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Abstract

As network research becomes more sophisticated, it is more common than ever for

researchers to find themselves not studying a single network but needing to analyze

sets of networks. An important task when working with sets of networks is network

comparison, developing a similarity or distance measure between networks so that

meaningful comparisons can be drawn. The best means to accomplish this task

remains an open area of research. Here we introduce a new measure to compare

networks, the Network Portrait Divergence, that is mathematically principled,

incorporates the topological characteristics of networks at all structural scales, and is

general-purpose and applicable to all types of networks. An important feature of our

measure that enables many of its useful properties is that it is based on a graph

invariant, the network portrait. We test our measure on both synthetic graphs and real

world networks taken from protein interaction data, neuroscience, and computational

social science applications. The Network Portrait Divergence reveals important

characteristics of multilayer and temporal networks extracted from data.

Keywords: Network comparison, Graph similarity, Multilayer networks, Temporal

networks, Weighted networks, Network portraits, GitHub, Arabidopsis, C. Elegans

connectome

Introduction

Recent years have seen an explosion in the breadth and depth of network data across a

variety of scientific domains (Bader et al. 2004; Lazer et al. 2009; Landhuis 2017). This

scope of data challenges researchers, and new tools and techniques are necessary for eval-

uating and understanding networks. It is now increasingly common to deal with multiple

networks at once, from brain networks taken from multiple subjects or across longitudi-

nal studies (Whelan et al. 2012), to multilayer networks extracted from high-throughput

experiments (De Domenico et al. 2015), to rapidly evolving social network data

(Palla et al. 2007; Szell et al. 2010; Bagrow et al. 2011). A common task researchers working

in these areas will face is comparing networks, quantifying the similarities and differ-

ences between networks in a meaningful manner. Applications for network comparison

include comparing brain networks for different subjects, or the same subject before and

after a treatment, studying the evolution of temporal networks (Holme and Saramäki

2012), classifying proteins and other sequences (Shervashidze et al. 2009; Yanardag and

Vishwanathan 2015; Niepert et al. 2016), classifying online social networks (Yanardag

and Vishwanathan 2015), or evaluating the accuracy of statistical or generative network
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models (Hunter et al. 2008). Combined with a clustering algorithm, a network compari-

son measure can be used to aggregate networks in a meaningful way, for coarse-graining

data and revealing redundancy in multilayer networks (De Domenico et al. 2015). Treat-

ing a network comparison measure as an objective function, optimization methods can

be used to fit network models to data.

Approaches to network comparison can be roughly divided into two groups, those that

consider or require two graphs defined on the same set of nodes, and those that do not.

The former eliminates the need to discover a mapping between node sets, making com-

parison somewhat easier. Yet, two networks with identical topologies may have no nodes

or edges in common simply because they are defined on different sets of nodes. While

there are scenarios where assuming the same node sets is appropriate—for example, when

comparing the different layers of a multilayer network one wants to capture explicitly the

correspondences of nodes between layers (De Domenico et al. 2015)—here we wish to

relax this assumption and allow for comparison without node correspondence, where no

nodes are necessarily shared between the networks.

A common approach for comparison without assuming node correspondence is to

build a comparison measure using a graph invariant. Graph invariants are properties of a

graph that hold for all isomorphs of the graph. Using an invariant mitigates any concerns

with the encoding or structural representation of the graphs, and the comparison mea-

sure is instead focused entirely on the topology of the network. Graph invariants may be

probability distributions. Suppose P and Q represent two graph-invariant distributions

corresponding to graphs G1 and G2, respectively. Then, a common approach to compar-

ing G1 and G2 is by comparing P and Q. Information theory provides tools for comparing

distributions, such as the Jensen-Shannon divergence:

DJS(P,Q) =
1

2
KL(P ||M) +

1

2
KL(Q ||M) (1)

where KL(P ||Q) is the Kullback-Leibler (KL) divergence (or relative entropy) between

P and Q and M = (P + Q)/2 is the mixture distribution of P and Q. The Jensen-

Shannon divergence has a number of nice properties, including that it is symmetric and

normalized, making it a popular choice for applications such as ours (De Domenico and

Biamonte 2016; Chen et al. 2018). In this work, we introduce a novel graph-invariant

distribution that is general and free of assumptions and we can then use common

information-theoretic divergences such as Jensen-Shannon to compare networks via

these graph invariants.

