
An Information System Architectural Framework

for Enterprise Application Integration

André Vasconcelos

CEO - Centro de Engenharia

Organizacional, INESC
Rua Alves Redol 9

1000-029 Lisboa, Portugal

andre.vasconcelos@ceo.inesc.pt

Miguel Mira da Silva

Instituto Superior Técnico

Av. Rovisco Pais
1049-001 Lisboa, Portugal

mms@dei.ist.utl.pt

António Fernandes

Instituto Superior Técnico

Av. Rovisco Pais
1049-001 Lisboa, Portugal

antonio.fernandes@gsi.inesc.pt

José Tribolet

CEO - Centro de Engenharia

Organizacional, INESC
Rua Alves Redol 9

1000-029 Lisboa, Portugal

jose.tribolet@ceo.inesc.pt

Abstract

Information system (IS) architectures have not paid
enough attention to integration in the past because

integration was not important to build ISs from scratch.

However, with the variety and number of ISs in

medium/large organizations increasing, including ERP

systems, the need for integration is bigger than ever.

Furthermore, most organizations now want to integrate
their ISs with those belonging to other organizations. In

this paper we propose an extension to our previous

proposals for representing IS architectures in order to

properly support a large variety of integration scenarios

between IS, including intra and inter organizations. In
particular we support manual and automatic,

synchronous and asynchronous integration. We also

present an example to illustrate the proposal with real

world IS integration needs.

Keywords: Information System Architecture, Information

System Integration, CEO framework, Enterprise

Architecture, Enterprise Application Integration.

1. Introduction

Integration between software components has always

been a fundamental part of any information system.

Recently, its importance has been growing due to the need

of integrating diverse information systems, both within

and between organizations. The move towards ERPs in

the last 10 years has not reduced the need for integration,

but it has even increased it. And integrating diverse

information systems to react online to external events is a

necessary condition for e-business [1].

Information system architectures (ISAs) have not paid

sufficient importance to integration because they assume

that enforcing the existence of a single database

eliminates the need for integration.

Although this might be true, within certain proprietary

IS, the fact is that more and more organizations are

installing a number of incompatible information systems

(some are ERPs, but most are specialized for a specific

task) that cannot share a single database but need to share

data. So the need to integrate information systems cannot

be avoided anymore, and this leads to new challenges in

terms of information system architectures.

In this paper we build on previous research performed

by our research group (CEO) in this area and complement

this research with a proposal to incorporate integration

aspects into an ISA.

The paper starts with an overview of information

system architectures and presents our own CEO

framework that had already identified high-level concepts

for representing integration. In particular, a concept called

“IS Service” can be used to represent integration between

two information system components. In our previous

work however, nothing had been proposed to represent

integration at the application or technological levels.

We then present a brief introduction to the most

important concepts in integration, in particular to show

how much richer services integration can provide for than

the current RPC-like synchronous services. These RPC-

like services, for which Web Services [2] are but the latest

incarnation, can be used to integrate software

components, but are clearly inappropriate to integrate

information systems – especially across organizations.

Assuming the limitations of current ISA to represent

integration are clear, we then propose a set of new

concepts, namely the IT Integration Block and the IT

Integration Service, which together can describe a variety

of real-world integration scenarios in ISA. The “Service”

concept is not limited to synchronous integration

anymore. In particular, we propose that integration should

be classified according to automation level (manual or

automatic) and role type (source or target). We also

propose that integration services should be characterized

according to their technological, synchronism, and

organizational level.

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 1

Finally we present a real-world example taken from a

project on food safety in which we participate. This

example illustrates how the concepts proposed in the

paper can be used to represent integration between

information systems, both at the IS and IT levels. The

results obtained are then discussed and compared against

other common approaches.

2. Overview of Information System

Architecture

The Information System Architecture (or ISA, for

short) represents the structure of the components, their

relationships, principles and directives [3] with the main

purpose of supporting business [4].

