always of such 
good quality either because of the nature of the documentation 
or the principle of clustering itself. For instance, as can be seen 

in Fig. 5, the commands xcalc and dc, which are calculators, 
belong to the same cluster, but bc has been forgotten in this 
cluster. This is due to the fact that the manual page of bc does 
not refer to the concept of calculator at all, but defines bc as an 
interpreter for an arithmetic language. The real problem with 
clustering is illustrated with the third cluster in this figure, 
which gathers batch, at, crontab, date and istat. 
This cluster has been formed because all these commands are 
related to the notion of date or time; unfortunately, this is not 
the main functionality of all of these commands and therefore 
this cluster is somehow misleading. Let us note, however, that 
the lower level cluster including at and batch is a good one. 

The hierarchy thus generated is used as an aid to browse 
when nothing relevant has been retrieved via linear retrieval or 
in order to increase recall, since there is no way to be sure that 
all the relevant components have been retrieved at the linear 
retrieval stage. It can also be used as the basic repository to be 
searched during retrieval, but we prefer to use the traditional 
linear-retrieval technique instead, because it is clearly more 
trustable considering the problems described above. 

By nature, this indexing technique suffers from noise, since 
it is based on only statistical observations. Noisy indices 
involve generally misspelled or unmeaningful strings of char- 
acters that are mixed with natural language (for describing 
instructions, for instance), or "side-concepts'' such as the time, 
day, and month in the example cited above. This noise cannot 
be avoided when dealing with free-style text. 

Fortunately, these noisy LA's do not cause real trouble at the 
linear retrieval stage, since there is a very low probability that 
the user would use unmeaningful character strings in her/his 
queries. So noisy LA's are part of the profiles of components 
but rarely lead to the selection of the considered component. 
On the other hand, noisy LA's might induce the formation 
of poor quality clusters, but generally only higher levels of 
the hierarchy are affected, since "side concepts" are not given 
much weight when evaluating similarity. Section V-C explains 
how this browsing hierarchy is used at the retrieval stage. 

V. THE RETRIEVAL STAGE 

The previous sections explained how libraries of reusable 
components are assembled. We also need to be able to re- 
trieve the components which match the requirements when at 
least one exists, or to assist in the selection of the closest 
components via a browsing facility. 

The usual scenario when retrieving a component is the 
following: 

1) Query specification: The user expresses a query accord- 
ing to the authorized vocabulary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2)  Linear retrieval: A search locates the candidate com- 
ponents and the candidates are ranked according to their 
degree of match with the query 

3) Browsing: Cluster-based retrieval is initiated when no 
adequate components have been found by the linear 
retrieval. 

The following explains how these three stages are supported 
in our approach. 
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Fig. 6. Linear retrieval technique. 

A. Query Specification 

Using uncontrolled-vocabulary indexing, as we do, presents 
clear advantages at the query specification stage. Indeed, a 
minimum of constraint is put on the user as helshe expresses 
hislher query. The user does not have to learn a specific index 
language or understand the organization of the library. Helshe 
can express hislher query in natural language, and then the 
indexing component is applied in order to translate the query 
into attributes understandable by the system. Exactly the same 
technique is used for extracting LA’s from natural-language 
queries as from natural-language documentation. This provides 
a very convenient and user-friendly interface between the user 
and library system, because the user is not constrained by any 
rigid formalism. 

The queries can be expressed in free-style natural language. 
However, the user must be aware of the fact that queries 
are not really interpreted, but are rather considered as a 
description of the functionality of the desired component. For 
instance, the user could express queries of the form, “how 
can I do such and such,” since only the “such and such” 
would be considered for indexing, the rest being either closed- 
class words or words with a low quantity of information. 
Formulating a query which necessitates some understanding, 
such as a query including negations such as “but not,” would 
only lead to wrong interpretation. Let us note that it would 
be possible at this point to allow some simple interpretation 
of the queries by allowing, for instance, the usual Boolean 
connectors (“and”, “or”, “but not”). This would clearly boost 
the performance of the library system. However, since our 
point here is to show how far we can go without understanding 
either the queries or documents, we do not discuss these 
possible enhancements. 

