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Abstract

Compressed sensing is an emerging field based on the revelation that a small group
of linear projections of a sparse signal contains enough information for reconstruc-
tion. In this paper we introduce a new theory for distributed compressed sensing
(DCS) that enables new distributed coding algorithms for multi-signal ensembles
that exploit both intra- and inter-signal correlation structures. The DCS theory
rests on a concept that we term the joint sparsity of a signal ensemble. We study
a model for jointly sparse signals, propose algorithms for joint recovery of multi-
ple signals from incoherent projections, and characterize the number of measure-
ments per sensor required for accurate reconstruction. We establish a parallel with
the Slepian-Wolf theorem from information theory and establish upper and lower
bounds on the measurement rates required for encoding jointly sparse signals. In
some sense DCS is a framework for distributed compression of sources with mem-
ory, which has remained a challenging problem for some time. DCS is immediately
applicable to a range of problems in sensor networks and arrays.

1 Introduction

A core tenet of signal processing and information theory is that signals, images, and
other data often contain some type of structure that enables intelligent representation
and processing. Current state-of-the-art compression algorithms employ a decorrelating
transform such as an exact or approximate Karhunen-Loeéve transform (KLT) to compact
a correlated signal’s energy into just a few essential coeflicients. Such transform coders [1]
exploit the fact that many signals have a sparse representation in terms of some basis,
meaning that a small number K of adaptively chosen transform coefficients can be trans-
mitted or stored rather than N > K signal samples. For example, smooth signals are

sparse in the Fourier basis, and piecewise smooth signals are sparse in a wavelet basis [1];
the coding standards MP3, JPEG, and JPEG2000 directly exploit this sparsity.

1.1 Distributed source coding

While the theory and practice of compression have been well developed for individual
signals, many applications involve multiple signals, for which there has been less progress.
As a motivating example, consider a sensor network, in which a number of distributed
nodes acquire data and report it to a central collection point [2]. In such networks,
communication energy and bandwidth are often scarce resources, making the reduction
of communication critical. Fortunately, since the sensors presumably observe related
phenomena, the ensemble of signals they acquire can be expected to possess some joint
structure, or inter-signal correlation, in addition to the intra-signal correlation in each
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individual sensor’s measurements. In such settings, distributed source coding that exploits
both types of correlation might allow a substantial savings on communication costs [3-6].

A number of distributed coding algorithms have been developed that involve collab-
oration amongst the sensors [7,8]. Any collaboration, however, involves some amount
of inter-sensor communication overhead. The Slepian- Wolf framework for lossless dis-
tributed coding [3-6] offers a collaboration-free approach in which each sensor node could
communicate losslessly at its conditional entropy rate, rather than at its individual en-
tropy rate. Unfortunately, however, most existing coding algorithms [5, 6] exploit only
inter-signal correlations and not intra-signal correlations, and there has been only limited
progress on distributed coding of so-called “sources with memory.” The direct implemen-
tation for such sources would require huge lookup tables [3], and approaches combining
pre- or post-processing of the data to remove intra-signal correlations combined with
Slepian-Wolf coding for the inter-signal correlations appear to have limited applicabil-
ity. Finally, a recent paper by Uyematsu [9] provides compression of spatially correlated
sources with memory, but the solution is specific to lossless distributed compression and
cannot be readily extended to lossy settings. We conclude that the design of distributed
coding techniques for sources with both intra- and inter-signal correlation is a challenging
problem with many potential applications.