In the 80s, a software architecture and ISA were

considered synonymous. But in the 90s emerged the need

for manipulating concepts that exceeded the description

of how a system was internally built. The Zachman

Framework [5] can be considered the first important

signal that software architectures were not enough.

While software architectures represent internal system

details (using, for example, E-R and DFD diagrams) ISA

focus on the high-level business processes [6], [7]. Using

the “city” as a metaphor, we can use the concept of “IS

urbanization” to emphasize the need for models to guide

the evolution of IS independently of current technological

trends [8].

An ISA can be divided into three levels [9]:

Informational (or Data) Architecture – represents

main data types that support business;

Application Architecture – defines applications

needed for data management and business support;

Technological Architecture – represents the main

technologies used in application implementation and

the infrastructures that provide an environment for IS

deployment.

2.1. Informational Architecture

The major purpose of the Informational Architecture is

to identify and define the main data types that support

business development [9], [10]. For example, data (the

support of the informational architecture) can be

categorized according to different dimensions, including:

primitive vs. derived, private vs. public, and historical vs.

operational vs. provisional [11].

2.2. Application Architecture

The second architecture level defines the main

applications needed for data management and business

support [10]. This architecture defines the major

functional components of the architecture to guarantee

access to the data in acceptable time, format and cost [9].

However, it should not be a definition of the software

used to implement the information system. Spewak also

proposes a methodology – Enterprise Architecture

Planning (EAP) – to define an application architecture

from informational and business requirements [9].

More recently, several authors have adapted

Zachman’s framework and Spewak’s EAP to better

address their needs, including several proposals know as

the American Federal Government [12], Joint Technical

Architecture [13], and the Treasury Enterprise

Architecture Framework [14].

2.3. Technological Architecture

This architecture defines the technologies that provide

an environment for application building and deployment.

At this level, the major technological concepts are

identified, such as technologies to implement

applications, inter-process communication, data storage,

and so on [9].

At Technological Architecture level, EAB (Enterprise

IT Architecture Blueprints) is a reference landmark [15].

Boar confirmed that IT architectures do not have a

repeatable, coherent, non-ambiguous and easily

perceptible representation [15], proposing a set of

blueprints for defining IT architectures in a systematic,

coherent and rigorous way. However, all these proposals

introduce new notions and icons, not supported by any

rules or standards. As a result, potential users are reluctant

to adopt these proposals because they are forced to

acquire a high-level knowledge and experience before

actually defining any IT architecture.

2.4. Comparison with Software Architectures

In the 90’s, software architecture had similar concerns.

In particular, there was no consensus in software

architecture concepts [16]. As a result, the IEEE formed a

taskforce that defined a standard called “Recommended

Practice for Architectural Description of Software-

Intensive Systems” to provide a conceptual framework for

software architecture [6].

Based on this IEEE standard, the Open Group

proposed the TOGAF (The Open Group Architectural

Framework) framework for ISA design and evaluation

[17]. This framework provides not only a methodology

for ISA development but also provides a taxonomy,

architectural principles and standards for ISA, mostly at

the technological level.

In addition, TOGAF proposes a technical reference

model that defines a taxonomy for coherent, consistent

and hierarchical description of the services provided by

the application platform such as data management,

network, operating system, transaction processing, and

system administration. Finally, TOGAF also presents

several architecture qualities that are inherent to the

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 2

architecture definition, such as performance, availability,

usability, adaptability, and portability.

However, the TOGAF framework has several

limitations. The most import limitation is that the focus is

mainly technological, not addressing either the

informational or application architectures. Another

limitation resides in the fact that only a set of IT notions

and principles are proposed, not concrete modeling

blueprints. This makes TOGAF interesting for thinking on

ISA from a technological viewpoint but clearly

inadequate for modeling ISA in a global and coherent

way.

2.5. The CEO Framework

In order to address the issues explained above, the

Organizational Engineering Center (or CEO, for short, in

Portuguese) proposed the CEO framework [18] for

modeling enterprises using a restricted set of business

objects. The CEO framework was defined as an UML

profile [19] and evolved from recent research [20], [21].

