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Abstruct- The knowledge acquisition bottleneck in obtaining 
rules directly from an expert is well known. Hence, the problem 
of automated rule acquisition from data is a well-motivated one, 
particularly for domains where a database of sample data exists. 
In this paper we introduce a novel algorithm for the induction 
of rules from examples. The algorithm is novel in the sense 
that it not only learns rules for a given concept (classification), 
but it simultaneously learns rules relating multiple concepts. 
This type of learning, known as generalized rule induction is 
considerably more general than existing algorithms which tend 
to be classification oriented. Initially we focus on the problem of 
determining a quantitative, well-defined rule preference measure. 
In particular, we propose a quantity called the J-measure as 
an information theoretic alternative to existing approaches. The 
J-measure quantifies the information content of a rule or a 
hypothesis. We will outline the information theoretic origins 
of this measure and examine its plausibility as a hypothesis 
preference measure. We then define the ITRULE algorithm which 
uses the newly proposed measure to learn a set of optimal rules 
from a set of data samples, and we conclude the paper with an 
analysis of experimental results on real-world data. 

Index Terms-Cross entropy, expert systems, information the- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ory, machine learning, knowledge acquisition, knowledge discov- 
ery, rule-based systems, rule induction. 

I. A STATEMENT OF THE PROBLEM 

ONSIDER a company which has a large database of C information, which is, perhaps, lying idle. For example, a 

telecommunications company might have logged hundreds of 

thousands of trouble reports, or a financial services company 

might have a database of past loan applications and credit 

histories of their customers. With the advent in recent years 

of inexpensive electronic and magnetic storage media and 

the increased use of office automation, such databases are 

quite commonplace. The company wishes to develop a rule- 

based expert system for the domain to which the data applies. 

The application of this expert system could be for prediction, 

diagnosis, simulation, training purposes, etc. Can one use the 

existing database to automatically derive rules for the expert 

system? The purpose of this paper is to set forth a basic theory 
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for automated rule induction using information theory and 

describe the ITRULE algorithm which precisely addresses this 

task. The motivation and rationale for using rule-based expert 

systems is well documented and will not be repeated here. The 

problem or “bottleneck’ of manual knowledge acquisition for 

such systems is perhaps their major drawback. It is notoriously 

difficult to obtain rules directly from human experts [1]-[3]. 

Furthermore, if the domain necessitates reasoning under un- 

certainty (probabilistic reasoning), humans are well known to 

be inconsistent in their description of subjective probabilities 

(Kahneman et al., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[4]). Hence, it is quite clear that if our 

hypothetical company has an existing database of sample data 

available, a rule induction algorithm would be very useful. As 
we shall see, the problem can be rendered more general than 

simply deriving rules for an expert system - in a sense we 

are involved in a data reduction process, where we want to 

reduce a large database of information to a small number of 

rules describing the domain. 

Consider that we have M observations or samples available, 

e.g., the number of items in a database. Each sample datum 

is described in terms of N attributes or features, which can 

assume values in a corresponding set of N discrete alphabets. 

For example, our data might be described in the form of 10- 

component binary vectors. We note that this representation 

can be transformed into an N-fold discrete contingency table 

as is commonly referred to in multivariate statistical analysis. 

However, for N > 2, the contingency table representation is 

awkward and consequently we will prefer to think of the input 

data as simply a list of M attribute vectors. We will not dwell 

on statistical aspects of the problem (statistical analyses of 

contigency tables are well documented elsewhere, e.g., Bishop 

et al. [ 5 ] )  except to note that we implicitly assume throughout 

that the sample data is a true random sample of the population 

at large. The requirement for discrete rather than continuous- 
valued attributes is dictated by the very nature of the rule-based 

representation. It is worth noting, however, that techniques for 

converting both continuous and mixed mode data are available 

but will not be described here [6]. 

In addition it is important to note that we do not assume 

that the sample data are somehow exhaustive and “correct.” 

In the field of machine learning and/or artificial intelligence 

it is often assumed, for a classification problem say, that any 

given attribute can be perfectly described in terms of the other 

M - 1 attributes. In this case, the learning problem reduces to 

a simple search of the M - 1 dimensional “hypothesis space,” 

i.e., the space of possible classifiers based on functions of the 

predictor attributes. While this assumption may hold true in 

10414347/92$03.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1992 IEEE 



302 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 4, NO. 4, AUGUST 1992 

certain domains such as game playing, it is rarely if ever true in 

real-world problems. Typically, the chosen attributes can only 

incompletely specify each other, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAat best. Hence, our viewpoint 

is very much in line with the statistical pattern recognition 

philosophy as opposed to what might be termed the artificial 

intelligence or symbolic learning approach. We will return to 
this point later. 

Our approach is inherently probabilistic, i.e., we adhere to 

the basic axioms of probability theory rather than adopting 

any of the more recent uncertainty paradigms such as the 

Dempster-Shafer or fuzzy logic theories. The rationale for 

statistical models as a necessary (though not necessarily sufi- 
cient) component of a general model of learning and reasoning 

under uncertainty has been clearly stated elsewhere (Lindley 

[7], Cheeseman [SI) and will not be repeated here. 

A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArule is a statement to the effect that “if event zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi occurs, 

then event j will probably occur,” where the events are 

propositions of the form of attribute A, taking on some 

particular value from its alphabet. In general, the rule has an 

associated belief parameter such as a conditional probability 

or a “certainty factor.” For our purposes we will use the 

conditional probability p(event j levent zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi). Given sample data 

as described earlier we pose the problem as follows: can we 

find the “best” rules from a given data set, say the K best 

rules zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA? We will refer to this problem as that of generalized rule 
induction, in order to distinguish it from the special case of 

deriving classification rules. Classification only derives rules 

relating to a single “class” attribute, whereas generalized rule 

induction derives rules relating any or all of the attributes. 