1.2 Compressed sensing (CS)

A new framework for single-signal sensing and compression has developed recently under
the rubric of Compressed Sensing (CS) [10,11]. CS builds on the surprising revelation
that a signal having a sparse representation in one basis can be recovered from a small
number of projections onto a second basis that is incoherent with the first.! In fact,
for an N-sample signal that is K-sparse,? roughly cK projections of the signal onto the
incoherent basis are required to reconstruct the signal with high probability (typically
¢ ~ 3 or 4). This has promising implications for applications involving sparse signal
acquisition. Instead of sampling a K-sparse signal N times, only cK incoherent mea-
surements suffice, where K can be orders of magnitude less than N. Moreover, the cK
measurements need not be manipulated in any way before being transmitted, except
possibly for some quantization. Finally, independent and identically distributed (i.i.d.)
Gaussian or Bernoulli/Rademacher (random £1) vectors provide a useful universal basis
that is incoherent with all others.> Hence, when using a random basis, CS is univer-
sal in the sense that the sensor can apply the same measurement mechanism no matter
what basis the signal is sparse in (and thus the coding algorithm is independent of the
sparsity-inducing basis) [11,12]. A variety of algorithms have been proposed for signal
recovery [10,11,14-16], each requiring a slightly different constant ¢ (see Section 2.2).

While powerful, the CS theory at present is designed mainly to exploit intra-signal
structures at a single sensor. To the best of our knowledge, the only work to date that
applies CS in a multi-sensor setting is Haupt and Nowak [17]. However, while their
scheme exploits inter-signal correlations, it ignores intra-signal correlations.

'Roughly speaking, incoherence means that no element of one basis has a sparse representation in
terms of the other basis. This notion has a variety of formalizations in the CS literature [10-13].

2By K-sparse, we mean that the signal can be written as a sum of K basis functions.

3Since the “incoherent” measurement vectors must be known for signal recovery, in practice one may
use a pseudorandom basis with a known random seed.



1.3 Distributed compressed sensing (DCS)

In this paper we introduce a new theory for distributed compressed sensing (DCS) that
enables new distributed coding algorithms that exploit both intra- and inter-signal cor-
relation structures. In a typical DCS scenario, a number of sensors measure signals (of
any dimension) that are each individually sparse in some basis and also correlated from
sensor to sensor. Each sensor independently encodes its signal by projecting it onto an-
other, incoherent basis (such as a random one) and then transmits just a few of the
resulting coefficients to a single collection point. Under the right conditions, a decoder
at the collection point can jointly reconstruct all of the signals precisely.

The DCS theory rests on a concept that we term the joint sparsity of a signal ensem-
ble. We study a model for jointly sparse signals, propose algorithms for joint recovery
of multiple signals from incoherent projections, and characterize the number of measure-
ments per sensor required for accurate reconstruction. While the sensors operate entirely
without collaboration, we will see that the measurement rates relate directly to the sig-
nals’ conditional sparsities, in parallel with the Slepian-Wolf theory. In certain scenarios,
the savings in measurements can be substantial over separate CS decoding.

Our DCS coding schemes share many of the attractive and intriguing properties of
CS, particularly when we employ random projections at the sensors. In addition to being
universally incoherent, random measurements are also future-proof. if a better sparsity-
inducing basis is found, then the same random measurements can be used to reconstruct
an even more accurate view of the environment. Using a pseudorandom basis (with a
random seed) effectively implements a weak form of encryption: the randomized mea-
surements will themselves resemble noise and be meaningless to an observer who does not
know the associated seed. Random coding is also robust: the randomized measurements
coming from each sensor have equal priority, unlike transform coefficients in current
coders. Thus they allow a progressively better reconstruction of the data as more mea-
surements are obtained; one or more measurements can also be lost without corrupting
the entire reconstruction. Finally, DCS distributes its computational complexity asym-
metrically, placing most of it in the joint decoder, which will often have more substantial
resources than any individual sensor node. The encoders are very simple; they merely
compute incoherent projections with their signals and make no decisions.

We note that our aim in this paper is to minimize the overall sensor measurement
rates in order to reduce communication costs. Characterizing quantization, noise, and
rate-distortion aspects in the DCS setting are topics for future work (see Section 4).

This paper is organized as follows. Section 2 overviews the single-signal CS theory.
Section 3 introduces our model for joint sparsity and presents our analysis and simulation
results. We close with a discussion and conclusions in Section 4.