Although the CEO framework cannot be used to define

a complete ISA, it presents some interesting extensions to

represent dependencies between businesses and systems.

The business objects defined in the framework are goals

for strategy modeling; processes for business process

modeling, resources for business resource modeling, and

blocks for IS modeling. The CEO framework also ensures

consistency, easy of use and provides mechanisms to

maintain integrity with the ultimate goal of reducing the

“impedance mismatch” between business and IT

architectures.

Recently, CEO framework founding concepts at

Information System level where investigated and an UML

profile for ISA modeling at informational, application and

technological levels was proposed [22]. Figure 1 presents

the current core concepts of the CEO framework (at ISA

level).

process

has >

is implemented

is used >

< CRUD

Information Entity

relates

IS Block operation

IS Service

part of

IT Service

IT Block

relates

Business

service

exists

Figure 1. CEO UML Meta-model Extensions for ISA [22]

The core concepts in the CEO framework profile are:

Business Process – a collection of activities that

produces value to a customer;

Information Entity – any person, place, physical thing

or concept that is relevant in the business context and

about which is possible and relevant (for the

organization) to keep information;

IS Block – a collection of mechanisms and operations

organized in order to manipulate data;

IT Block –infrastructure, application platform and

technological/software component that realizes (or

implements) an (or several) IS Block(s).

From a technological point of view the concepts

proposed are (represented bellow in Figure 2):

IT Infrastructure Block – represents the physical and

infra-structural concepts: the computational nodes

(servers, personal computers, mobile devices and so

on) and the non-computational nodes (for example,

printers, networks) that support application platforms;

IT Platform Block – represents the collection of

services needed for implementing and IT deploying

applications.

IT Application Block – represents the technological

implementation of an IS Block. At this level it is

relevant to consider the kind of IT Application Block

(namely presentation, logic, data and coordination

block), and its “technological principles” (for

example, if it is implemented using components,

modules, or objects), amongst other characteristics.

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 3

IT Block

IT Infrastructure Block IT Platform Block IT Application Block

Figure 2. IT Block metamodel

It is interesting to note that in [22] some integration

concepts are taken into account. Particular the Service

concept is proposed as an aggregation of operations

provided by an architectural block, organized in three

different categories:

Business Service – a collection of operations

provided by IS Blocks that support one (or several)

business process(es);

IS Service – a set of operations provided by an IS

Block (to others IS Blocks);

IT Service – the technological services provided by

application platforms (based on [17] research).

The Service is a core integration concept in ISA and

will form the basis for our proposals presented in section

4.

2.6. Conclusion

This overview demonstrates that, currently, there is

still no mechanism to properly represent integration

concepts in ISA at all (informational, application and

technological) levels in order to develop subsequent

inspection and/or simulation of different business and

technological scenarios. Though some recent approaches

(for example CEO framework) provide a starting point for

ISA modeling the integration concepts are not considered

in detail.

3. Information Systems Integration

Integration – also known as EAI, for Enterprise

Application Integration – was always an important part of

any information system. The popularity of standard ERP

packages in the 90s was supposed to solve the need for

integration, but in fact only enlarged the problem; since

the ERP cannot replace all operational IS, in particular the

operational ISs that run the business, all these remaining

ISs have to be integrated with the ERP.

Since most organizations nowadays are more or less

satisfied with their IS, the main challenge became to

integrate internal ISs with other external ISs. This

integration between organizations – sometimes called

B2B integration – just extends integration to ISs

belonging to other companies, and technically is quite

feasible. However, in terms of IS architectures, it

becomes even more fuzzy to define the borders of an IS

and even the borders for an organization [23].

On the other hand, although there are many kinds of

integration, it is important to note that in the end of the

day all these are based on exchanging data between two

ISs [24]. The differences reside on how this data

exchange occurs, what kind of data is exchanged, which

guarantees are offered, and so on. For example, the

method level exchanges data between two applications

while the data level exchanges data between two

databases.