Clearly, we require a preference measure to rank the rules and 

a learning algorithm which uses the preference measure to find 

the K best rules. This paper reviews our recently introduced 

rule preference measure known as the J-measure [9], but is 

primarily focused on the learning aspect of the problem and, 

in particular, the ITRULE algorithm. 

Beginning with a review of related work on rule induction 

algorithms, we will see that existing approaches lack robust- 

ness and generality for the problem we have described. We 

then define in Section I11 the basic rule preference measure 

and outline its information theoretic properties. Section IV ana- 

lyzes the measure from a general theory of learning viewpoint. 

It is established that the measure is consistent in the sense 

that it trades-off hypothesis simplicity with goodness-of-fit. In 

Section V we explore in more detail the nature of this trade-off 

and in particular establish some information theoretic bounds. 

These bounds are used in Section VI where we define the 

ITRULE algorithm itself. Section VI1 contains experimental 

results and analysis on real-world data sets. 

11. BACKGROUND ON RULE INDUCTION ALGORITHMS 

Comparison of learning algorithms is quite difficult since 

many algorithms address different goals and are based on 

different implicit assumptions. However, there are a few broad 

dimensions along which we can classify these approaches. 

Induction, or learning from examples, can be viewed as a 

search for hypotheses (restricted to some hypothesis space) to 

account for a set of instances or examples which are often 

assumed to be restricted to some instance space. For the 

purposes of this paper, the hypothesis space will be restricted 

to the conjunctive propositions in the discrete space defined by 

the Cartesian product of the sample spaces of the individual 

attributes-the extension to more general hypothesis spaces 

remains a topic for further investigation. For a given concept 
(in our terminology, a particular attribute value pair) the 

hypothesis space is defined as the Cartesian product of the 

sample spaces of the other N - 1 individual attributes, whereas 

the instance space is defined over the entire N-dimensional 

product space. 

In general, the learning problem consists of being given 

positive and negative instances of some concept and trying to 

find a hypothesis in the hypothesis space which best describes 

this concept. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv be any positive instance in the instance 

space for some concept. Symbolic algorithms try to find a 

deterministic mapping, or a Boolean function F ,  from the 

instance space to the hypothesis space, to describe the concept, 

i.e., seek an F such that F ( u )  = 1 for all 11, where F is in 

the hypothesis space. The statistical approach, however, tries 

to find a probabilistic mapping, or a probability distribution, 

between the two spaces, i.e., prob(F(v) = 1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 1 - 6, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S is as close to 0 as possible but may be lower bounded by 

a fundamental parameter of the hypothesis space, such as the 

Bayes’ misclassification rate [ 101. This distinction, between 

approaches which implicitly assume that S = 0 and those that 

do not, is important since a variety of results obtained in the 

area of theoretical inductive learning (e.g., Gold [ l l ] ,  Valiant 

[12], Haussler et al. [13]) cannot be readily extended to the 

case where the Bayes’ risk for the problem is nonzero. 

Learning algorithms can be viewed as searching the hy- 

pothesis space in some manner. A “bottom-up” approach 

(e.g., symbolic learning) involves incremental generalization 

of specialized hypotheses, while a “top-down” approach (e.g., 

statistical algorithms) is based on the specialization of more 

general hypotheses, i.e., an initially simple and general model 

is refined and specialized to improve the goodness-of-fit. It 

is interesting to note that connectionist learning such as the 

backpropagation algorithm [ 141 is inherently “bottom-up’’ in 

this sense. The approach followed by our ITRULE algorithm 

will be “top-down.’’ One might speculate as to the statistical 

robustness and convergence rates of the respective approaches, 

e.g., the bottom-up approach is less robust in the sense that it 

may be order sensitive. We will not pursue this topic further 

in this paper. 

A good taxonomy of automatic induction algorithms is 

given in Cohen and Feigenbaum [15]. These algorithms can 

loosely be categorized into two main areas, those which 

use symbolic manipulation techniques and those which use 

statistically oriented techniques. Mitchell’s “version spaces” 

algorithm [16] is perhaps the best known symbolic concept 

learning algorithm. Another example is the AQll  algorithm 

of Michalski and Larson [17] which achieved success in 

the domain of plant disease diagnosis [ 181. Typically, these 

algorithms examine the examples sequentially and refine what 

is known as the rule space until a set of general classification 

rules covering the examples are arrived at. However, noise 

is not easily handled by the symbolic approaches, since they 
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involve an implicit assumption that the Bayes error rate for the 

problem is zero, i.e., “perfect” classification of each attribute 

is possible in terms of the other attributes. In addition, the 

algorithms are computationally unattractive. Consequently, 

their use has been limited to research-oriented endeavors rather 

than practical applications such as knowledge acquisition for 

expert systems. 

Methods which can be termed as statistical, exploit zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaverage 
properties of the example set. However, existing statistical 

learning algorithms generally lack the flexibility we require, 

by either imposing a particular parametric statistical model 

on the environment, or, as with tree-induction algorithms, 

imposing a particular structure on the nature of the solution. 

Algorithms such as ID3 (which derives classification decision 

trees from sample data [19], [20]) have been widely used for 

rule induction. However, such trees are essentially sequential 

decision algorithms which are quite different in nature to the 

data driven nature of expert systems. Rule bases are data 

driven in the sense that any set of input data can potentially 

be used to begin the inference. Trees must always begin with 

the attribute associated with the root node. In addition, rule 

bases can accomodate missing attribute information, whereas 

trees are not designed to do so. Trees can also be difficult to 

understand for the user [21], a problem which should not be 

underestimated in light of the overall advantages of explicit 

knowledge representation inherent to production rules. We 

were originally motivated to look at this problem of general- 

ized rule induction as the limitations of tree structures became 

apparent in relation to expert systems. In short, rules provide 

a much more flexible representation than tree structures. This 

is not to say that trees are not useful in problem areas, such as 

classification where a predetermined “hard-wired’’ solution is 

sufficient [22], [23]. However, by their very definition, expert 

systems tend to be used for problems where variable inputs 

can be handled (missing, uncertain, or changing data), variable 

outputs (different goals) may be specified, and there is a need 

for an explicit representation of the system’s knowledge for 

user interaction. 