The rest of this paper is organized as follows. In “Network portraits” section we describe

network portraits (Bagrow et al. 2008), a graph invariant matrix representation of a net-

work that is useful for visualization purposes but also capable of comparing pairs of

networks. “An information-theoretic approach to network comparison” section intro-

duces Network Portrait Divergences, a principled information-theoretic measure for

comparing networks, building graph-invariant distributions using the information con-

tained within portraits. Network Portrait Divergence has a number of desirable properties

for a network comparison measure. In “Results” section we apply this measure to both

synthetic networks (random graph ensembles) and real-world datasets (multilayer biolog-

ical and temporal social networks), demonstrating its effectiveness on practical problems

of interest. Lastly, we conclude in “Conclusion” section with a discussion of our results

and future work.
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Network portraits

Network portraits were introduced in (Bagrow et al. 2008) as a way to visualize and

encode many structural properties of a given network. Specifically, the network portrait

B is the array with (ℓ, k) elements

Bℓ,k ≡ the number of nodes who have k nodes at distance ℓ (2)

for 0 ≤ ℓ ≤ d and 0 ≤ k ≤ N − 1, where distance is taken as the shortest path length and

d is the graph’s diameter 1. The elements of this array are computed using, e.g., Breadth-

First Search. Crucially, nomatter how a graph’s nodes are ordered or labeled the portrait is

identical. We draw several example networks and their corresponding portraits in Fig. 1.

This matrix encodes many structural features of the graph. The zeroth row stores the

number of nodes N in the graph:

B0,k = Nδk,1.

The first row captures the degree distribution P(k):

B1,k = NP(k),

as neighbors are at distance ℓ = 1. The second row captures the distribution of next-

nearest neighbors, and so forth for higher rows. The number of edgesM is
∑N

k=0 kB1,k =

2M. The graph diameter d is

d = max{ℓ | Bℓ,k > 0 for k > 0}.

The shortest path distribution is also captured: the number of shortest paths of length

ℓ is 1
2

∑N
k=0 kBℓ,k . And the portraits of random graphs present very differently from

highly ordered structures such as lattices (Fig. 1), demonstrating how dimensionality and

regularity of the network is captured in the portrait (Bagrow et al. 2008).

One of the most important properties of portraits is that they are a graph invariant:

Fig. 1 Example networks and their portraits. The random network is an Erdős-Rényi graph while the real

network is the NCAA Division-I football network (Park and Newman 2005). Colors denote the entries of the

portrait matrix B (Eq. (2); white indicates Bℓ,k = 0)
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Definition 1 A graph invariant is a property of a graph that is invariant under graph

isomorphism, i.e., it is a function f such that f (G) = f (H) whenever G and H are

isomorphic graphs.

Theorem 1 The network portrait (Eq. (2)) is a graph invariant.

Proof Let f : VG → VH be a vertex bijection between two graphs G = (VG,EG) and

H = (VH ,EH) such that the number of edges between every pair of vertices (i, j) in G

equals the number of edges between their images (f (i), f (j)) in H. Then G and H are

isomorphic. Let ℓG(i, j) be the length of the shortest path between nodes i and j in G.

For two isomorphic graphs G and H, ℓG(i, j) = ℓH(f (i), f (j)) for all i and j in G, since

the shortest path tuples (i, . . . , j) in G and (f (i), . . . , f (j)) in H are the same length. All

elements in the matrix B(G) are computed by aggregating the values of ℓG(i, j). Therefore,

B(G) = B(H).