2 Compressed Sensing

Consider a length-N, real-valued signal x of any dimension (without loss of generality,
we focus on one dimension) indexed as z(n), n € {1,2,..., N}. Suppose that the basis
U = [y, ...,9¥nN] [1] provides a K-sparse representation of z; that is

N K
T = Ze(n) Yy = ZQ(W) Unys
n=1 (=1

where z is a linear combination of K vectors chosen from W, {n,} are the indices of those
vectors, and {f(n)} are the coefficients; the concept is extendable to tight frames [1].



Alternatively, we can write x = W6, where z is an N x 1 column vector, the sparse basis
matrix ¥ is N x N with the basis vectors ¢, as columns, and 6 is an N x 1 column
vector with K nonzero elements. Using || - ||, to denote the £, norm,* we can write
that ||f|lo = K. Various expansions, including wavelets, Gabor bases, curvelets, etc.,
are widely used for representation and compression of natural signals, images, and other
data. In this paper, we will focus on exactly K-sparse signals and defer discussion of the
more general situation where the coefficients decay rapidly but not to zero (see Section
4).

The standard procedure for compressing such signals, known as transform coding,
is to (i) acquire the full N-point signal x; (i) compute the complete set of transform
coefficients {6(n)}; (iii) locate the K largest, significant coefficients and discard the
(many) small coefficients; (iv) encode the values and locations of the largest coefficients.

This procedure has three inherent inefficiencies: First, for a high-dimensional signal,
we must start with a large number of samples N. Second, the encoder must compute all
of the N transform coefficients {6(n)}, even though it will discard all but K of them.
Third, the encoder must encode the locations of the large coefficients, which requires
increasing the coding rate since these locations will change with each signal.

2.1 Incoherent projections

These inefficiencies raise a simple question: For a given signal, is it possible to directly
estimate the set of large 6(n)’s that will not be discarded? While this seems improbable,
the recent theory of Compressed Sensing (CS) [10-12] offers a solution. In CS, we do not
measure or encode the K significant 0(n) directly. Rather, we measure and encode M
projections y(m) = (z, ¢ ) of the signal onto a second set of basis functions {¢,,}, m =
1,2,..., M, where ¢I denotes the transpose of ¢,, and (-,-) denotes the inner product.
In matrix notation, we measure y = ®x, where y is an M x 1 column vector and the
measurement basis matrix ¢ is M x N with each row a basis vector ¢,,.

The CS theory tells us that when certain conditions hold, namely that the basis
{¢m} cannot sparsely represent the elements of the basis {1} (a condition known as
incoherence of the two bases [10-13]) and the number of measurements M is large enough,
then it is indeed possible to recover the set of large {#(n)} (and thus the signal z) from
a similarly sized set of measurements {y(m)}. This incoherence property holds for many
pairs of bases, including for example, delta spikes and the sine waves of a Fourier basis,
or significantly, between an arbitrary fixed basis/frame and a randomly generated one.

2.2 Signal recovery from incoherent projections

The recovery of the sparse set of significant coefficients {f(n)} can be achieved using
optimization by searching for the signal with fy-sparsest coefficients {f(n)} that agrees
with the M observed measurements in y (where presumably M < N):

f = argmin ||0]jy s.t. y = OUO.

(Assuming sufficient incoherence between the two bases, if the original signal is sparse
in the 0 coefficients, then no other set of sparse signal coefficients #’ can yield the same
projections y.) We will call the columns of ®W the holographic basis.

In principle, remarkably few incoherent measurements are required to ensure recovery
a K-sparse signal via /y minimization. Clearly, more than K measurements must be taken
to avoid ambiguity. However, we have established that K + 1 random measurements

4The ¢y norm ||f)]|p merely counts the number of nonzero entries in the vector 6.



will suffice [18]. Unfortunately, solving this ¢, optimization problem is prohibitively
complex, requiring a combinatorial enumeration of the (g) possible sparse subspaces; in
fact it is NP-complete [14]. Yet another challenge is robustness; with little more than
K measurements, the recovery may be very poorly conditioned. In fact, both of these
considerations (computational complexity and robustness) can be addressed, but at the
expense of slightly more measurements.