B. Linear Retrieval 

In order to retrieve the best candidates for a given query 
we apply the usual IR method, which consists of considering 
the query as a document and retrieving the components in the 
repository whose profile is the most similar to the profile of 
the query. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA possible measure of similarity is the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 measure 
defined in (11). The most similar components are then returned 
to the user, ranked in order of decreasing similarity with the 
query. The linear retrieval technique is presented in Fig. 6. 

Fig. 7. Example of linear retrieval 

In case of low recall-that is, if the user is not satisfied 
with the retrieved candidates-a more fuzzy search can be 
performed that also considers partially matching LA’s. In 
that case, only LA’s which partially match a query LA (i.e., 
have one word in common) are considered. This significantly 
increases the recall, but as a trade-off drastically decreases 
the precision. It should therefore be used only when the user 
considers that nothing relevant has been retrieved with the 
initial query. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn example of linear retrieval is given in Fig. 7. 

In Fig. 7 the candidates are ranked in order of decreasing 
similarity with the query (“How can I locate regular expres- 
sions in a file”). Therefore the top candidates usually answer 
the query the best. In the example shown in Fig. 7, all the 
candidates retrieved deal more or less strongly with regular 
expressions. Even the two last candidates, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdos first and 
dosnext, do not answer the query but are very slightly 
related, since they allow locating DOS files which match a 
pattern. 

C. Browsing, Cluster-Based Retrieval 

The retrieval stage in classical library management systems 
is often limited to locating a set of components exactly 
matching the user’s query or, when such components do not 
exist, related components. Library systems do not usually 
provide any further assistance. 

In our approach, the user may communicate interactively 
with the system in order to direct the browsing when he/she is 
not satisfied with the first retrieval yielded. The linear search 
retrieves the most related candidates, and then the browsing 
process begins. 

Typically, the user starts from one of the candidates re- 
trieved by the linear search and explores the hierarchy bottom- 
up. Consider the browse hierarchy given in Fig. 4 and suppose 
that a user gives a query asking about ways “to identify a 
process.” If the first candidate retrieved at the retrieval search 
is kill, then the user can access the browse hierarchy and 
explore the clusters that include kill in order to determine 
which components are strongly related. In our example, the 
user will find ps as the most related component, which is 
clearly a better candidate for this given query than the one 
retrieved by the linear search. Another example is illustrated 
in Fig. 8. The two relevant candidates in AIX for the query 
“establish a new password” are passwd and yppasswd. 



810 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 8, AUGUST 1991 

Fig. 8. Browsing in the hierarchy. 

However, the linear retrieval retrieves only zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApas swd simply 
because the query had no intersection with the profile of 
yppasswd. At this point the user could reformulate the query, 
but helshe might not be aware that he/she has missed some 
relevant candidates. Using the browse hierarchy is therefore 
more convenient in order to check if some unexpected can- 
didates have been missed. In the example, both passwd and 
yppasswd are strongly related: their profiles share the LA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(change passwd)" and therefore belong to the same low-level 
cluster in the browsing hierarchy. Browsing in the hierarchy 
from passwd allows the user to retrieve the other relevant 
candidate. These two examples show how a browse hierarchy 
can help improve the finding of possible candidates that could 
be missed via linear retrieval. 

At any point the user can consult the profile of a component 
in order to have more information about its functionality. 
Fast access to profiles is achieved via the profile repository. 
The user can also provide, at any stage, further information 
in order to get a finer retrieval. By browsing, helshe gets 
more information about components and learns how to provide 
discriminating queries. 

VI. EMPIRICAL RESULTS 

The approach described in the previous sections has been 
embodied in a tool, GURU, which has been fully implemented, 
in C, under AIX on an RS16000. The system has reached a 
satisfactory first stage and the implemented version yields 
quality results. 