Note that the converse is not necessarily true: that f (G) = f (H) does not imply that

G and H are isomorphic. As a counter-example, the non-isomorphic distance-regular

dodecahedral and Desargues graphs have equal portraits (Bagrow et al. 2008).

Portraits of weighted networks The original work defining network portraits (Bagrow

et al. 2008) did not consider weighted networks, where a scalar quantity wij is associated

with each (i, j) ∈ E. An important consideration is that path lengths for weighted net-

works are generally computed by summing edge weights along a path, leading to path

lengths ℓ ∈ R (typically) instead of path lengths ℓ ∈ Z. To address this, in the Additional

file 1 we generalize the portrait to weighted networks, specifically accounting for how

real-valued path lengths must change the definition of the matrix B.

Comparing networks by comparing portraits

Given that a graph G admits a unique B-matrix makes these portraits a valuable tool for

network comparison. Instead of directly comparing graphs G and G′, we may compute

their portraits B and B′, respectively, and then compare these matrices. We review the

comparison method in our previous work (Bagrow et al. 2008). First, compute for each

portrait B the matrix C consisting of row-wise cumulative distributions of B:

Cℓ,k =

k
∑

j=0

Bℓ,j

/

N
∑

j=0

Bℓ,j . (3)

The row-wise Kolmogorov-Smirnov test statistic Kℓ between corresponding rows ℓ in C

and C′:

Kℓ = max
∣

∣Cℓ,k − C′
ℓ,k

∣

∣

allows a metric-like graph comparison. This statistic defines a two-sample hypothesis

test for whether or not the corresponding rows of the portraits are drawn from the

same underlying, unspecified distribution. If the two graphs have different diameters, the

portrait for the smaller diameter graph can be expanded to the same size as the larger

diameter graph by defining empty shells ℓ > d as Bℓ,k = Nδ0,k . Lastly, aggregate the test

statistics for all pairs of rows using a weighted average to define the similarity �(G,G′)
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between G and G′:

�(G,G′) ≡ �(B,B′) =

∑

ℓ αℓKℓ
∑

ℓ αℓ

, (4)

where

αℓ =
∑

k>0

Bℓ,k +
∑

k>0

B′
ℓ,k (5)

is a weight chosen to increase the impact of the lower, more heavily occupied shells.

While we did develop a metric-like quantity for comparing graphs based on the KS-

statistics (Eqs. (4) and (5)), we did not emphasize the idea. Instead, the main focus of

the original portraits paper was on the use of the portrait for visualization. In particular,

Eq. (4) is somewhat ad hoc. Here we now propose a stronger means of comparison using

network portraits that is interpretable and grounded in information theory.

An information-theoretic approach to network comparison

Here we introduce a new way of comparing networks based on portraits. This measure

is grounded in information theory, unlike the previous, ad hoc comparison measure, and

has a number of other desirable attributes we discuss below.

The rows of Bmay be interpreted as probability distributions:

P(k | ℓ) =
1

N
Bℓ,k (6)

is the (empirical) probability that a randomly chosen node will have k nodes at distance ℓ.

This invites an immediate comparison per row for two portraits:

KL(P(k | ℓ) ||Q(k | ℓ)) =
∑

k

P(k | ℓ) log
P(k | ℓ)

Q(k | ℓ)
, (7)

where KL(p || q) is the Kullback-Liebler (KL) divergence between two distributions p and

q, and Q is defined as per Eq. (6) for the second portrait (i.e., Q(k | ℓ) = 1
N ′B

′
ℓ,k). The KL-

divergence admits an information-theoretic interpretation that describes howmany extra

bits are needed to encode values drawn from the distribution P if we used the distribution

Q to develop the encoding instead of P.

However, while this seems like an appropriate starting point for defining a network

comparison, Eq. (7) has some drawbacks:

1 KL(P(k) ||Q(k)) is undefined if there exists a value of k such that P(k) > 0 and

Q(k) = 0. Given that rows of the portraits are computed from individual networks,

which may have small numbers of nodes, this is likely to happen often in practical

use.