The practical revelation that supports the new CS theory is that a much easier op-
timization problem yields an equivalent solution; we need only solve for the ¢;-sparsest
coefficients 6 that agree with the measurements y [10-12]

f = arg min 10|lp  s.t. y = dV.

This optimization problem, also known as Basis Pursuit [19], is significantly more ap-
proachable and can be solved with traditional linear programming techniques whose
computational complexities are polynomial in N. There is no free lunch, however; one
typically requires M > cK measurements to recover sparse signals via Basis Pursuit,
where ¢ > 1 is an oversampling factor. As an example, we quote a result asymptotic in
N. For simplicity, we assume that the sparsity scales linearly with N; that is, K = SN,
where we call S the sparsity rate.

Theorem 1 [14-16] Set K = SN with 0 < S < 1. Then there exists an oversampling
factor ¢(S) = O(log(1/5)), ¢(S) > 1, such that, for a K-sparse signal x in basis U, the
probability of recovering x via Basis Pursuit from (¢(S)+ €) K random projections, € > 0,
converges to 1 as N — o0o. In contrast, the probability of recovering x via Basis Pursuit
from (c(S) — €)K random projections converges to 0 as N — 0.

Donoho and Tanner [15, 16] have characterized this oversampling factor ¢(S) precisely;
we have discovered a useful rule of thumb that c(S) &~ logy(1+S™"). In the remainder of
the paper, we often use the abbreviated notation ¢ to describe the oversampling factor
in various settings even though ¢(S) depends on the sparsity K and signal length N.

With appropriate oversampling, reconstruction via Basis Pursuit is robust to mea-
surement noise and quantization error [10]. Iterative greedy algorithms have also been
proposed [13], allowing even faster reconstruction at the expense of more measurements.

3 Joint Sparsity Model and Recovery Strategies

In the first part of this section, we generalize the notion of a signal being sparse in some
basis to the notion of an ensemble of signals being jointly sparse. In the second part, we
investigate how joint representations can enable reconstruction of an ensemble of signals
using fewer measurements per (separate) encoder. We characterize which measurement
rates are feasible and describe effective reconstruction algorithms.

3.1 Additive common component 4+ innovations model
Notation: We use x;(n) to denote sample n in signal j where j € {1,2,...,J}, z; € RY,
and we assume that there exists a known sparse basis ¥ for RY in which the z; can be
sparsely represented. Denote by ®; the M; x N measurement matriz for signal j. Thus,
y; = ®;x; consists of M; < N incoherent measurements of ;. We will emphasize random
i.i.d. Gaussian matrices ®;, but other schemes are possible.

Additive model: In our model, all signals share a common sparse component while
each individual signal contains a sparse innovation component; that is,

rj=z+z2;, je{l,2,...,J}



with z = V6,, ||0.]o = K, z; = ¥0;, and ||#;]|o = K;. Thus, the signal z is common to
all of the z; and has sparsity K in basis W. The signals z; are the unique portions of the
x; and have sparsity K; in the same basis.

To give ourselves a firm footing for analysis, we consider a specific stochastic generative
model for the jointly sparse signals. We randomly pick K indices from {1,2,..., N} for
which the corresponding coefficients in 8, are nonzero. We pick the indices such that each
configuration has an equal likelihood of being selected. In a similar fashion we pick the
K indices that correspond to the nonzero indices of ¢;, independently across all J + 1
components (including 6,). The values of the nonzero coefficients are then generated
from an i.i.d. Gaussian distribution. Though our results are specific to this context, they
can be expected to generalize to other similar scenarios.

