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Abstract 

We discuss in this paper architectures for executing probabilistic rule-bases in a par­

allel manner, using as a theoretical basis recently introduced information-theoretic 

models. We will begin by describing our (non-neural) learning algorithm and theory 

of quantitative rule modelling, followed by a discussion on the exact nature of two 

particular models. Finally we work through an example of our approach, going from 

database to rules to inference network, and compare the network's performance with 

the theoretical limits for specific problems. 

Introduction 

With the advent of relatively cheap mass storage devices it is common in many 

domains to maintain large databases or logs of data, e.g., in telecommunications, 

medicine, finance, etc. The question naturally arises as to whether we can extract 
models from the data in an automated manner and use these models as the basis 

for an autonomous rational agent in the given domain, i.e., automatically generate 

"expert systems" from data. There are really two aspects to this problem: firstly 

learning a model and, secondly, performing inference using this model. What we 

propose in this paper is a rather novel and hybrid approach to learning and in­

ference. Essentially we combine the qu'alitative knowledge representation ideas of 
AI with the distributeq, computational advantages of connectionist models, using 

an underlying theoretical basis tied to information theory. The knowledge repre­

sentation formalism we adopt is the rule-based representation, a scheme which is 

well supported by cognitive scientists and AI researchers for modeling higher level 
symbolic reasoning tasks. We have recently developed an information-theoretic al­

gorithm called ITRULE which extracts an optimal set of probabilistic rules from a 

given data set [1, 2, 3]. It must be emphasised that we do not use any form of neural 

learning such as backpropagation in our approach. To put it simply, the ITRULE 

learning algorithm is far more computationally direct and better understood than 

(say) backpropagation for this particular learning task of finding the most infor­

mative individual rules without reference to their collective properties. Performing 
useful inference with this model or set of rules, is quite a difficult problem. Exact 

theoretical schemes such as maximum entropy (ME) are intractable for real-time 

applications. 
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We have been investigating schemes where the rules represent links on a directed 

graph and the nodes correspond to propositions, i.e., variable-value pairs. Our 

approach is characterised by loosely connected, multiple path (arbitrary topology) 

graph structures, with nodes performing local non-linear decisions as to their true 

state based on both supporting evidence and their a priori bias. What we have in 

fact is a recurrent neural network. What is different about this approach compared 

to a standard connectionist model as learned by a weight-adaptation algorithm such 

as BP? The difference lies in the semantics of the representation [4]. Weights such 

as log-odds ratios based on log transformations of probabilities possess a clear mean­

ing to the user, as indeed do the nodes themselves. This explicit representation of 

knowledge is a key requirement for any system which purports to perform reasoning, 

probabilistic or otherwise. Conversely, the lack of explicit knowledge representation 

in most current connectionist approaches, i.e., the "black box" syndrome, is a ma­

jor limitation to their application in critical domains where user-confidence and 

explanation facilities are key criteria for deployment in the field. 

Learning the model 

Consider that we have M observations or samples available, e.g., the number of 

items in a database. Each sample datum is described in terms of N attributes 

or features, which can assume values in a corresponding set of N discrete alpha­

bets. For example our data might be described in the form of lO-component binary 

vectors. The requirement for discrete rather than continuous-valued attributes is 

dictated by the very nature of the rule-based representation. In addition it is impor­

tant to note that we do not assume that the sample data is somehow exhaustive and 

"correct." There is a tendency in both the neural network and AI learning literature 

to analyse learning in terms of learning a Boolean function from a truth table. The 

implicit assumption is often made that given enough samples, and a good enough 

learning algorithm we can always learn the function exactly. This is a fallacy, since 

it depends on the feature representation. For any problem of interest there are 

always hidden causes with a consequent non-zero Bayes misclassification risk, i.e., 

the function is dependent on non-observable features (unseen columns of the truth 

table). Only in artificial problems such as game playing is "perfect" classification 

possible - in practical problems nature hides the real features. This phenomenon 

is well known in the statistical pattern recognition literature and renders invalid 

those schemes which simply try to perfectly classify or memorise the training data. 

We use the following simple model of a rule, i.e., 

IT Y = y then X = x with probability p 

where X and Yare two attributes (random variables) with "x" and "y" being values 

in their respective discrete alphabets. Given sample data as described earlier we 

pose the problem as follows: can we find the "best" rules from a given data set, 

say the K best rules? We will refer to this problem as that of generalised rule 

induction, in order to distinguish it from the special case of deriving classification 
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rules. Clearly we require both a preference measure to rank the rules and a learning 

algorithm which uses the preference measure to find the K best rules. 