2 The KL-divergence is not symmetric and does not define a distance.

3 Defining a divergence for each pair of rows of the two matrices gives

max(d, d′) + 1 separate divergences, where d and d′ are the diameters of G and G′,

respectively. To define a scalar comparison value (a similarity or distance measure)

requires an appropriate aggregation of these values, just like the original approach

proposed in (Bagrow et al. 2008); we return to this point below.

The first two drawbacks can be addressed by moving away from the KL-divergence and

instead using, e.g., the Jensen-Shannon divergence or Hellinger distance. However, the
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last concern, aggregating over max(d, d′) + 1 difference quantities, remains for those

measures as well.

Given these concerns, we propose the following, utilizing the shortest path distribution

encoded by the network portraits. Consider choosing two nodes uniformly at random

with replacement. The probability that they are connected is
∑

c n
2
c

N2
, (8)

where nc is the number of nodes within connected component c, the sum
∑

c n
2
c runs

over the number of connected components, and the nc satisfy
∑

c nc = N . Likewise, the

probability the two nodes are at a distance ℓ from one another is

# paths of length ℓ

# paths
=

1
(
∑

c n
2
c

)

N
∑

k=0

kBℓ,k . (9)

Lastly, the probability that one of the two nodes has k − 1 other nodes at distance ℓ is

given by

kBℓ,k
∑

k′ k′Bℓ,k′

. (10)

We propose to combine these probabilities into a single distribution that encompasses

the distances between nodes weighted by the “masses” or prevalences of other nodes at

those distance, giving us the probability for choosing a pair of nodes at distance ℓ and for

one of the two randomly chosen nodes to have k nodes at that distance ℓ:

P(k, ℓ) =

∑

c n
2
c

N2

∑

k′ k′Bℓ,k′

∑

c n
2
c

kBℓ,k
∑

k′ k′Bℓ,k′

=
kBℓ,k

N2
(11)

and likewise forQ(k, ℓ) using B′ instead of B. However, this distribution is not normalized
∑

k

∑

ℓ

kBℓ,k =
∑

c

n2c �= N2 (12)

unless the graph G is connected. It will be advantageous for this distribution to be nor-

malized in all instances, therefore, we condition this distribution on the two randomly

chosen nodes being connected:

P(k, ℓ) =

∑

k′ k′Bℓ,k′

∑

c n
2
c

kBℓ,k
∑

k′ k′Bℓ,k′

=
kBℓ,k
∑

c n
2
c

. (13)

This now defines a single (joint) distribution P (Q) for all rows of B (B′) which can then

be used to define a single KL-divergence between two portraits:

KL(P(k, ℓ) ||Q(k, ℓ)) =

max(d,d′)
∑

ℓ=0

N
∑

k=0

P(k, ℓ) log
P(k, ℓ)

Q(k, ℓ)
(14)

where the log is base 2.

Definition 2 The Network Portrait Divergence DJS(G,G
′) between two graphs G and

G′ is the Jensen-Shannon divergence as follows,

DJS(G,G
′) ≡

1

2
KL(P ||M) +

1

2
KL(Q ||M) (15)

where M = 1
2 (P + Q) is the mixture distribution of P and Q. Here P and Q are defined by

Eq. (11), and the KL(· || ·) is given by Eq. (14).
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The Network Portrait Divergence 0 ≤ DJS ≤ 1 provides a single value to quantify the

dissimilarity of the two networks by means of their distance distributions, with smaller

DJS for more similar networks and larger DJS for less similar networks. Unlike the KL

divergence, DJS is symmetric, DJS(G,G
′) = DJS(G

′,G) and
√

DJS is a metric (Endres and

Schindelin 2003).