Applications: A practical situation well-suited to this model is a group of sensors
measuring temperatures at a number of outdoor locations throughout the day. The
temperature readings z; have both temporal (intra-signal) and spatial (inter-signal) cor-
relations. Global factors, such as the sun and prevailing winds, could have an effect z that
is both common to all sensors and structured enough to permit sparse representation.
Local factors, such as shade, water, or animals, could contribute localized innovations
z; that are also structured (and hence sparse). A similar scenario could be imagined
for sensor networks recording other phenomena. In such scenarios, we measure physical
processes that change smoothly in time and space and thus are highly correlated.

3.2 Information theory framework and notions of sparsity rate

Consider first the simplest case where a single joint encoder processes J = 2 signals. By
employing the CS machinery, we might expect that (i) (K + Kj)c coefficients suffice to
reconstruct x, (i) (K +Ks)c coefficients suffice to reconstruct xo, and (4) (K+K;+Ks)c
coefficients suffice to reconstruct both x; and x5, because we have K + K; + K5 nonzero
elements in z; and x5.° Next, consider the case where J = 2 signals are processed by
separate encoders. Given the (K + K;)c measurements for z; as side information, and
assuming that the partitioning of x; into z and z; is known, cK, measurements that
describe 2, should allow reconstruction of x, . Similarly, conditioned on x5 we should
need only cK; measurements to reconstruct x.

These observations seem related to various types of entropy from information theory.
We thus define notions for sparsity that are similar to existing notions of entropy. As
a motivating example, suppose that the signals z;, j € {1,2,...,J} are generated by
sources X;, j € {1,2,...,J}. Assuming that in some sense the sparsity is linear in
the signal length, as the signal-length N is incremented one by one, the sources provide
new values for z(/N) and z;(/N) and the sparsity levels gradually increase. If the sources
are ergodic, then we can define the sparsity rate of X; as the limit of the proportion of
coefficients that need to be specified to reconstruct it given the vector indices, that is,

K+ K,
A . .
We also define the joint sparsity S(X;,, X;,) of x;, and xj, as the proportion of coefficients
that need to be specified to reconstruct both signals given the vector indices:

K+ K, +K;
S(Xj1>Xj2) = ]\}I_I}loo jj\} =

) jlaj2 € {1a2>>‘]}

5We use the same notation ¢ for the oversampling factors for coding 1, 2, or both sequences.




Finally, the conditional sparsity of x;, given x;, is the proportion of coefficients that need
to be specified to reconstruct z;,, where x;, and the vector indices for z;, are available:

K
S(le |Xj2> = Z\ll—{noo ﬁv
The joint and conditional sparsities extend naturally to problems with J > 2 signals.
Note also that the ergodicity of the source implies that these various limits exist, yet we
can still consider signals in a deterministic framework where K and K are fixed.

The common component z can also be considered to be generated by a common
source Z, in which case its sparsity rate is given by S(Z) £ limy_o % Alternatively, the
sparsity rate of z can be analyzed in a manner analogous to the mutual information [3]
of traditional information theory, for example, S(Z) = I(Z1; Z;) = S(X;) + S(X2) —
S(X1, X5), which we denote by S. These definitions offer a framework for joint sparsity
with notions similar to the entropy, conditional entropy, and joint entropy of information
theory.

j1,j2€{1,2,...,J}.

3.3 Sparsity reduction

We now confine our attention to J = 2 signals where the innovation sparsity rates are
equal, and we denote them by S; £ S(Z,) = S(Z,). We consider an interesting outcome
of our stochastic model when the supports of the common and innovation parts overlap.
Consider the n’th coefficient 6,(n) of the common component z and the corresponding
innovation coefficients #;(n) and 6y(n). Suppose that all three coefficients are nonzero.
Clearly, the same signals x; and x5 could have been generated using at most two nonzero
values among the three, for example by adding the current value of 6,(n) to current
values of 6;(n) and 63(n). Indeed, when all three original coefficients are nonzero, we can
represent them equivalently by any subset of two coefficients. In this case, there exists a
sparser representation than we might expect given K, Ky, and K.