Another source of confusion comes from the fact that

integration is both a traditional technology but has also

become very popular quite recently. In particular, Web

Services promise to revolutionize both EAI and B2B even

though the technology behind – remote procedure call – is

nothing new. In fact, XML is just a data formatting

language and solves only a small part of the integration

problem. Without transactions, security, and performance,

Web Services can be used to integrate applications inside

an IS but are clearly not appropriate for integrating IS,

and even less for B2B integration [25].

Web Services discussed in a wider context become

even more confusing, from an ISA point of view. For

example, SOAP [26] – a standard for exchanging XML

between two applications – can be considered the most

important part of Web Services. Not only SOAP

addresses a small part of the integration problem –

neglecting security, document types, quality of service,

workflow definition, and so on – but also there are still

many problems to make SOAP compatible products to

work together, e.g. Java and .NET.

Besides that, SOAP is basically an old-fashion,

synchronous, non-transactional RPC and will suffer from

the problems experienced previously with DCOM and

CORBA [27]. And, in our opinion, the main differences

in SOAP – basically the adoption of XML and being

supported by most vendors – will not be enough to

overcome these technological problems.

Fortunately, integration is much more rich and

powerful than Web Services advocates want us to believe

and offers nowadays a rich variety of dimensions that

could and should be represented as part of an IS

architecture. Some examples of issues around integration,

in no particular order, are:

• Integration can occur at the data, method, interface,

portal, and process level – this variety basically

represents how the application “sees” integration,

although all levels of course exchange data;

• Integration can occur inside a computer, inside an

Intranet, inside an Extranet, or on the public Internet

– each zone will have its own guarantees of

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 4

bandwidth, require different kinds of security, and so

on;

• Integration can occur inside a department, inside an

enterprise, inside an holding, inside a value chain, or

between two (or more) unrelated enterprises –

decisions can usually be imposed inside a company,

but are more difficult inside an holding and even

more difficult (or downright impossible) to impose

on another company;

• Integration can occur inside the same country or

between countries – for example, digital certificates

issued in the USA cannot be used to sign digital

invoices in Europe;

• Integration can be synchronous or asynchronous –

asynchronous integration has no reply but has higher

performance and is scalable;

• Integration can be transactional – guaranteeing that

all integration steps take place (or none at all) and

extending the transaction concept to the other IS;

• Integration can offer many levels of security, from

zero to non-repudiation of reception. These different

levels of security should be applied only when

necessary (in particular, between companies on the

public Internet) since they complicate integration,

increase costs and reduce performance;

• Integration can be used to exchange bytes (e.g.

TCP/IP), data structures (XML), documents such as

orders and invoices (EDIFACT or UBL), workflows

(ebXML) or business processes – most integration

projects these days are based on XML, but the real

problems start when documents are exchanged based

on workflows that represent business processes;

• Integration can be performed directly between two

ISs (e.g. peer-to-peer) or indirectly via an

intermediary (e.g. a message broker) – most

asynchronous integration products also use an

intermediary to store messages, but only at the

implementation level; a broker offers more added

value services, such as converting data between two

different formats, defining and executing workflows,

and so on.

Of course, some of these issues are more important for

some levels of IS architectures than other issues:

The informational architecture defines what kind of

data types (high level, such as orders and invoices,

not integers and strings) are exchanged between two

ISs. Although these days XML seems so important,

this level is not interested whether the document is

formatted according to EDIFACT or XML.

The application architecture defines which

applications exchange data, what kind of data they

exchange and how they exchange that data. For

example, exchange can be synchronous or

asynchronous, manual or automatic, and so on.

The technological architecture defines which

technologies are used to exchange data, such as XML

for formatting data structures, HTTP for

communication protocol, and digital certificates for

security. This is the level most computer experts are

familiar with, but it address only a small part of the

integration equation and is only relevant to those

writing software.

This paper focus on the application and technological

architectures using both existing and novel concepts:

The existing IS Block and IS Service concepts

(proposed in [22]) can be used to represent the

operations an information system depend on another.