One of the few contributions to the problem of generalized 

rule induction is an approach based on fuzzy logic which was 

independently proposed recently by Gaines and Shaw [24]. 

They define the ENTAIL algorithm which derives rules from 

a reportory grid (Boose zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[25]).  Their approach is interesting in 

that they transform the subjective reportory grid numbers (as 

input by a human expert) into fuzzy logic parameters which, in 

turn, are used to obtain a measure of the information content 

of the associated rules. The algorithm outputs the set of most 

informative rules. This approach is one of the few examples 

of automated knowledge acquisition tools currently avaliable. 

However, since it is designed to elicit subjective data rather 

than deal with random sample data, i t  is not directly applicable 

to our problem. In addition, our approach is differentiated by 

the underlying philosophy for dealing with uncertainty, namely 

standard probability theory rather than fuzzy logic. 

Ganascia [26] has also proposed an algorithm for rule in- 

duction. His approach is more heuristic in nature than the algo- 

rithm to be presented here and is not based on any fundamental 

measure of rule “goodness.” Quinlan described a scheme [27] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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whereby ID3-induced trees are transformed into production 

rules. In addition to the drawback that this particular scheme is 

classification based, we feel that tree transformation techniques 

in general may not be optimal for performing rule induction. 

Like Quinlan’s approach, Cendrowska’s PRISM algorithm 

[28] is classification based and has an information theoretic 

basis. The PRISM algorithm is intrinsically a symbolic learn- 

ing technique since Cendrowska assumes that a “complete” 

training set will lead to the existence of a perfect classifier 

(zero error probability) for a given set of attributes. As 

mentioned earlier, one rarely encounters such a situation 

in practice, i.e., there is almost always a lower (nonzero) 

bound, the Bayes risk for uniform losses, on the minimum 

classification error achievable. 

More recently Clark and Niblett have described CN2 [29], 

a rule induction algorithm which, like PRISM, searches for 

classification rules directly using a measure of rule goodness. 

While CN2 incorporates a larger hypothesis space than simple 

conjunctive terms (by allowing internal disjunction) it con- 

strains its search through the allowable hypothesis space using 

the notion of a “beam size” which is an ad hoc technique to 

restrict the algorithms’ potentially combinatorially large search 

for rules. We will avoid this problem in our specification of 

the ITRULE algorithm by using information theoretic bounds 

(based on existing rules found by the algorithm) to constrain its 

search through the hypothesis space without loss of optimality. 

CN2 also produces a set of rules in the form of a decision 

list [30]-since a decision list is a form of decision tree this 

form of derived rule representation suffers from the limitations 

mentioned earlier with respect to trees. 

In fact, neither the CN2 and PRISM rule measures include 

an a priori probability term. Incorporation of a priori belief 

is a necessary component of any scheme which performs 

generalized rule induction since it allows one to compare 

not only competing hypotheses for the same concept, but 

also hypotheses for different concepts. From an informa- 

tion theoretic point of view, the rarer the occurence of an 

event, the more valuable is the information confirming its 

occurence. This ability to rank competing hypotheses for 

multiple concepts is fundamental for a learning agent in a 

resource constrained environment and is a central theme of 

our paper. The problem of generalized rule induction has not 

previously been addressed directly, although it is implicit in 

both the Bayesian approach of Cheesman [31] and the ENTAIL 

algorithm of Gaines and Shaw [24]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
111. THE INFORMATION CONTENT OF A RULE 

We propose to use the following simple model of a rule, 

i.e.: 

If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY =y. then X = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx with probability p (1) 

where X and Y are two attributes (dimensions in the instance 

space) with “x” and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA“y” being values in their respective 

discrete alphabets. For our purposes we may treat X and 

Y as discrete random variables. We restrict the right-hand 

expression to being a single value assignment expression while 

the left-hand side may be a conjunction of such expressions. 



304 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTll zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
y-1 

Fig. 1. Two variables connected by a discrete memoryless channel 

Intuitively we can view the two random variables as being 

connected by a discrete memoryless channel, as in Fig. 1. 

The channel transition probabilities are simply the conditional 

probabilities between the two variables. 

A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArule corresponds to a particular input event y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= y, rather 

than the average over all input events as is normally defined 

for communication channels, and p ,  the rule probability, is 

the transition probability p(X = .IIY = y). Let us define 

f ( X . Y  = y) as the instantaneous information that the event 

Y = y provides about X ,  is . ,  the information that we receive 

about X given that Y = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIJ has occurred. The instantaneous 

information is the information content of the rule given that 

the left-hand side is true. A reasonable requirement to make 

(the interested reader can refer to Shannon’s original paper 

[32] for a complete discussion), is that 

(1) 

where E, denotes the expectation with respect to the random 

variable Y .  The equation requires that the average information 

from all rules should be consistent with the standard definition 

for average mutual information beteen two random variables. 

Blachman has shown [33] that f ( X :  Y )  as defined above is not 

unique. In his paper he proposes 2 candidates which satisfy this 

equation. We shall refer to these 2 functions as the i-measure, 
I ( X :  Y ) ,  and the j-measure, wherej(X: Y = y), 

E y [ f ( X : Y  = ?/I = Z ( X : Y )  

i ( X : Y  = y) = H ( X )  - H ( X I Y  = y) 

and 

These two measures have quite different interpretations. In 

words, the i-measure is the difference in the a priori and a 
posteriori entropies of X ,  while the j-measure is the average 

mutual information between the events zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, and y with the 

expectation taken with respect to the a posteriori probability 

distribution of X .  The difference is subtle, yet significant 

enough that the j-measure is always non-negative, while the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi- 
measure may be either negative or positive. In fact, Blachman 

has proven that the j-measure is unique as a non-negative 
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information measure which satisfies (l), i.e., i t  is the only 
non-negative measure. We note in passing that CN2 minimizes 

H ( X I Y  = y)  (in (2)) in order to search for good rules-as 

mentioned earlier this ignores any a priori belief pertaining to 
X ,  thus precluding the use of these algorithms for generalized 
rule induction. In addition, the term H(XIY = y) only 

measures the a posteriori entropy of X-as we shall shortly 

see, this is not sufficient for defining a general rule goodness 

measure. 