The Network Portrait Divergence has a number of desirable properties2. It is grounded

in information theory, which provides principled interpretation of the divergence mea-

sure. It compares networks based entirely on the structure of their respective topologies:

the measure is independent of how the nodes in the network are indexed and, further,

does not assume the networks are defined on the same set of nodes. Network Portrait

Divergence is relatively computationally efficient; unlike graph edit distancemeasures, for

example, because Network Portrait Divergence is based on a graph invariant and expen-

sive optimizations such as “node matching” are not needed. Both undirected and directed

networks are treated naturally, and disconnected networks can be handled without any

special problems. Using the generalization of network portraits to weighted networks

(see Additional file 1), the Network Portrait Divergence can also be used to compare

weighted networks. Lastly, all scales of structure within the two networks contribute

simultaneously to the Network Portrait Divergence via the joint neighbor-shortest path

length distribution (Eq. (11)), from local structure to motifs to the large scale connectivity

patterns of the two networks.

Results

Now we explore the use of the Network Portrait Divergence (Definition 2) to compare

networks across a variety of applications. We study both synthetic example graphs, to

benchmark the behavior of the comparison measure under idealized conditions. Then

real world network examples are presented to better capture the types of comparison

tasks researchers may encounter.

Synthetic networks

To understand the performance of the Network Portrait Divergence, we begin here by

examining how it relates different realizations of the following synthetic graphs:

1 Erdős-Rényi (ER) graphs G(N , p) (Erdös and Rényi 1959), the random graph on N

nodes where each possible edge exists independently with constant probability p ;

2 Barabási-Albert (BA) graphs G(N ,m) (Barabási and Albert 1999), where N nodes

are added sequentially to a seed graph and each new node attaches tom existing

nodes according to preferential attachment.

Figure 2 shows the distributions of DJS for different realizations of ER and BA graphs

with the same parameters, as well as the cross-comparison distribution using DJS to

compare one realization of an ER graph with one realization of a BA graph where both

graphs have the same average degree 〈k〉 but other parameters may vary. Overall we

note that realizations drawn from the same ensemble have relatively small Network Por-

trait Divergence, with ER falling roughly in the range 0 < DJS < 0.5 and BA between

0.1 < DJS < 0.4 (both smaller than the max(DJS) = 1). In contrast, DJS is far higher when

comparing one ER to one BA graph, withDJS > 0.6 in our simulations. The Network Por-

trait Divergence captures the smaller differences between different realizations of a single
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Fig. 2 Comparing network models. As a simple starting point, here we compare pairs of Erdős-Rényi (ER)

realizations with the same parameters, pairs of Barabási-Albert (BA) realizations with the same parameters,

and pairs of one ER graph versus one BA graph (but with the same number of nodes and average degree).

For these examples, Network Portrait Divergence has high discriminative power

networks ensemble with correspondingly smaller values ofDJS while the larger differences

between networks from different ensembles are captured with larger values of DJS.

Measuring network perturbations with Network Portrait Divergence

Next, we ask how well the Network Portrait Divergence measures the effects of network

perturbations. We performed two kinds of rewiring perturbations to the links of a given

graphG: (i) random rewiring, where each perturbation consists of deleting an existing link

chosen uniformly at random and inserting a link between two nodes chosen uniformly

at random; and (ii) degree-preserving rewirings (Li et al. 2018), where each perturbation

consists of removing a randomly chosen pair of links (i, j) and (u, v) and inserting links

(i,u) and (j, v). The links (i, j) and (u, v) are chosen such that (i,u) �∈ E and (j, v) �∈ E,

ensuring that the degrees of the nodes are constant under the rewiring.

We expect that random rewirings will lead to a stronger change in the network than

the degree-preserving rewiring. To test this, we generate an ER or BA graph G, apply a

fixed number n of rewirings to a copy of G, and use the Network Portrait Divergence to

compare the networks before and after rewirings. Figure 3 shows how DJS changes on

average as a function of the number of rewirings, for both types of rewirings and both ER

and BA graphs. The Network Portrait Divergence increases with n, as expected. Interest-

ingly, below n ≈ 100 rewirings, the different types of rewirings are indistinguishable, but

for n > 100 we see that random rewirings lead to a larger divergence from the original

graph than degree-preserving rewirings. This is especially evident for BA graphs, where

the scale-free degree distribution is more heavily impacted by the random rewiring than

for ER graphs. The overall DJS is also higher in value for BA graphs than ER graphs. This

is plausible because the ER graph is already maximally random, whereas many correlated

structures exist in a random realization of the BA graph model that can be destroyed by

perturbations (Albert and Barabási 2002).