The novel IT Integration Block (a specialization of IT

Block) and IT Service concepts (proposed in [22])

can be used to represent which applications exchange

data and how they exchange data.

4. Modeling Integration in ISA

The previous sections emphasized the inexistence of

any praxis, mechanism or language for modeling

integration concepts in ISA.

This section proposes an original collection of

concepts (including their graphical representations) that

allow the semantic manipulation of integration in ISA.

4.1. Integration at IS level

The representation of a concept is critical for its

discussion and abstraction. In this paper, in compliance

with the CEO framework introduced in Section 2.5, we

propose a set of extensions to the UML modeling

(standard) language [19] in order to accommodate the

new integration concepts.

In fact, the CEO Framework did not define properly

the concepts (and corresponding UML stereotypes) for

Integration modeling in ISA, although these concepts are

crucial in any ISA.

We propose that the «IS Service» concept should be

used as the core concept for modeling integration at the IS

level because the IS Service already describes how the

operations, belonging to an IS Block, are aggregated and

made available to other IS Blocks. Although no new

stereotype is proposed at the application level, the IS

Service is a foundation for modeling integration in ISA at

the application level and can be easily extended later if

really necessary.

4.2. Integration IT level

The integration process can be divided into three parts

(represented bellow in Figure 3): a source (the system that

calls the service or sends the message), a target and the

integration port itself representing the relation between

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 5

source and target. At the IT level we propose to split the

characteristics associated exclusively to the source, target,

and those associated to the relation.

Source TargetRelation

Figure 3. Integration Process

Considering only the characteristics associated

exclusively to the system (source or target), the

integration can be described along two dimensions:

Automation Level – the integration services executed

in the source or target system are accomplished

Automatically (no human interference) or Manually

(implies human interaction);

Role Type – the system may be the source or the

target of data. For example, in a web service, the

source is the client; in a messaging product, the

source is the IS sending the message.

Using the IT concepts presented in Figure 2, we

propose that IT integration should be adopted as a novel

concept to encapsulate both the platform (e.g., J2EE, .Net,

CORBA, etc.) and/or the IT Application. Figure 4

presents our proposed «IT Integration Block» in the scope

of Figure 2.

IT Integration Block

IT Block

IT Infrastructure Block IT Platform Block IT Application Block

Figure 4. Proposed UML extension for modeling

integration concepts in ISA

Figure 5 presents the attributes proposed above for the

IT Integration Block UML stereotype (in detail).

Automation Level: {Automatic,, Manual}

Role Type: {Source, Target}

« IT Integration Block »

Figure 5. IT Integration Block in detail

The IT Integration Block is not further specialized to

accommodate the large diversity of concepts and the

continuously progression in this area. However,

depending on the objectives and the target audience, the

IT Integration Block can be specialized to model

integration specific concepts such as message broker,

WebServices, and so on. The case study, presented in the

next section, exemplifies these issues.

The IT Integration Service (proposed in [22]) can be

used to model the relation port of the integration process

as presented in Figure 3. We propose this component be

characterized in terms of:

Technological Level –if integration takes place inside

a computer, inside an Intranet, inside an Extranet, or

on the public Internet.

Synchronism Level – integration between IT Blocks

may occur synchronously (as in RPC, for example),

or asynchronously (usually with no reply, scalable

and with higher performance).

Organizational Level – distinguishes integration

between a department, inside an enterprise, inside an

holding, inside a value chain, or between two (or

more) unrelated organizations.

Figure 6 presents the proposed UML extensions in

detail.

Technological Level: {Computer, Intranet, Extranet,

Internet}

Synchronism Level: {Asynchronous, Synchronous}

Organizational Level: {Department, Enterprise,

Enterprise Group, Value Chain, General Public}

«IT Integration Service»

Figure 6.IT Integration Service

The next section applies all these concepts to a

concrete real world example in order to validate these

proposals.