We have tested our system on the entire AX documentation 
available to us, which describes approximately 1100 AX 
components. When building the index repository, we therefore 
processed the entire documentation which forms a corpus of 
more than 800000 words, and we identified 18000 LA's for 
the 1100 profiles. 

In order to evaluate GURU'S performance, we used the 
following criteria: 

User effort. This consists of all the effort which must be 
expended by the user in order to use the library system. It 
is very difficult to formally measure user effort. However, 
thanks to the uncontrolled vocabulary approach which we 
applied, we believe that the effort which must be invested 
for using GURU is minimal. Queries can be formulated in 
natural language, and therefore the user is not required to 
learn any index language and formalism 
Maintenance effort. This consists of all the effort which 
is necessary to keep the system working and up to date. 

"Note that "passwd here is a proper name and different from the noun 
"password" mentioned in the query. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

. 

This effort includes, in particular, indexing new compo- 
nents and adding them to the library. The maintenance 
stage is highly facilitated in GURU. The indexing is 
performed automatically and insertion of new components 
can be done incrementally. Kaplan and Maarek [22] have 
proposed several algorithms for incrementally updating a 
repository of LA-based indices when inserting, deleting, 
or modifying components 
Efficiency. This refers to the average interval between the 
time a query is issued and the time an answer is given. 
Efficiency becomes an issue only if a retrieval takes so 
long that users start to complain. Our experience with 
the system shows that efficiency is not an issue, as the 
response time is reasonable. Profiling the execution of the 
query program showed that the time to perform the query 
was dominated by the time to map the repository file 
into the address space of the query program. The lookup 
operations and the printing of the LA-file name pairs 
consumed almost no time in comparison. Test queries 
involving from 5-15 LA's each took approximately 2.5 s 
on an RT, and 0.15 s on an IBM RISC System16000. The 
better performance of the latter is partly due to its more 
efficient implementation of file mapping 
Retrieval effectiveness. This is clearly the most impor- 
tant performance criterion. It refers to the system's ability 
to provide information services as needed by the user. 

The next section focuses on evaluating the retrieval effec- 
tiveness of GURU. 

Measuring Retrieval Effectiveness zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1) Recall and Precision: The most widely used measures 

for evaluating retrieval effectiveness are recall and precision 
[34]. Recall is defined as the proportion of relevant material; 
i.e., it measures how well the considered system retrieves all 
the relevant components. Precision is defined as the proportion 
of retrieved material which is relevant; i.e., it measures how 
well the system retrieves only the relevant components. Recall 
can also be interpreted as the probability that a relevant 
component will be retrieved, and precision as the probability 
that a retrieved component will be relevant [5]. 

Recall and precision can be defined more formally as 
follows: Let C be the whole collection of components forming 
the library. For each query, C can be partitioned into two 
disjoint sets, R, the set of relevant material, and R, the set of 
irrelevant material. Given the query, the system retrieves a set 
of components c that can also be partitioned into relevant and 
irrelevant material, respectively, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT and F .  Recall and precision 
are defined as: 

recall = 

precision = 

R 

C 

Recall and precision measurement require the ability 
to distinguish between relevant and irrelevant material. 
Relevance judgments are always debatable, and it is a 
very tedious task to produce test collections with adequate 
relevance judgments. To our knowledge, no test collection 
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for software documentation is available. Therefore we 
produced such a test collection-i.e., a set of queries 
and the associated set of relevant material-for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA X  
documentation. The test collection is described in the next 
section. 