Comparing real networks

We now apply the Network Portrait Divergence to real world networks, to evaluate its

performance when used for several common network comparison tasks. Specifically, we
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Fig. 3 Expected Network Portrait Divergence between an unmodified graph and a copy perturbed by edge

rewiring. (left) Erdős-Rényi graph (N = 300, p = 3/299); (right) Barabási-Albert graph (N = 300,m = 3). A

random rewiring is the deletion of an edge chosen uniformly at random followed by the insertion of a new

edge between two nodes chosen uniformly at random. Degree-preserving rewiring chooses a pair of edges

(u, v) and (x, y) and rewires them across nodes to (u, x) and (v, y) such that the degrees of the chosen nodes

remain unchanged (Li et al. 2018). Errorbars denote ± 1 s.d

study two real-world multiplex networks, using DJS to compare across the layers of these

networks. We also apply DJS to a temporal network, measuring how the network changes

over time. This last network has associated edge weights, and we consider it as both an

unweighted and a weighted network.

The datasets for the three real-world networks we study are as follows:

Arabidopsis GPI network The Genetic and Protein Interaction (GPI) network of Ara-

bidopsis Thaliana taken from BioGRID 3.2.108 (Stark et al. 2006; De Domenico et

al. 2015). This network consists of 6,980 nodes representing proteins and 18,654

links spread across seven multiplex layers. These layers represent different interac-

tion modes from direct interaction of protein and physical associations of proteins

within complexes to suppressive and synthetic genetic interactions. Full details of

the interaction layers are described in (De Domenico et al. 2015).

C. elegans connectome The network taken from the nervous system of the nematode C.

elegans. This multiplex network consists of 279 nodes representing non-pharyngeal

neurons and 5,863 links representing electrical junctions and chemical synapses.

Links are spread across three layers: an electric junction layer (17.6% of links), a

monadic chemical synapse layer (28.0% of links), and a polyadic chemical synapse

layer (54.4% of links) (Chen et al. 2006; De Domenico et al. 2015). The first layer

represents electrical coupling via gap junctions between neurons, while links in the

other layers represent neurons coupled by neurotransmitters. C. elegans has many

advantages as a model organism in general (Brenner 1974; White et al. 1986), and its

neuronal wiring diagram is completely mapped experimentally (White et al. 1986;

Hall et al. 2008), making its connectome an ideal test network dataset.

Open source developer collaboration network This network represents the software

developers working on open source projects hosted by IBM on GitHub (https://

github.com/ibm). This network is temporal, evolving over the years 2013-2017,

allowing us to compare its development across time. Aggregating all activity, this

network consists of 679 nodes and 3,628 links. Each node represents a developer

https://github.com/ibm
https://github.com/ibm
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who has contributed to the source code of the project, as extracted from the git

metadata logs (Bird et al. 2009; Kalliamvakou et al. 2014; Klug and Bagrow 2016).

Links occur between developers who have edited at least one source code file in

common, a simple measure of collaboration. To study this network as a weighted

network, we associate with each link (i, j) an integer weight wij equal to the number

of source files edited in common by developers i and j.

For these data, the Network Portrait Divergence reveals several interesting facets of the

multilayer structure of the Arabidopsis network (Fig. 4). First, both the direct interaction

and physical association layers are the most different, both from each other and from the

other layers, with the synthetic interactions layer being most different from the direct and

physical layers. The remaining five layers show interesting relationships, with suppres-

sive and synthetic genetic interactions being the most distinct pair (DJS = 0.553) among

these five layers. The additive and suppressive layers were also distinct (DJS = 0.365).