Because the coefficient amplitudes are Gaussian, sparsity reduction is possible with
positive probability only in the case where three corresponding nonzero coefficients are
changed to two nonzero coefficients. Because the locations of the nonzero coefficients are
uniform, the probability that all three are nonzero is S* = S(Sy)2.

3.4 Measurement rate region

To characterize the performance in our setup, we introduce a measurement rate region.
Let M; and M; be the number of measurements taken for x; and x,, respectively. We
define the measurement rates R; and R, in an asymptotic manner as

Bt 7 d B2 i
For a measurement rate pair (R, Rs), we wish to see whether we can reconstruct the
signals with vanishing probability as N increases. In this case, we say then that the
measurement rate pair is achievable.

For signals that are jointly sparse under our model, the individual sparsity rate of
signal z; is S(X;) = S+ S; — SS;. Separate recovery via ¢, minimization would require
a measurement rate R; = S(X;). Separate recovery via ¢; minimization would require
an oversampling factor ¢(S(X;)). To improve upon these figures, we adapt the standard
machinery of CS to the joint recovery problem. Using this machinery and ¢, reconstruc-
tion, we have provided a precise characterization of the measurement rate region [18].
We omit the detailed results and focus instead on more tractable algorithms.



3.5 Joint recovery via /; minimization

In non-distributed compressed sensing (Section 2.2), £; minimization can be implemented
via linear programming but requires an oversampling factor of ¢(S) (Theorem 1). We
now study what penalty must be paid for ¢; reconstruction of jointly sparse signals.

3.5.1 Bounds on performance of /; signal recovery

We begin with a converse theorem, which describes what measurement rate pairs cannot
be achieved via ¢, recovery. Before proceeding, we shed some light on the notion of a
converse region in this computational scenario. We focus on the setup where random
measurements for signal z; are performed via multiplication by an M; by N matrix
and reconstruction of the J = 2 signals is performed via application of ¢; techniques on
subsets of the 2 signals. Within this setup, a converse region is a set of measurement rates
for which any such reconstruction techniques fail with probability 1. We now present our
converse theorem. For compactness, we define the measurement function ¢/(S) £ S-¢(.9)
based on Donoho and Tanner’s oversampling factor ¢ [15, 16].

Theorem 2 Let J = 2 and fix the sparsity rate of the common part S(Z) = S and the
innovation sparsity rates S(Zy) = S(Zy) = S;. The following conditions are necessary to
enable reconstruction with vanishing probability of error:

Ry > J(Sr—SSr—(Sn)*+957),
Ry > ¢ (S;—85—(S1)*+S).

Proof sketch: 1f x5 is completely available, then we must still measure and reconstruct
z1. Even under the most stringent sparsity reductions via overlap with z and z,, the
sparsity rate of z; is lower bounded by S; — SS; — (S7)? + S*, which leads to the requisite
bound on the measurement rate for R;. The argument for R, is analogous. U

The theorem provides a converse region such that, if (R;, Ry) violate these conditions
and we perform M; = [(R; — €)N| measurements for z; and My = [(Ry — €)N| mea-
surements for x,, then the probability of incorrect reconstruction will converge to 1 as
N increases. We also anticipate the following bound on the sum measurement rate

Ry + Ry > (8425 —2585; — (S7)* + 5%),

which appears in Figure 1.

Having ruled out part of the measurement region, we wish to specify regions where
joint reconstruction can be performed. The following theorem, proved in the full pa-
per [18], provides a first step in this direction.

Theorem 3 Let J = 2 and fix the sparsity rate of the common part S(Z) = S and the
innovation sparsity rates S(Zy) = S(Zs) = Sr. Then there exists an {1 reconstruction
technique (along with a measurement strateqy) if the measurement rates satisfy:

Rl,RQ Z C,(QS]—S*),
R+ Ry > C/(2S[—S*)+C/(S—|—251—QSS[—(S[)2+S*).

Furthermore, as St — 0 the sum measurement rate approaches (S).