2) Experiments and Comparison: This section describes the 
experiments which allowed us to evaluate the retrieval effec- 
tiveness of GURU As a basis for comparison, we have consid- 
ered INFOEXPLORER, which is an IBM RISC System/6000 CD- 
Rom Hypertext Information Base Library zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 191. INFOEXPLORER 
is a recent hypertext system that gives access to the docu- 
mentation for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAIX and to associated programs. INFOEXPLORER 
provides not only hypertext links between pieces of the AIX 
documentation, but also search and retrieval facilities. Queries 
can be expressed as single-word search or multiple-word com- 
pound search with no control of vocabulary. The compound 
search, which is the most elaborated, allows the user to express 
a query as a word pattern formed of single words related 
by three possible connectors, “and”, “or”, and “but not”. 
Moreover, the user can restrict the search. He/she can give 
constraints specifying if the pattern words must appear within 
the same article or within the same paragraph, the proximity 
of these words within a paragraph, and the search fields and 
search categories. 

When given such a query, INFOEXPLORER returns a list 
of candidates that exactly fit the query, ranked according to 
the frequency of the pattern in the considered document. No 
profile is built for the documents examined: all words appear- 
ing in the text are considered during the search. Therefore, 
INFOEXPLORER can be expected to have a much higher recall 
but lower precision than GURU. We do not need to also com- 
pare efficiency; i.e., retrieval speed. GURU is, independently 
of implementation, much faster than INFOEXPLORER, since it 
does not explore the entire textual database but a much smaller 
repository formed by the profiles. 

INFOEXPLORER is thus a commercial IR tool which rep- 
resents a good reference for comparison purposes, since it 
is specifically for AX. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAlso, INFOEXPLORER encodes a great 
deal of manually provided information about the structure of 
the documentation. The system has to know about paragraphs, 
titles, etc., and thus has been much more expensive to build 
than GURU. Providing this structural information to our system 
would greatly enhance its performance, but our point here is 
to show that even without such information, our system can 
perform nicely thanks to its indexing scheme. 

GURU and INFOEXPLORER were compared for retrieval 
effectiveness. In order to claim this test to be valid, we 
must fulfill the usual test procedure requirements [34]. These 
requirements are for: 

the queries to be used for test purposes must be user 
search requests actually submitted and processed by both 
systems, 
the test collection must consist of documents originally 
included in the library, chosen in such a way that any 
advance knowledge concerning the retrievability of any 
given component by either system is effectively ignored, 
the number of components considered to be retrieved by 
the two systems must be subject to the same cutoff. 

To fulfill the first requirement, we conducted a survey 
among graduate students in the Department of Computer 
Science at Columbia University in November 1988. This 
survey provided us with a collection of typical queries on 
UNIx-like systems, as formulated by UNIX users ranging 
from naive users to expert programmers. A typical query 
was expressed as a natural-language sentence with an aver- 
age of 3.7 open class words per query describing a desired 
functionality. This kind of query could directly be fed to 
GURU but not to INFOEXPLORER, since the latter’s compound 
search facility accepts only Boolean queries. Therefore feeding 
the queries to INFOEXPLORER required some supplementary 
effort-first choosing the right connectors between open-class 
words extracted from the queries, and possibly dropping some 
words when the recall was too low. In our interaction with 
the compound search facility we had to refine and retry 
the query formulation several times. We kept only the best 
result for comparison purposes, since we wanted to compare 
the tools’ indexing schemes rather than their querying facil- 
ities. GURU’S querying facility requires less user effort than 
INFOEXPLORER’S, but the latter’s could be greatly improved 
if it did not require perfect matches between the Boolean 
query and the candidates, using a similarity measure between 
candidate and query, for instance. The average number of 
open-class words used for questioning INFOEXPLORER was 3. 

As far as the second requirement is concerned, the collection 
considered for test has been the entire AIX library. We con- 
sulted with several AIX experts at IBM in order to determine 
for each query the set of existing relevant components in 
the AIX library so as to be able to evaluate the recall and 
precision. As our test collection was composed of about 
1100 components, we selected 30 queries from among all 
the queries provided by our survey. This ratio corresponds 
to the same number-of-queries per number-of-documents ratio 
as the one which has been used in standard test sets such 
as MED (collection of medical abstracts, 30 queries for 1033 
documents) or CISI” (information science abstracts, 35 queries 
for 1460 information abstracts). 