De Domenico et al. observed a similar distinction between the suppressive and synthetic

layers (De Domenico et al. 2015).

The multilayer C. elegans network, consisting of only three layers, is easier to under-

stand than Arabidopsis. Here we find that the electrical junction layer is more closely

related to the monadic synapse layer than it is to the polyadic synapse layer, while the

polyadic layer is more closely related to the monadic synapse layer than to the electri-

cal junction layer. The C. elegans data aggregated all polyadic synapses together into one

layer accounting for over half of the total links in the network, but it would be especially

interesting to determine what patterns for dyadic, triadic, etc. synapses can be revealed

with the Network Portrait Divergence.

The third real-world network we investigate is a temporal network (Fig. 5). This network

encodes the collaboration activities between software developers who have contributed to

open source projects owned by IBM on GitHub.com. Here each node represents a devel-

oper and a links exist between two developers when they have both edited at least one file

in common among the source code hosted on GitHub. This network is growing over time

as more projects are open-sourced by IBM, and more developers join and contribute to

those projects. We draw the IBM developer network for each year from 2013 to 2017 in

Fig. 4 Using Network Portrait Divergence to compare across layers of multiplex networks. The (i, j) entry of

each matrix illustrates the Network Portrait divergence between layer i and layer j of the corresponding

multiplex network. Network Portrait Divergence can reveal similarities and differences across the different

multiplex layers
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A

B C

Fig. 5 Network Portrait Divergence and the temporal evolution of the IBM GitHub collaboration network. a

The IBM collaboration networks, each one aggregated from a year of developer activity on IBM’s GitHub

projects. b Growth of the IBM network over time. The inset tracks the Network Portrait Divergence of the

network away from the first year. c Network Portrait Divergences comparing networks across years. The

decreased growth rate from 2015 to 2016 is captured by a very close divergence. Otherwise, the divergences

are quite high, especially between the extreme years, demonstrating the dynamic changes the IBM

collaboration underwent during the data window. Panel C treats the network as unweighted

Fig. 5a, while Fig. 5b shows the change in size of these networks over time. Lastly, Fig. 5c

demonstrates howDJS captures patterns in the temporal evolution of the network, in par-

ticular revealing the structural similarity between 2015 and 2016, a period that showed a

distinct slowdown in network growth compared with prior and subsequent years.

Figure 6 shows the Network Portrait Divergence comparing different years of the IBM

developer network, as per Fig. 5 but now accounting for edge weights. Shortest path

lengths were found using Dijkstra’s algorithm based on reciprocal edge weights (see

Additional file 1 for details). The weighted portraits require binning the path length dis-

tributions (see Additional file 1). Here we show four such binnings, based on quantiles of

the weighted path length distributions, from b = 100 bins (each bin accounts for 1% of

shortest paths) to b = 10 (each bin accounts for 10% of shortest paths). Note that eachDJS

is defined with its own portrait binning, as the quantiles of L = L(G) ∪ L(G′) may vary

across different pairs of networks, where L(G) = {ℓij | i, j ∈ V ∧ ℓij < ∞} is the set of all

unique shortest path lengths in G. Overall, the relationships between the different time

periods of the network do not depend strongly on the choice of binning, and we capture

patterns across time similar to, though not identical to, the patterns found analyzing the

unweighted networks (shown in Fig. 5).

Conclusion

In this paper we have introduced a measure, the Network Portrait Divergence, for com-

paring networks, and validated its performance on both synthetic and real-world network

data. Network Portrait Divergence provides an information-theoretic interpretation that
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Fig. 6 Weighted Network Portrait Divergence for comparing the IBM developer network over time. The

weighted portraits depend on a choice of binning (see Additional file 1); here we see that the pattern of

similarities between networks is robust to changes in binning

naturally encompasses all scales of structure within networks. It does not require the

networks to be connected, nor does it make any assumptions as to how the two net-

works being compared are related, or indexed, or even that their node sets are equal.