Let us define the information which the event y yields about the variable X, say 

!(Xj y). Based on the requirements that !(Xj y) is both non-negative and that 

its expectation with respect to Y equals the average mutual information J(Xj Y), 
Blachman [5] showed that the only such function is the j-measure, which is defined 

as 

i(Xj y) = p(x\y) log (p(x\y)) + p(x\y) log (p(x)~y)) 
p(x) p(x) 

More recently we have shown that i(Xj y) possesses unique properties as a rule 

information measure [6]. In general the j-measure is the average change in bits 

required to specify X between the a priori distribution (p(X)) and the a posteriori 

distribution (p(X\y)). It can also be interpreted as a special case of the cross-entropy 
or binary discrimination (Kullback [7]) between these two distributions. We further 

define J(Xj y) as the average information content where J(X; y) = p(Y)-i(Xj y). 
J(Xj y) simply weights the instantaneous rule information i(X; y) by the probability 

that the left-hand side will occur, i.e., that the rule will be fired. This definition 

is motivated by considerations of learning useful rules in a resource-constrained 

environment. A rule with high information content must be both a good predictor 

and have a reasonable probability of being fired, i.e., p(y) can not be too small. 

Interestingly enough our definition of J(Xj y) possesses a well-defined interpretation 

in terms of classical induction theory, trading off hypothesis simplicity with the 

goodness-of-fit of the hypothesis to the data [8]. 

The ITRULE algorithm [1, 2, 3] uses the J-measure to derive the most informative 

set of rules from an input data set. The algorithm produces a set of K probabilistic 

rules, ranked in order of decreasing information content. The parameter K may be 

user-defined or determined via some statistical significance test based on the size of 

the sample data set available. The algorithm searches the space of possible rules, 

trading off generality of the rules with their predictiveness, and using information­

theoretic bounds to constrain the search space. 

Using the Model to Perform Inference 

Having learned the model we now have at our disposal a set of lower order con­
straints on the N-th order joint distribution in the form of probabilistic rules. This 

is our a priori model. In a typical inference situation we are given some initial 

conditions (i.e., some nodes are clamped), we are allowed to measure the state of 

some other nodes (possibly at a cost), and we wish to infer the state or probability 

of one more goal propositions or nodes from the available evidence. It is important 

to note that this is a much more difficult and general problem than classification of 

a single, fixed, goal variable, since both the initial conditions and goal propositions 

may vary considerably from one problem instance to the next. This is the infer­

ence problem, determining an a posteriori distribution in the face of incomplete and 

uncertain information. The exact maximum entropy solution to this problem is in-
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tractable and, despite the elegance of the problem formulation, stochastic relaxation 
techniques (Geman [9]) are at present impractical for real-time robust applications. 

Our motivation then is to perform an approximation to exact Bayesian inference 

in a robust manner. With this in mind we have developed two particular models 

which we describe as the hypothesis testing network and the uncertainty network. 

Principles of the Hypothesis Testing Network 

In the first model under consideration each directed link from Y to x is assigned a 

weight corresponding to the weight of evidence of yon x. This idea is not necessarily 

new, although our interpretation and approach is different to previous work [10, 4]. 
Hence we have 

W -1 p{xIY) -1 p(:xIY) 
:r.y - og p(x) og p(x) 

and R = -log p(x) 
:r. p(x) 

and the node x is assigned a threshold term corresponding to a priori bias. We use 

a sigmoidal activation function, i.e., 

n 
1 

a ( x) = --~7'""E=-t----;;R'--, 
l+e T 

where l:J.E:r. = I: W:r.y; . q(y,) - R:r. 

,=1 

based on multiple binary inputs Y1 ... Yn to x. Let 8 be the set of all Yi which are 

hypothesised true (Le., a{yd = 1), so that 

AE = I p(x) + '" (1 p(xlYd _ 1 p(xIY,)) 
L.l:r. og p(x) L- og p(x) og p(x) 

y;ES 

If each y, is conditionally independent given x then we can write 

p(xIS) = p(x) II p(xIY,) 

p(xIS) p(x) y;ES p(xlYd 

Therefore the updating rule for conditionally independent y, is: 

T . log a(x) = log p(xI8) 
1 - a(x) 1 - p(x/S) 

Hence a(x) > ~ iff p{xI8) > ~ and if T == 1, a(x) is exactly p(xIS). In terms of a 

hypothesis test, a(x) is chosen true iff: 