We have demonstrated elsewhere [9] that there is a funda- 

mental problem with using measures which are negative. We 

see that Z ( X : Y  = y)  can be equal to zero even if p ( z l y )  # 
p ( x ) ,  e.g., p(sly) = p(Z), where X is a binary variable. In 

other words, the i-measure is zero if the transition probabilities 

in the channel, for a given input, form a permutation of the 

output probabilities. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn appropriate title for this phenomenon 

is the information paradox, i.e., there is no change in the 

entropy but we have recieved information about X .  This is an 

example of a fundamental difference between using channel 

models for cognitive modeling, and using them for standard 

communication purposes. In the case of the latter, we do not 

distinguish between individual random events, except in terms 

of their attached probabilities of occurrence. The entropy of 

a discrete random variable is the same, independent of which 

probabilities are assigned to which events in the event space 

of the variable. Consider the case of an n-valued variable 

where a particular value of X = .rl is particularly likely a 
priori @(,r l )  = 1 - e ) ,  while all other values in X ’ s  alphabet 

are equally unlikely with probability 6/71. - 1. In this case a 

conditional permutation of these probabilities (the conditional 

p(X1y)) would be significant, i.e., a rule which predicts the 

relatively rare event x = .rk for some k. However, the 

2-measure, because i t  cannot distinguish between particular 

events, would yield zero information for such events. Hence, 

we argue that the 2-measure is inappropriate as a basic measure 

of rule information content. 

Consider the alternative, the 3-measure. It can be shown 

that the j-measure satisfies a variety of desirable mathe- 

matical properties which render it acceptable [34], including 

appropriate limiting properties. For example, as the transi- 

tion probability approaches 1, the information content of the 

rule approaches the self-information of the right-hand event, 

log (l/p(z)). For our purposes, i.e., with a rule rather than a 

channel, J ( X :  Y = y) has the special form, 

j ( X : Y  = y) =p(zly).log ___ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(:g) 
since a rule only gives us information about the event X = z 
and its complement 2.  Because of this form we can plot 

some typical curves for j ( X ; Y  = y), as shown in Fig. 2. 

A further point worth making about the j-measure at this 

juncture is that it appears in the information theoretic literature 

under various guises. For instance, it can be viewed as a 

special case of the cross-entropy (Shore and Johnson [35])  
or the discrimination (Kullback [36], Blahut [37]), a measure 

which defines the information theoretic similarity between two 
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Fig. 2. Typical plots of the ]-measure for various values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp i  ) 

probability distributions. In this sense the j-measure is a well- 

defined measure of how dissimilar our apriori and aposteriori 
beliefs are about X-useful rules imply a high degree of 

dissimilarity. 

From our original definition in (l), the average information 

content of a rule can be defined as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
.J (X:Y = y) = p(y) . j ( X : Y  = y ) .  (5 )  

Note that this measure is an average in the sense there is an im- 

plicit assumption that the instantaneous information from the 

other “Y-terms” is zero. This is consistent with the cognitive 

science approach to production rules where essentially we can 

only draw inferences based on the occurence of a particular 

event but not its complement. More generally, in the context 

of learning in a resource constrained environment, each rule 

must be significant in its own right. In particular, rules which 

have left-hand sides that are the complements of existing rules 

must be evaluated separately. In the next section we will 

demonstrate the appropriateness of the previous definition for 

average information content. In an intuitive sense the average 

measure relates to the average value of the rule information 

content (useful for learning), while the instantaneous measure 

can be used to rank rules after the event Y = y has occured 

(useful for forward chaining in rule-based inference). 

We shall see later that bounding the information content of 

a rule can help considerably when we are trying to learn rules 

from data. At this point it is sufficient to point out that the 

J-measure must obey the following basic inequality [34]: 

We will later investigate more detailed bounds on the measure 

for use in the ITRULE algorithm. 

Iv. PROPERTIES OF THE J-MEASURE AS 

A HYPOTHESIS PREFERENCE CRITERION 

The next step is to understand the nature of the J-measure 

as a basic preference measure among competing hypotheses, 

i.e., rather than considering its mathematical properties, we 

will consider its interpretation in terms of classical induction 

theory. Consider the problem of finding a hypothesis to fit 

some given data, i.e., a general learning problem. There 

appears to be a general consensus that the two primary criteria 

for evaluating a hypothesis are the simplicity of the hypothesis 

and the goodness-of-fit between the hypothesis and the data 

(Angluin and Smith [38], Gaines [39], and Michalski [40]). 

The problem is to combine these two criteria into a single 

measure such that the hypotheses can be ordered. In terms of 

the probabilistic rules defined earlier, let us interpret the event 

X = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.I‘ as the concept to be learned and the event (possibly 

conjunctive) Y = y as the hypothesis describing this concept. 

The .I-measure is the product of two terms. The first, 

p(Y = y), is the probability that the hypothesis will occur 

and, as such, can be interpreted as a measure of hypothesis 

simplicity. Symbolic algorithms use more ad hoc techniques to 
determine the simplicity of a hypothesis, such as enumerating 

the number of basic propositions which make up a conjunctive 

hypothesis (Angluin and Smith [38]).  Such techniques may 

work in given domains but lack generality. In contrast, the 

probabilistic criterion for simplicity is perfectly general. 