5. Case Study: SafeFood

The main objective of the SafeFood project is to create

an information system that supports retail company’s

efforts to guarantee the quality of their food products

through the continuous exchange of (almost) real-time

data about those products.

The project involves not only a perishable products

distribution company but also many other external

organizations, mainly suppliers. All these entities already

have their own information systems that must be

integrated. For example, the Control Quality department

is responsible for the products acceptance or rejection.

The products storage and their distribution to the stores

are performed by the Logistics Department. The Stores

are responsible for selling products to the customer. The

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 6

Agricultural unit is responsible for contract management

with the Producers Organization (named ahead as OP),

which commits to delivery the perishable products on the

negotiated dates.

In Figure 7 the entire ISA at the application level is

presented. The dependencies between the IS Blocks are

presented using «IS Service». The arrows mean the

dependencies between the IS Blocks. For example, the IS

Block “SafeFood System” depends from the service

provide by the IS Service “Control Quality API”.

OP System

« IS Block »

SafeFood

System

« IS Block »

Logistics

System

« IS Block »

Control Quality

System

« IS Block »

Stores System

« IS Block »

« IS Service

»

SafeFood

API

« IS Service

»

OP API

« IS Service

»

Control

Quality API

« IS Service

»

Logistics API

« IS Service

»

Stores API

Figure 7. ISA at the application level

The dependencies between IS Blocks represent points

of integration between those systems. In Figure 8 the

dependencies between two concrete IS Blocks are

represented in detail.

SafeFood

System

« IS Block »

OP System

« IS Block »

Information of the lots

Crops Confirmation

Prices Acceptance

« IS Service »

OP API

Contract definition

Prices Proposal

« IS Service »

SafeFood API

Figure 8. Dependences between SafeFood System and OP

System

The IS Block “SafeFood System” could be further

decomposed into three information systems (Agricultural

Management System, Commercial Management System

and Procurement Management System) as presented in

Figure 9. Each of these IS Blocks are implement by an IT

Block.

SafeFood

System

« IS Block »

Procurement

Management

« IT Block»

Agricultural

Management

« IT Block»

Commercial

Management

« IT Block»

Procurement

Management

System

« IS Block »

Agricultural

Management

System

« IS Block »

Commercial

Management

System

« IS Block »

Contract Information

sender

« IT Integration Block »

Automation Level: Automatic

Role Type: Source

OP

« IT Block»

OP System

« IS Block »

implementedby

Contract Information

Receiver

« IT Integration Block »

Automation Level: Automatic

Role Type: Target

Contract Information

« IT Integration Service »

Technological Level: Extranet

Synchronism Level: Asynchronous

Organizational Level: Value Chain

implementedby implementedby implementedby

Figure 9. Integration between IT Blocks in detail

The integration between the IT Block “Commercial

Management” and the IT Block “OP” is performed

through two IT Integration Blocks and an IT Integration

Service. In this example, the “Contract Information” is a

data exchange between two organizations belonging to

the same Value Chain. This exchange is asynchronous

and takes place inside an extranet (for example, a VPN on

the Internet).

The integration between the commercial management

IS and the procurement management is described in

Figure 10. This integration is accomplished via a

intermediary system broker. The IT Integration Block

from the IT Block Message Broker corresponds to the

Adapters usually used in the System Broker.

Comercial

Management

« IT Block»

Comercial

Management

System

« IS Block »

Product Information

sender

« IT Integration Block »

Automation level: Automatic

Informational Level: Source

Message

Broker

« IT Block»

Message

BrokerSystem

« IS Block »

Product Information

Adapter

« IT Integration Block »

Automation level: Automatic

Informational Level: Source / Target

Product Information

« IT Integration Service »

Technological level: Extranet

Synchronism Level: Assynchronous

Organizational Level: Value Chain

Is implement Is implement

Product Information

Receiver

« IT Integration Block »

Automation level: Automatic

Informational Level: Target

Product Information

« IT Integration Service »

Technological level: Extranet

Synchronism Level: Assynchronous

Organizational Level: Value Chain

Procurement

Management

« IT Block»

Procurement

Management

System

« IS Block »

Is implement

Figure 10. Integration using a System Broker

In the example the Commercial System uses a Broker

to send the products information to the Procurement

System. A message broker is an integration intermediary

that can be used to exchange messages between other

information systems. This case study is particularly

interesting not only because message brokers are

positioning themselves as alternatives to both ERP and

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 7

application servers, but also because message brokers

play both the role of an information system and of an

integration system.