'" I p(XIYi) > I p{x) L- og - og--
p(XIYi) - p(x) 

Since this describes the Neyman-Pearson decision region for independent measure­

ments (evidence or yd with R:r. = -log :~~~ [11], this model can be interpreted as 

a distributed form of hypothesis testing. 
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Principles of the Uncertainty Network 

For this model we defined the weight on a directed link from Yi to x as 

. ( p(XIYi) _ p(xIYi))) 
W XYi = si.1(XjYi) = Si· p(XIYi}log( p(x) ) + p(xly,)log( p(x) 

where Si = ±1 and the threshold is the same as the hypothesis model. We can 
interpret W:Zlli as the change in bits to specify the a posteriori distribution of x. H 

P(XIYi) > p{x), w:ZYi has positive support for x, i.e., Si = +1. H P{XIYi) < p(x), W:Zlli 

has negative support for x, Le., Si = -1. IT we interpret the activation a(Yi) as an 

estimator (p(y)) for p(Yi), then for multiple inputs, 

i 

~ .. ( ) P(XIYi) (_ P(XIYi) ) 
- ~ p(Yi).Si. p(XIYi log( p{x) ) + P xly,) log( p(x) ) 

• 

This sum over input links weighted by activation functions can be interpreted as 

the total directional change in bits required to specify x, as calculated locally by the 

node x. One can normalise !:1Ex to obtain an average change in bits by dividing by 

a suitable temperature T. The node x can make a local decision by recovering p(x) 
from an inverse J-measure transformation of !:1E (the sigmoid is an approximation 

to this inverse function). 

Experimental Results and Conclusions 

In this section we show how rules can be generated from example data and auto­

matically incorporated into a parallel inference network that takes the form of a 

multi-layer neural network. The network can then be "run" to perform parallel 

inference. The domain we consider is that of a financial database of mutual funds, 
using published statistical data [12]. The approach is, however, typical of many 

different real world domains. 

Figure 1 shows a portion of a set of typical raw data on no-load mutual funds. 

Each line is an instance of a fund (with name omitted), and each column represents 

an attribute (or feature) of the fund. Attributes can be numerical or categorical. 

Typical categorical attributes are the fund type which reflect the investment objec­

tives of the fund (growth, growth and income, balanced, and agressive growth) and 

a typical numerical attribute is the five year return on investment expressed as a 

percentage. There are a total of 88 fund examples in this data set. From this raw 

data a second quantized set of the 88 examples is produced to serve as the input to 

ITRULE (Figure 2). In this example the attributes have been categorised to binary 

values so that they can be directly implemented as binary neurons. The ITRULE 

software then processes this table to produce a set of rules. The rules are ranked 

in order of decreasing information according to the J-measure. Figure 3 shows a 
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portion (the top ten rules) of the ITRULE output for the mutual fund data set. The 

hypothesis test log-likelihood metric h(Xj y), the instantaneous j-measure j(Xj y), 
and the average J-measure J(Xj y), are all shown, together with the rule transition 

probability p{x/y). 

In order to perform inference with the ITRULE rules we need to map the rules 

into a neural inference net. This is automatically done by ITRULE which gener­

ates a network file that can be loaded into a neural network simulator. Thus rule 

information metrics become connection weights. Figure 4 shows a typical network 

derived from the ITRULE rule output for the mutual funds data. For clarity not 

all the connections are shown. The architecture consists of two layers of neurons 

(or "units"): an input layer and an output layer, both of which have an activation 

within the range {O,l}. There is one unit in the input layer (and a corresponding 

unit in the output layer) for each attribute in the mutual funds data. The output 

feeds back to the input layer, and each layer is synchronously updated. The output 

units can be considered to be the right hand sides of the rules and thus receive 

inputs from many rules, where the strength of the connection is the rule's metric. 

The output units implement a sigmoid activation function on the sum of the in­

puts, and thus compute an activation which is an estimator of the right hand side 

posteriori attribute value. The input units simply pass this value on to the output 

layer and thus have a linear activation. 

To perform inference on the network, a probe vector of attribute values is loaded 

into the input and output layers. Known values are clamped and cannot change 

while unknown or desired attribute values are free to change. The network then 

relaxes and after several feedback cycles converges to a solution which can be read 

off the input or output units. To evaluate the models we setup fo~r standard clas­

sification tests with varying number of nodes clamped as inPlits. Undamped nodes 

were set to their a priori probability. After relaxing the network, the activation of 

the "target" node was compared with the true attribute values for that sample in 

order to determine classification performance. The two models were each trained 

on 10 randomly selected sets of 44 samples. The performance results given in Table 

1 are the average classification rate of the models on the other 44 unseen samples. 