The second term making up J ( X : y )  is j(X:y). As we 

have seen in the last section, j(X:g) can be interpreted as 

the cross entropy of X with the variable “X conditioned 
on the event Y = y”. Cross entropy is well known as a 

goodness of fit measure between two distributions (Shore and 

Johnson [35]). It can be interpreted as a distance measure 

where “distance” corresponds to the amount of information 

required to specify a random variable. It is frequently used 

to find the conditional distribution which most closely agrees 

with the original distribution. For our purposes the goodness- 

of-fit should be maximized when the transition probabil- 

ity equals 1 (or 0), and it should be minimized when the 

transition probability equals the a priori probability zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp(x). 
Clearly j ( X :  Y = y) is a monotonic distance measure in this 

sense as can be seen from Fig. 2. Consequently, the product 

term, J ( X :  Y = y) = p ( y ) j ( X :  Y = y), possesses a direct 

interpretation as a multiplicative measure of the simplicity and 

goodness-of-fit of a given rule. 

As an example of this trade-off consider the following 

hypothetical reptile domain which is described in terms of 

3 binary attributes, namely, legs (true or false), habitat (desert 

or not), and snake (true or false). A joint distribution over 

these attributes is specified in Table I. Let us say that we are 

interested in rules which confirm the attribute-value pair snake 
= true as a right hand side. The rule 

If habitat = desert then snake = true 

with probability = 0.625, 

j = 0.225. J = 0.09 

is a reasonable rule. The a priori probability of a reptile being 

a snake is 0.35, while the a posteriori probability is 0.625, 
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snake 

0 

1 

0 

1 

0 

1 

0 

desert 
joint 

probability 

0.0 

0.1 

0.5 

0.0 

0.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.25 

0.15 

0.0 

given that the rule fires, an event which has a probability of 

0.4. The J-measure for this rule is calculated to be 0.09 bits 

of information, i.e., this is the information we will acquire on 

average by using this rule. If we specialize this rule by adding 

another term to the left-hand side. we would obtain 

If habitat = desert and legs=fulse then 

snake = true with probability = 1.0. 

J = 0.379 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj = 1.51, 

which has a much greater information content of 0.379 bits. 

The decrease in simplicity (by a factor of 0.25/0.4) is more 

than offset by the approximately 8-fold increase in goodness- 

of-fit, as measured in bits. If we now generalize once more 

to 

If legs=false then snake = true with probability = 1.0. 

j = 1.51, J = 0.53 

we obtain a rule with 0.53 bits of information, which is, in fact, 

the best rule. The key point to note is the advantage of using 

a quantitative rule preference measure to easily compare the 

more general and specialized versions of the same basic rule. 

It is worth pointing out in passing that cognitive scientists 

consider generalization and specialization to be two of the 

most basic techniques used by the brain to generate new rules 

[41, pp. 84-88l-while we are not interested in cognitive 

modeling per se it is interesting to note that our measure 

supports these rule generation principles in a robust and 

quantitative manner. 

V. THE BASIS FOR ITRULE: SPECIALIZING 

RULES TO INCREASE THE J-MEASURE 

Before describing the ITRULE algorithm we must first 

develop some quantitative bounds on the nature of specializa- 

tion. The basic premise of the algorithm will revolve around 

instance-based generalization from examples to generate an 

initial set of rules, followed by specialization of these rules to 

optimize the rule set. The exact nature of the specialization is 
critical to the performance of the algorithm. 

Specialization is the process by which we hope to increase 

a rule’s “goodness” by adding an extra condition to, or 

specializing, the rule’s left-hand side. The consequent nec- 

essary decrease in simplicity of the hypothesis should be 

offset by an increase in the goodness-of-fit to the extent 

that the overall goodness measure is increased. We will 

examine specialization, using the J-measure as our definition 

of rule goodness, with p(y)  corresponding to simplicity and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
j ( X :  Y = y)  corresponding to goodness-of-fit. 

The question we pose is as follows: given a particular 

general rule, what quantitative statements can we make about 

specializing this rule? In particular, if we define zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJs and 

J ,  as the J-measures of the specialized and general rules, 

respectively, can we find a bound of the form 

J s  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI f (J , )  (9) 

for some f ( . )  defined on Jg or its component terms? The 

motivation for bounding J ,  in this manner is two-fold. Firstly, 

i t  produces some theoretical insight into specialization, while 

secondly, the bound can be used by rule induction algorithms 

to search the rule space (hypothesis space) efficiently. This 

section will be devoted to stating and analyzing a very useful 

bound of this form. 

Consider that we are given a general rule whose J-measure, 

Jg ,  is defined as 

= p ( y ) j ( X : Y  = y) (14 

where p ,  = p(xly) and p x  = p(s). The probability p ,  is the 

transition probability of the general rule. We wish to bound 

Js  = J ( X : Y  = y . 2  = 2 )  (13) 
= p ( y . 2 )  p s . l o g ~ + ( l  P -p,).log(-)) 1 - P s  (14) ( P x  1 - P x  

= P(2lY) P ( Y )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj s  (15) 

where j ,  is the specialized j-measure, and p ,  = p(z1y.z) 

which is the transition probability of the specialized rule. 

Without loss of generality we assume that p ,  > p,, since 

if p ,  < p ,  we can simply reverse the labeling on 5 and 2, 
while if p ,  = p ,  then Jg = 0 and the case is not of interest 

since any condition z # y will lead to J ,  being greater than 

J,. Given no information about 2 whatsoever, we can state 

the following result. 

Theorem: 

The proof is given in the Appendix. If we recall the original 

bound we stated in (6), and we make the assumption that 

p(y) 5 p(x) and p(y) 5 p(Z), then the equivalent original 

bound can be stated as 

Comparing the two inequalities we see that the new result 

gives an improvement of a factor of p(zly) (or p g ) .  It is 

interesting to note that the transition probability of the general 
rule plays such a limiting multiplicative role in the bound. In 
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essence, it tells us the limits imposed by the continued presence 

of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy term in any more specialized rule. 

Consider the reptile domain rules discussed in the previous 

section. Had we applied the above bound to the general 

rule with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhabitat=desert as its left-hand side we could have 

determined that the most information we could get from 

specializing that rule further would be 0.3768 bits. In fact, 

it turned out that the specialized rule we considered achieved 

this bound as does the third example rule, with snake=true 
as its left-hand side. Both cannot be improved upon since the 

transition probabilities are 1. 