Further, Network Portrait Divergence can naturally handle both undirected and directed,

unweighted networks, and we have introduced a generalization for weighted networks.

The Network Portrait Divergence is based on a graph invariant, the network portrait.

Comparisonmeasures based on graph invariants are desirable as they will only be affected

by the topology of the networks being studied, and not other externalities such as the

format or order in which the networks are recorded or analyzed. The computational

complexity of the Network Portrait Divergence compares favorably to many other graph

comparison measures, particularly spectral measures, but it remains a computation that

is quadratic in the number of nodes of the graph. To scale to very large networks will likely

require further efficiency gains, probably from approximation strategies to efficiently

infer the shortest path distributions (Potamias et al. 2009).

Our approach bears superficial similarities with other methods. Graph distances and

shortest path length distributions are components common tomany network comparison

methods, including our own, although the Network Portrait Divergences utilizes a unique

composition of all the shortest path length distributions for the networks being compared.

At the same time, other methods, including ours, use the Jensen-Shannon divergence to

build comparison measures. For example, the recent work of Chen et al. (2018) uses the

Shannon entropy and Jensen-Shannon Divergence of a probability distribution computed

by normalizing eA, the exponential of the adjacency matrix also known as the commu-

nicability matrix. This is an interesting approach, as are other approaches that examine

powers of the adjacencymatrix, but it suffers from a drawback: when comparing networks

of different sizes, the underlying probability distributions must be modified in an ad hoc

manner (Chen et al. 2018). The Network Portrait Divergence, in contrast, does not need

such modification.

The Network Portrait Divergence, and other methods, is based upon the Jensen-

Shannon divergence between graph-invariant probability distributions, but many other

information-theoretic tools exist for comparing distributions, including f -divergences

such as the Hellinger distance or total variation distance, Bhattacharyya distance, and

more. Using different measures for comparison may yield different interpretations and

insights, and thus it is fruitful to better understand their use across different network

comparison problems.
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Network Portrait divergence lends itself well to developing statistical procedures when

combined with suitable graph null models. For example, one could quantify the random-

ness of a structural property of a network by comparing the real network to a random

model that controls for that property. Further, to estimate the strength or significance of

an observed divergence between graphs G1 and G2, one could generate a large number

of random graph null proxies for either G1 or G2 (or both) and compare the diver-

gences found between those nulls with the divergence between the original graphs. These

comparisons could be performed using a Z-test or other statistical procedure, as appro-

priate. Exploring this and other avenues for Network Portrait Divergence-based statistical

procedures is a fruitful direction for future work.

In general, because of the different potential interpretations and insights that

researchers performing network comparison can focus on, the network comparison

problem lacks quantitative benchmarks. These benchmarks are useful for comparing

different approaches systematically. However, the comparison problem is not as nar-

rowly defined as, for example, graph partitioning, and thus effective methods may

highlight very different facets of comparison. While specific benchmarks can be intro-

duced for specific facets, due to a lack of standardized, systematic benchmarks, most

researchers introducing new comparison measures focus on a few tasks of interest, as

we do here. Bringing clarity to the literature by defining and validating an appropri-

ate benchmarking suite would be a valuable contribution to the network comparison

problem, but we consider this to be beyond the scope of our current work. Instead, we

have focused our method on highlighting several areas, particularly within real world

applications but also using some intuitive synthetic scenarios, where the method is

effective.

As network datasets increase in scope, network comparison becomes an increasingly

common and important component of network data analysis. Measures such as the Net-

work Portrait Divergence have the potential to help researchers better understand and

explore the growing sets of networks within their possession.

Endnotes
1Note that a distance ℓ = 0 is admissible, with two nodes i and j at distance 0 when

i = j. This means that the matrix B so defined has a zeroth row. It also has a zeroth

column, as there may be nodes that have zero nodes at some distance ℓ. This occurs for

nodes with eccentricity less than the graph diameter.
2Code implementing Network Portrait Divergence is available at https://github.com/

bagrow/network-portrait-divergence/.
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