The proof of Theorem 3 [18] describes a constructive reconstruction algorithm, which
is very insightful. We construct measurement matrices ®; and ®,, which each consist of
two parts. The first part in each measurement matrix is common to both, and is used
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Figure 1: Rate region for distributed compressed sensing. We chose a common sparsity rate
S = 0.2 and innovation sparsity rates Sy = S1 = So = 0.05. Our simulation results use eq. (1)
and signals of length N = 1000.

to reconstruct x; — 9 = 21 — 29. The second parts of the matrices are different and
enable the reconstruction of z + 0.5(z; + 23). Once these two components have been
reconstructed, the computation of z; and x5 is straightforward. The measurement rate
can be computed by considering both common and different parts of ®; and ®,.

Our measurement rate bounds are strikingly similar to those in the Slepian-Wolf
theorem [4], where each signal must be encoded above its conditional entropy rate, and
the ensemble must be coded above the joint entropy rate. Yet despite these advantages,
the achievable measurement rate region of Theorem 3 is loose with respect to the converse
region of Theorem 2, as shown in Figure 1. We are attempting to tighten these bounds
in our ongoing work and have promising preliminary results.

3.5.2 Joint reconstruction with a single linear program

We now present a reconstruction approach based on a single execution of a linear program.
Although we have yet to characterize the performance of this approach theoretically,
our simulation tests indicate that it slightly outperforms the approach of Theorem 3
(Figure 1). In our approach, we wish to jointly recover the sparse signals using a single
linear program, and so we define the following joint matrices and vectors:

0
_ : _ | T N | P O ~ |v ¥ 0
S S PSR S ]

Using the frame \If, we can represent x sparsely using the coefficient vector ¢, which con-
tains K +3_; K; nonzero coefficients, to obtain 2 = Wf. The concatenated measurement
vector y is computed from individual measurements, where the joint measurement basis
is @ and the joint holographic basis is then A = ®W¥. With sufficient oversampling, we
can recover the vector 8, and thus x; and x5, by solving the linear program

f = arg min 161 s.t. y = PUO.
In practice, we find it helpful to modify the Basis Pursuit algorithm to account for the
special structure of DCS recovery. In the linear program, we use a modified ¢; penalty

Y01 A+ 71 l01]]1 + 2| [02]]1, (1)
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Figure 2: Comparison of joint reconstruction using eq. (1) and separate reconstruction . The
advantage of using joint instead of separate reconstruction depends on the common sparsity.

where 7,, 71,72 > 0. We note in passing that if K; = Ky, then we set v; = 5. In this
scenario, without loss of generality, we define v; = 7, = 1 and set v, = 7.

Practical considerations: Joint reconstruction with a single linear program has
several disadvantages relative to the approach of Theorem 3. In terms of computation, the
linear program must reconstruct the J + 1 vectors z, 21, ..., z;. Because the complexity
of linear programming is roughly cubic, the computational burden scales with J2. In
contrast, Theorem 3 first reconstructs J(J — 1)/2 signal differences of the form z;, —z;,
and then reconstructs the common part z 4 %(21 + ...+ z;). Each such reconstruction
is only for a length-N signal, making the computational load lighter by an O(J) factor.

Another disadvantage of the modified ¢; reconstruction is that the optimal choice of
Y., 71, and o depends on the relative sparsities K, K, and K,. At this stage we have not
been able to determine these optimal values analytically. Instead, we rely on a numerical
optimization, which is computationally intense. For a discussion of the tradeoffs that
affect these values, see the full paper [18].

3.6 Numerical examples

Reconstructing two signals with symmetric measurement rates: We consider
J = 2 signals generated from components z, z;, and z; having sparsities K, K, and
K, in the basis ¥ = I.5 We consider signals of length N = 50 with sparsities chosen
such that K1 = Ky and K + K, + K, = 15; we assign Gaussian values to the nonzero
coefficients. Finally, we focus on symmetric measurement rates M = M; = M, and use
the joint ¢; decoding method, as described in Section 3.5.2.