For the case when p(y) > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp ( z ) ,  or p(y)  > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp(Z), we note 

that this introduces an extra constraint into the problem by ef- 

fectively limiting the achievable value of p,, and consequently 

p,. Clearly, the bounds still hold but are no longer achievable. 

Equivalent achievable bounds can be derived, but are omitted 

in this paper, since such pathological cases are not of general 

interest. 

As a consequence of this theorem we note that since the 

bound is achievable, then without further information about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2, i t  cannot be improved upon. In fact, if we set y = z 
then we find that J, itself also obeys this bound. The logical 

consequence of this statement is that i t  precludes using the 

bound to discontinue specializing based on the value of J ,  
alone, since unless p ,  = 0 or p ,  = 1, the result holds 

as a strict inequality for 5,. Conversely, if p ,  is not equal 

to either 1 or 0, then with no information at all available 

about the other variables, there may always exist a more 

specialized rule whose information content is strictly greater 

than that of the the general rule. However, as we shall see, we 

could certainly compare the bound with any rules we might 

already have. In particular, if the bound is less (in bits) than 

the information content of the worst rule, then specialization 

cannot possibly find any better rule. This principle will be the 

basis for restricting the search space of the ITRULE algorithm. 

VI. THE ITRULE ALGORITHM 

We will now define the ITRULE algorithm and discuss 

the basic ideas which motivated this particular definition. The 

ITRULE algorithm takes sample data in the form of discrete 

attribute vectors and generates a set of K rules, where K 
is a user-defined parameter. The set of generated rules are 

the K most informative rules from the data as defined by 

the J-measure. In this sense the algorithm can be described 

as optimal. The probabilities required for calculating the J -  
measures are estimated directly from the data using standard 

statistical point estimation techniques [42]. 

The algorithm proceeds by first finding K rules, calculating 

their J-measures, and then placing these K rules in an ordered 

list. The smallest J-measure, that of the Kth  element of the 

list, is then defined as the running minimum J,,,,. From that 

point onwards, new rules which are candidates for inclusion 

in the rule set have their J-measure compared with Jmtn. If 
greater than J,,,, they are inserted in the list, the Kth rule is 

deleted, and .Im;, is updated with the value of the J-measure 

of whatever rule is now Kth  on the list. The critical part of 

the algorithm is the specialization criterion since it determines 

how much of the exponentially large hypothesis space actually 

nseds to be explored by the algorithm. 

For each of the n.m possible right-hand sides, the algorithm 

employs depth-first search over possible left-hand sides, start- 

ing with the first-order conditions and specializing from there. 

Specialization ceases on a general rule if the bound above 

is less than J,,,. In addition, if the transition probability 

of a given general rule is equal to 1 or 0, then as we have 

seen earlier, we can also cease specializing. The algorithm 

systematically tries to specialize all nm.(n - 1).2m first-order 

rules and terminates when it has determined that no more first- 

order rules exist which can be specialized to achieve a higher 

J-measure than J,,,. 
The general situation occurs when we have a right-hand side 

X = .T and a left-hand side y1. . . . . y k ,  where we have just 

evaluated Jg and inserted the rule in the list if Jg > J,,,. 
In practical terms, in order to calculate J,, we have sorted 

the original data into a subtable conditioned on y1,. . . , Y k .  

We now wish to decide (using the bounds) whether further 

specialization, and consequent sorting, is worthwhile. The 

decision whether to continue specializing or to back-up on the 

depth-first search is determined by the following sequence: 

i) if p ,  = 1 or p ,  = 0 then back-up the search, else; 

ii) if J ( X :  y1.. . . ~ y k )  5 J,,, then check if for any z we 

can hope to find J ,  > J,,,, i.e., calculate 

1 - p x  

1 

P x  
p (  y)p, log - . p (  y) (1 - p,) log - 

and (by Theorem 1) if .I, 5 Jmin ,  then back-up the 

search; 

iii) else continue to specialize. 

The general description of ITRULE given earlier is not in- 

tended as a definitive statement of how the algorithm should be 

implemented. Particular implementations may depend heavily 

on the nature of the particular problem. For instance, in data 

analysis we may only want to look at rules which conclude 

certain propositions of interest. The algorithm simply restricts 

the right-hand side propositions to that subset of interest (the 

limiting form of this approach is, of course, a classifier where 

we are only interested in propositions in the event space of a 

single variable, the “class” ). 

VII. ON THE COMPLEXITY OF ITRULE 

With n rn-ary attributes the number of possible rules in the 

data is R where, 

since for each of the nm possible right-hand sides, the other 

n - 1 attributes have 2m + 1 possible states, namely, a truth 

statement and its negation for each of the m propositions and 

a “don’t care” state for the attribute as a whole (for the case of 

binary attributes m = 1 because the negation of a proposition 

is also a basic proposition). As an example, if we have 10 

binary attributes, there are N = 10.39 - 10 = 196820 possible 

rules. From a practical point of view, of course, we are likely to 

have neither the data to support so many inductive assertions 

nor the computational resources to manage them. Hence, in 
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order to define a tractable algorithm we will need to “prune” 

the set of possible rule candidates considerably. Let us define 

a kth-order rule as a rule with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk basic propositions in its left- 

hand side. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT k  be the number of possible kth-order rules, 

so that we have 

l < l c < n -  

since there are sets of propositions of size k and ( 2 m ) ‘ “  

rules for each set. (That zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXI, T k  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= R holds can be verified by 

using binomial identities such as those given in in Feller [43, 

p. 631). The ratio 

gives the ratio of the number of rules of order k to the number 

of order k - 1. When cy becomes less than 1 we have the 

condition that the number of rules is falling off rather than 

increasing, i.e., when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k > ( & ) n  

The significance of this result is that for all practical purposes, 

as we increase the order of the rules from k = 1 upwards, 

the size of the search space increases, and for k ,  which is 

relatively small compared to 71, it increases geometrically (by 

(21)). We can write R as 

7L-1 

k=l 

where 

n-a 
ai = 2 m . (  T) and r0 = 1 . 