6. Discussion

The case study presented in previous section illustrates

possible scenarios where our proposals for representing

integration in the ISA are explored. Further, the case

study exemplifies how to represent the ISA at

informational, application and technological levels,

having integration as its main focus.

The proposed extensions to the CEO Framework

provide the conceptual tools and visual modeling

primitives (supported in a standard modeling language –

UML) to model several integration concepts. The major

gap between our approach and existing research is on

addressing integration not only from a technological

perspective but also from an informational and

application perspectives based on an organizational

framework.

Integration is sometimes only explored from a

software-oriented perspective. This is usual the case when

using a pure software development approach (as waterfall

[28] or RUP [29]), where the focus is on a particular

system and on its implementation, not addressing the “big

picture” – the relation between the new system and other

systems (from an informational, application and

technological perspectives). These software approaches

are still valid when implementing a system, however they

do not provide to the system architect the global

perspective for planning and discussing integration

concepts in the global ISA (that should precede the

implementation of a particular software system).

Other approaches have a more general aim. For

instance, Zachman framework [5] provides the conceptual

tools for organizing and classifying the concepts that

should be addressed when planning the ISA (and latter the

enterprise architecture). Zachman framework provides a

more general view over the enterprise and the IS, however

it does not propose any notation for representation of ISA

or integration concepts. Our approach, on the other hand,

integrated in an enterprise modeling framework (CEO

framework) and defining the notation for integration

modeling in ISA (based on a standard modeling language)

addresses these issues.

[15] proposes a set of blueprints for modeling

information systems at a technological level (as presented

in section 2.3), introducing new notions and icons, not

supported by any tools or standards. Our approach, as

presented, is supported on the universal modeling

language (a standard supported in several tools) and

addresses integration not only from the technological

point of view.

Another import approach in ISA is the TOGAF

framework. When comparing TOGAF and our approach

one can notice that TOGAF has a different focus –

developing other issues, not addressed in our approach as

the architecture development method (ADM), but

disregarding others. Namely, TOGAF does not address

integration issues in ISA at informational or application

levels (it focus at IT level); TOGAF also does not concern

about the notation used to represent the ISA (it address

only the concepts in a ISA).

7. Conclusion

In this paper we first presented an overview of

information system architectures and then concentrated on

their lack of support to properly represent integration. We

then proceeded with a brief introduction to the variety of

integration models that exist in the real world, trying to

demystify the idea that all integration problems can be

solved with Web Services.

The main contribution of this paper is an extension to

our previous proposal for representing ISA in order to

include a number of integration models at both the

application and IT levels. In particular, we proposed that

integration should have a number of characteristics (e.g.

manual or automatic) and not be limited to synchronous

services.

The paper also presented a real-world case study

(taken from a project in which we are involved) in order

to illustrate the proposal with concrete integration

problems between information systems.

In the future we intend to explore other integration

concepts at the technological level, in particular how to

map the whole variety of integration technologies

currently available to a limited number of primitive

concepts. We are particularly interested in Web Services

and integration across organizations where reliability and

security are key issues.

We are also interested to develop the technological

tools to model integration, quantify different integration

scenarios in information system architecture and help the

system architect in defining a system architecture using

different integration patterns.

8. References

[1] Kalakota, Ravi and Marcia Robinson, E-Business 2.0,

Addison-Wesley Longman, Incorporated, 2000.

[2] W3C, World Wide Web Consortium, Web Services, 2001.

 http://www.w3.org/2002/ws.