As far as the third requirement is concerned, since both 
systems ranked the retrieved candidates, we were able to 
compare recall and precision at the same ranks. 

The comparison was performed by measuring, for both 
systems, precision at several levels of recall. We followed the 
usual procedure [40], [34], which consists of 

1) Plotting precision-recall curves for each test query with 
each plot corresponding to a given cutoff value 

2) Extrapolating these curves so as to obtain precision 
values for recall values which were not effectively 
achieved 

3) Deriving from the curves computed in stage (2 )  the 
average precision values at fixed recall intervals so as 
to obtain a single average precision recall curve for the 
system considered. 

We have built such curves for both GURU and INFOEXPLORER 
and plotted them on the same axes (See Fig. 9). The best 

“These test sets have been used for evaluating several IR systems such as 
LSI [9]. 
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Fig. 9. Precision-recall curves (means across queries). 

performance is reached by the system whose curve is closest 
to the area where both precision and recall are maximized, the 
upper right corner of the graph. As was mentioned, because 
of the indexing scheme of both systems we could expect that 
INFOEXPLORER would achieve a lower precision but higher 
recall than GURU. It turned out that the maximum recall, all 
ranks included, achieved by both systems was approximately 
the same, around 88% on the average, but from the graph 
presented in Fig. 9, it is clear that GURU had 15%, on average 
better precision than INFOEXPLORER. 

These results show that for the sample tested, GURU achieves 
higher precision than INFOEXPLORER without losing in recall. 
For this sample, the recall rate is increased when we make use 
of the GURU browse facility. For instance, in several cases, 
some related components were not retrieved during linear 
retrieval, but only during browsing. 

The results of this evaluation should not be seen as final 
definitive results, but only as an indication of what can be 
expected from the GURU system. Until more test collec- 
tions specifically designed for software documentation become 
available, it is not possible to produce statistically significant 
results. Producing large-scale collections requires a great deal 
of effort and is out of the scope of this work, but we hope 
that our work, as well as the work of others, will motivate 
this effort. In the meantime, however, our results are very 
promising. 

VII. CONCLUSION 

We have presented a method for automatically construct- 
ing software libraries from a collection of documented but 
unindexed software components. We discussed the advan- 
tages of using natural-language documentation as opposed to 

source code, assuming that any documentation is available, 
as a source of functional information. We then described a 
new free-text indexing scheme for automatically producing 
document profiles based upon a richer unit than single terms, 
the lexical affinity. All associated software components could 
then be classified, stored, compared, and retrieved via linear 
or cluster-based techniques according to these indices. 

These methods and schemes are embodied in a new tool 
which has been implemented and evaluated for retrieval 
effectiveness. The evaluation compared GURU with the 
INFOEXPLORER hypertext library, built specifically to help 
find software components in the Arx system. The average 
recall-precision curves of both tools were computed. The 
results of this test indicate that GURU ’s performance was 
better than INFOEXPLORER. This result is very encouraging, 
since INFOEXPLORER was much more expensive to build and 
specifically tailored to the AIX library. 

The major contribution of this work consists of bringing 
classical and new information retrieval techniques to bear in 
software reuse. This involved: 

1) Designing a new indexing scheme based on high infor- 
mation content lexical affinities 

2) Adapting classical numerical cluster analysis techniques 
for assembling software components into browse hier- 
archies 

3) Designing retrieval mechanisms specifically adapted to 
the LA-based indexing scheme so as to provide a com- 
plete storage and retrieval framework. 

Finally, the evaluation we have performed seems to indicate 
that Salton’s statement about the limitation of the “phrase 
generation” approach in indexing (see Section 111-A) is overly 
pessimistic, and that significant improvements over single-term 
techniques can be achieved at relatively low cost. 
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