If we imagine implementing an algorithm which begins with 

first-order rules and specializes to higher orders (in order to 

find rules with higher J-measures) then an algorithm using 

blind search would have complexity O(R)  = 7 ~ ( 2 r n , ) ~ ,  as 

defined previously. On the other hand, an algorithm which 

“prunes” the search space will have complexity 

where the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPI; < a k .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA tractable algorithm will have Ljk < 1 

for (at least) k greater than some small fraction of n. 
The complexity of the ITRULE algorithm cannot be deter- 

mined exactly since it is highly dependent on the nature of the 

input data (in referring to “the algorithm,” we mean the general 

version, where, the exact nature of the specialization may 

vary). Probabilistic analysis, based on average performance 

over all possible input data sets, is too difficult to carry out 

directly without invoking unrealistic assumptions concerning 

the nature of the inputs. The best we can do is to invoke the 

argument that as specialization (or rule order) increases, the 

simplicity of the hypotheses decreases to the extent that their 

probability of occurrence is very small. Hence, our bounds 

should eliminate the majority of the higher order rules from 

consideration. In effect, the P k  should become negligible as 

k increases. We will see later how P behaves for real data 

sets. A worst-case upper bound occurs for the pathological 

case of a set of N binary attributes whose Nth-order joint 

distribution is entirely uniform, i.e., all transition probabilities 

are equal to 0.5. In this case all rules yield zero information, 

and hence, Jmin would always be zero. However, the bounds 

would be nonzero in general, in which case the algorithm 

would specialize to all possible R = nm((2m + l),-’ - 1) 

rules. Let us note in conclusion that the lack of quantitative 

results on the complexity of the ITRULE algorithm reflects the 

well-known inherent difficulty in quantifying the complexity 

of “open-ended” induction problems. 

The choice of K ,  the number of rules which the algorithm 

keeps in the list, obviously affects the computational complex- 

ity, since the value of the J-measure of the Kth  rule has a 

considerable impact on the effectiveness of the bounding. For 

example, K may be chosen so large that J,,, is zero or near 

zero at all times. However, there is normally no reason to 

choose such large K .  If we are just interested in data analysis, 

then very often some value of K between say 20 and 100 
is sufficient for our purposes. However, if we wish to use 

the rules for probabilistic inference then we generally require 

more rules. In particular for each proposition in the system, we 

would like to have at least T rules with that proposition in their 

conclusions, or in terms of a graph where each proposition is 

a node, T is the number of rules entering a node or the “fan in” 

of the node. In order for the system to perform useful inference 

(for example, multiple pieces of evidence supporting the same 

hypothesis) we require that T be some integer greater than 1. 

Yet T should not be too large in order that the inference itself is 

computationally feasible. Hence, we can say that for inference 

purposes, O ( K )  = nm. 

VIII. EXPERIMENTAL RESULTS ON THREE DATA SETS 

We consider the results of applying the ITRULE algorithm 

to three “real-world’’ data sets-the first, a financial domain, 

in some detail, followed by a brief overview of the results 

obtained on congressional voting records and chess end-games. 

The first data set comes from published financial information 

on no-load mutual funds [44]. Fig. 3 shows a set of typical 

sample data. Each line is an instance of a fund (with name 

omitted), and each column represents an attribute of the fund. 

A typical categorical attribute is “fund type” which reflects the 

investment objectives of the fund (growth, growth and income, 

and agressive growth). Among the noncategorical attributes are 

“five year return on investment” expressed as a percentage, 

“yield” (the dividend payments as a proportion of net asset 

value), “turnover rate” (a measure of the trading activity of 

the fund), and “expense ratio” (the amount of administrative 

fees). 

Real-valued attributes (or indeed attributes whose alphabet 

size is large, but finite) are quantized a priori. While this 

is not necessarily an optimal procedure (quantization based 
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Fig. 3. Subsample of mutual funds data set. 

on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAconditional distributions may be much more predictive), 

we will not dwell on this topic here since the purpose of 

the paper is to focus on the ITRULE algorithm which is 

primarily intended to deal with categorical data. Quantization 

techniques, based both on domain knowledge and information 

theoretic criteria, are easy to derive. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn example of using 

domain knowledge for quantization occurs with the attribute 

“Beta” or risk (volatility relative to the market), which has 

a natural cut-point of 1 since the market Beta is always 

defined to be 1. Domain knowledge also indicates that funds 

with expense ratios above 1.5% are high, and should be 

viewed critically. In the abscence of domain knowledge we use 

statistical and maximum entropy techniques for clustering the 

data into statistically significant categories. For example, the 

automatic technique splits the Stocks attribute (the percentage 

of fund assets in common stocks) at 75%. A domain expert 

may accept this advice or modify the value to make the 

categorization more meaningful. 

Fig. 4 shows the results of asking ITRULE for the 10 

best rules, where we restricted the maximum rule order to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 for the purposes of making the output easier to interpret. A 
point to note, in the figures of rule sets to follow, is that we 

have implemented a “subsumption” function on the displayed 

rule output, i.e., we remove any rules for which there is a 

more general rule ranked higher on the list. The more general 

rule is considered to subsume the more specialized rule. The 

columns are relatively self-explanatory, and the probabilities 

correspond to sample estimates from the data as mentioned 

earlier. However, there is a potentially confusing notation used 

with respect to the labeling of the event 2--z in general is a 
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label for the rule right-hand side or its negation, except for 

the first column “p(.rly)”, which is always written as the 

greater of the two transition probabilities, i.e., it is really 

rnax{p(.rly). p(.?iy)}. The final two columns “y” and ‘‘xf 
are the actual of number of occurences of the events y and 

.cy, respectively. 