For each value of M, we optimize the choice of v numerically and run several thousand
trials to determine the probability of correctly recovering x; and x;. The simulation
results are summarized in Figure 2. The degree to which joint decoding outperforms
separate decoding is directly related to the amount of shared information K. For K = 11,
K, = Ky = 2, M is reduced by approximately 30%. For smaller K, joint decoding barely
outperforms separate decoding.

Reconstructing two signals with asymmetric measurement rates: In Figure 1,
we compare separate CS reconstruction with the converse bound of Theorem 2, the
achievable bound of Theorem 3, and numerical results. We use J = 2 signals and choose
a common sparsity rate S = 0.2 and innovation sparsity rates S; = S; = Sy = 0.05.
Several different asymmetric measurement rates are considered. In each such setup, we
constrain My to have the form My = aM;, where a € {1,1.25,1.5,1.75,2}. By swapping
M, and M, we obtain additional results for o € {1/2,1/1.75,1/1.5,1/1.25}. In the

6We expect the results to hold for an arbitrary basis .



Measurement rate per sensor

0.25

1" 2 3 4 5 6 7 8 9 10

Number of sensors
Figure 3: Multi-sensor measurement results for our Joint Sparsity Model using eq. (1). We
choose a common sparsity rate S = 0.2 and innovation sparsity rates S = 0.05. Our simulation

results use signals of length N = 400.

simulation itself, we first find the optimal v numerically using N = 40 to accelerate the
computation, and then simulate larger problems of size N = 1000. The results plotted
indicate the smallest pairs (M, M5) for which we always succeeded reconstructing the
signal over 100 simulation runs.

Reconstructing multiple signals with symmetric measurement rates: The
reconstruction techniques of this section are especially promising when J > 2 sensors
are used, because the measurements for the common part are split among more sensors.
These savings may be especially valuable in applications such as sensor networks, where
data may contain strong spatial (inter-source) correlations.

We use J € {1,2,...,10} signals and choose the same sparsity rates S = 0.2 and S; =
0.05 as in the asymmetric rate simulations; here we use symmetric measurement rates.
We first find the optimal v numerically using N = 40 to accelerate the computation,
and then simulate larger problems of size N = 400. The results of Figure 3 describe the
smallest symmetric measurement rates for which we always succeeded reconstructing the
signal over 100 simulation runs. As J is increased, lower rates can be used.

4 Discussion and Conclusions

In this paper we have taken the first steps towards extending the theory and practice of
CS to multi-signal, distributed settings. Our joint sparsity model captures the essence
of real physical scenarios, illustrates the basic analysis and algorithmic techniques, and
indicates the gains to be realized from joint recovery. We have provided a measurement
rate region analogous to the Slepian-Wolf theorem [4], as well as appealing numerical
results.

There are many opportunities for extensions of our ideas. Compressible signals: Nat-
ural signals are not exactly ¢, sparse but rather can be better modeled as ¢, sparse with
0 < p < 1. Quantized and noisy measurements: Our (random) measurements will be real
numbers; quantization will gradually degrade the reconstruction quality as it becomes
coarser [20]. Moreover, noise will often corrupt the measurements, making them not
strictly sparse in any basis. Fast algorithms: In some applications, linear programming
could prove too computationally intense. We leave these extensions for future work.

Finally, our model for sparse common and innovation components is useful, but we
have also studied additional ways in which joint sparsity may occur [18]. Common
sparse supports: In this model, all signals are constructed from the same sparse set of
basis vectors, but with different coefficients. Examples of such scenarios include MIMO



communication and audio signal arrays; the signals may be sparse in the Fourier domain,
for example, yet multipath effects cause different attenuations among the frequency com-
ponents. Nonsparse common component + sparse innovations: We extend our current
model so that the common component need no longer be sparse in any basis. Since
the common component is not sparse, no individual signal contains enough structure to
permit efficient compression or CS; in general N measurements would be required for
each individual N-sample signal. We demonstrate, however, that the common structure
shared by the signals permits a dramatic reduction in the required measurement rates.
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