[3] Garlan, D. et al., Architectural Mismatch (Why It’s Hard to

Build Systems Out of Existing Parts), Proceedings 17th

International Conference on Software Engineering, Seatle, WA,

April 23-30 1995, pp.170-185.

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 8

[4] Maes, Rik, Daan Rijsenbrij, Onno Truijens, and Hans

Goedvolk, Redefining Business – IT Alignment Through a

Unified Framework, White Paper, May 2000.

http://www.cs.vu.nl/~daan/

[5] Zachman, John, A Framework for Information System

Architecture, IBM System Journal Vol.26 Nº 3, 1987, p.276 –

292.

[6] IEEE Architecture Working Group, Recommended Practice

for Architecture Description – Draft IEEE standard

P1471/D4.1, IEEE, December 1998.

[7] Zijden, Stefan, Hans Goedvolk, and Daan Rijsenbrij,

Architecture: Enabling Business and IT Alignment in

Information System Development, 2000.

http://www.cs.vu.nl/~daan/

[8] Sassoon, Urbanisation des systèmes d’information, 1998

(in French).

[9] Spewak, Steven, and Steven Hill, Enterprise Architecture

Planning: Developing a Blueprint for Data, Applications and

Technology, Wiley-QED, ISBN 0-471-599859, 1992.

[10] DeBoever, L., Enterprise Architecture Boot Camp & Best

Practices: A Workshop, Meta Group, 1997.

[11] Inmon, W. H., Data Architecture – The Information

Paradigm, QED Technical Publishing Group, 1999.

[12] Federal Enterprise Architecture Framework, version 1.1.,

September 1999

[13] Department of Defense Joint Technical Architecture, July

2002.

[14] Treasury Enterprise Architecture Framework, July 2002.

[15] Boar, Bernard, Constructing Blueprints for Enterprise IT

Architecture, John Wiley & Sons, 1999.

[16] How do You Define Software Architecture?, Software

Engineering Institute, Carnegie Mellon University, December

2000. http://www.sei.cmu.edu/architecture/definitions.html

[17] Open Group, The Open Group Architectural Framework

(TOGAF) – Version 7, November 2001.

[18] Vasconcelos, A., A. Caetano, J. Neves, P. Sinogas, R.

Mendes, and J. Tribolet, A Framework for Modeling Strategy,

Business Processes and Information Systems, Proceedings of 5th

International Enterprise Distributed Object Computing

Conference EDOC, Seatle, USA, September 2001.

[19] UML Proposal to the Object Management Group, 1997.

http://www.rational.com/uml

[20] T. W. Malone et al., Tools for inventing organizations:

Towards a handbook of organizational processes, Management

Science, March 1999.

[21] Eriksson, Hans-Erik, and Magnus Penker, Business

Modeling with UML: Business Patterns at Work, John Wiley &

Sons, ISBN 0-471-29551-5, 2000.

[22] Vasconcelos, A., P. Sousa, and J. Tribolet, Information

System Architectures: Representation, Planning and Evaluation,

Proceedings of International Conference on Computer,

Communication and Control Technologies Orlando, U.S.A.,

July 2003.

[23] Linthicum, D., B2B Application Integration, Addison-

Wesley, 2001.

[24] Vernadat, François, Enterprise Modeling and Integration,

London, Chapman & Hall, 1996.

[25] M. Mira da Silva. Challenges for EDI Adoption by Small

and Medium-size Enterprises (SME). Accepted to the IADIS

International Conference e-Society, Lisbon, Portugal, 2003.

[26] Newcomer, Eric, Understanding Web Services: XML,

WSDL, SOAP, and UDDI, Addison Wesley Professional,

(ISBN: 0201750813), 2002.

[27] M. Mira da Silva, Information Systems Integration (In

Portuguese), FCA, 2003.

[28] Boehm, Barry W., Software Engineering Economics,

Englewood Cliffs, NJ, Prentice Hall 1981.

[29] Jacobson, Ivar, Grady Booch, and James Rumbaugh, The

Unified Software Development Process, Adisson Wesley, 1999.

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 9