The Bayes risk (for a uniform loss matrix) of each classification test was calculated 

from the 88 samples. The actual performance of the networks occasionally exceeded 

this value due to small sample variations on the 44/44 cross validations. 

Table 1 

Units Cramped Uncertainty Test HYPOthesis Test 1 - Bayes' Risk 

9 66.8% 70.4% 88.6% 

5 70.1% 70.1% 80.6% 

2 48.2% 63.0% 63.6% 

1 51.4% 65.7% 64.8% 
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We conclude from the performance of the networks as classifiers that they have 

indeed learned a model of the data using a rule-based representation. The hypoth­

esis network performs slightly better than the uncertainty model, with both being 

quite close to the estimated optimal rate (the Bayes' risk). Given that we know 

that the independence assumptions in both models do not hold exactly, we coin the 

term robust inference to describe this kind of accurate behaviour in the presence of 
incomplete and uncertain information. Based on these encouraging initial results, 

our current research is focusing on higher-order rule networks and extending our 

theoretical understanding of models of this nature. 
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Fund Type 5 Year Diver- Beta Bull Bear Stocks Invest- Net Distri- Expense Turn- Total 
Return sity (Risk) Perf. Perf. 0/0 ment Asset butions Ratio % over Assets 
0/0 Incm. $ Value $ (%NAV\ Rate %$M 

Balanced 136 C 0.8 B D 87 0.67 37 .3 17 .63 0 .79 34 415 
Growth 32 .5 C 1.05 E B 81 -0.02 12.5 0.88 1.4 200 16 
Growth& Income 88.3 A 0.96 C D 82 0.14 11.9 4 .78 1.34 127 27 
Agressive -24 A 1.23 E E 95 0.02 6.45 9 .30 1.4 1 61 64 
Growth&lncome 172 E 0.59 A B 73 0.53 13.6 9.97 1.09 31 113 
Balanced 144 C 0.71 B B 51 0.72 13 10.44 0 .98 239 190 

Flgure1. Raw Mutual Funds Data 

Type Type Type Type 5 Year Beta Stocks Turn- Assets Distri- Diver- Bull Bear 

A B G (?J Return 0/0 >90% over butions sity Perf. Perf. 

S&P=1380/0 
above S&P <100% <$100M <150/0NAV C.D.E C.D.E C.D.E 
below S&P >100% >$100M >150/0NAV A.B AB A,B 

no no yes no below under1 no low large high low high low 

no no yes no below over1 no high small low low low high 

no no no yes below under1 no high small low high low low 

no no no yes above under1 no low large low low high high 

no no no yes below under1 yes low small high high low high 

no no yes no above under1 no low large high high high low 

Figure 2. Quantized Mutual Funds Data 

ITRULE rule output: Mutual Funds p(x/y) j(X;y) J(X;y) h(X;y) 

1 IF 

2 IF 
3 IF 

4 IF 

5 IF 

6 IF 

7 IF 

8 IF 
9 IF 

10 IF 

D D 

5yrRebS&P 
BullJ)erf 

Assets 

BullJ)erf 

typeA 

BullJ)erf 

typeGl 

BullJ)erf 
typeG 

Assets 

above lHEN BullJ)erf high 0.97 0.75 0.235 4.74 

low lHEN 5yrRet>S&P below 0.98 0.41 0 .201 4.31 

large lHEN BullJ)erf high 0.81 0.28 0.127 2.02 

high lHEN 5yrRet>s&P above 0.40 0.25 0.127 -1.71 

yes lHEN typeG no 0 .04 0 .50 0 .123 -3 .87 

low lHEN Assets small 0.18 0.25 0.121 -1 .95 

yes lHEN typeG no 0.05 0 .49 0.109 -3.74 

high lHEN Assets large 0.72 0.21 0.109 1.64 
yes lHEN typeA no 0.97 0.27 0.108 3 .54 

small lHEN Bull perf low 0 .26 0.19 0.103 -1.57 

Figure 3. Top Ten Mutual Funds Rules 

nfo2atl~ 0 0 ~ ~ ~ Input layer - linear units 

metric connection 
weights I 

I 
one unit per attribute I I 

o DOD 0 D D 0 
I 

Feedback connections 
weight = 1 

o output layer - sigmoid units 

Figure 4. Rule Network 