From the figure we note that obvious rules emerge, con- 

firming that the algorithm is on the right track. For example, 

among the most informative rules are rules relating fund type 

of “Growth and Income” to high yield funds (rules 3 and 

4). This is obvious because income funds aim to do just 

that-pay dividends; they thus usually have nonzero yield. 

This ability to spot obvious rules is a powerful feature of 

the algorithm. It is usually the obvious domain rules that 

pose the biggest problem early in the knowledge acquisition 

process. The expert has difficulty in going back to basics, and 

explicitly identifying the vast number of fundamental rules 

applicable to the particular domain. Also, by looking at the 

trade-off between the instantaneous information or goodness- 

of-fit j ( X : Y  = y) and the simplicity of a rule p(y), we see 

that rule 4 is ranked lower than a rule which has much less 

instantaneous information (rule 3), but which fires more often. 

Fig. 5 shows the 10 best rules (still limited to second order) 

obtained when we run ITRULE as a classifier, i.e., restricting 

the right-hand side to a single variable of interest, namely, “5 
year return” which is either above or below the Standard and 

Poor index over the same 5 years. This is obviously a variable 

of considerable interest to prospective investors. However, we 

see that while rule 5 gives a reasonably accurate condition for 

determining below average funds, there is no single rule for 
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predicting above average funds with an accuracy greater than 

about 75%. 

For completeness, we show in Fig. 6 the 15 best rules 

obtained when ITRULE is allowed to search up to order 5. 
Note that more general rules tend to dominate the list, as 

one might expect given the small sample size. However there 

are some third-order rules present, characterized in general by 

relatively high transition probabilities. 

It would be naive to assume that the rules derived by 

ITRULE are necessarily an accurate reflection of the domain. 

For example, in this data set, there may be temporal variations 

masked out by the 5-year averaging on some attributes. 

Nonetheless the algorithm gives an immediate feel for the 

data and is particularly useful as an exploratory data analysis 

tool-essentially the produced rules are as good as the data 

is. The algorithm may be particularly effective when used in 

an iterative manner in conjunction with a domain expert-a 

given set of rules may suggest the inclusion of new attributes 

and the exclusion of others. 

The astute reader will also have noted that ITRULE pro- 

duces the set of best rules rather than the best set of rules, 
i.e., no attempt is made to evaluate the collective properties 
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THEN STOCKS UNDER75X 0 815 0 256 0 2 7 8  0 901 0 230 22 19 

THul STOCKS UNDER75% 0 807 0 244 0 278 0 873 0 214 21 18 

X-EN YIEW OMR3% 0 803 0 344 0 356 0 608 0 210 30 25 

X-EN YIELD OMR3% 0 891 0 222 0 356  0 901 0 200 19 18 

THEN FUNDMPE GTH&INCOME 0804 0 344 0 367 0 580 0 200 30 25 

THEN FUNOMPE GTH&INCOME O s y l  0 222 0 367 1 0 2 5  0 194 19 18 

THEN FUNDMPE GM8INCOME 0892 0 222 0 367 0 869 0 193 19 18 

Tt€N YIEW OVER3% 0857 0 244 0 356 0 777 0 190 21 19 

THEN FUNDMPE GTH8INCOME 0780 0 356 0 367 0 513 0 183 31 25 

WEN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASTOXS UNDER75% 0 724 0 289 0 278 0 618 0 179 25 19 

THW STOCKS UNMR75% 0 724 0 289 0 278 0 618 0 179 25 19 

M E N  Y E W  OVEFUX 0 756 0 367 0 356 0 481 0 177 32 25 

THEN STou(S UNDER75% 0 847 0 167 0 278 1 0 2 1  0 170 $ 4  13 

THEN STOCKS UNDER75% 0 698 0 300 0 278 0 549 0 165 26 19 

WEN STOCKS UNDER75% 0 698 0 300 0 278 0 549 0 165 26 19 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6.  The IS best rules from the mutual funds data set (up to order 5 )  

of the rules. It may be conjectured that this problem is 

computationally intractable to solve optimally for arbitrary K 
(assuming that somehow we can quantify the “goodness” of 

a rule set). Current research is focused on effective heuristics 

for generating pruned rule sets where, for example, accuracy 

can be traded off with generality and redundancy. We make a 

point of not describing such extensions to the algorithm in this 

paper since the purpose here is to focus on the basic algorithm. 

Results obtained on two other data sets are summarized 

in Figs. 7 and 8. For each data set we show the 10 most 

informative rules up to and including second order. We again 

purposely restricted the rules to low orders in order to make 

the output easier to interpret. The “voting” data set (as pre- 

viously reported by the machine learning community [45], 

[46]) consists of voting records in a 1984 session of Congress, 

each piece of data corresponding to a particular politician. 

The obvious class variable is party affiliation or “politics” 

(republican or democrat), the other 16 attributes being yesho 

votes on particular motions such as Contra-aid and budget cuts. 

The derived rules highlight the political topics which tend to 

segegrate politicians best-not surprisingly, there are strong 

correlations between foriegn policy, defense issues, and social 

programs, issues which traditionally separate the two parties. 

Given the probable imposition of party “whips” on many of 

these issues (i.e., all party members are instructed to vote in 

a certain manner) we did not expect any significant surprises 

from this data set. The primary intent was to verify that the 

algorithm would indeed find the expected relationships. 

The second data set is taken from a chess end-game problem 

described in Quinlan’s 1979 paper [47, pp. 177-1801. There 

are 7 attributes which characterize particular end-game con- 

figurations. With the 4 pieces (black knight and king, white 

rook, and king) there are 647 legal configurations. These 647 

examples completely describe this domain. The object of the 

exercise is to classify whether the end-game is lost two-ply 

in a black-to-move situation4etails are given in Quinlan’s 

paper. This rule set is interesting in that, as shown in Fig. 8, 

ITRULE generates probabilistic rules (namely, the first three) 

as well as “factual” rules (rules 4-10). Since this domain is 

deterministic, i.e., perfectly classifiable given the attributes, 

both PRISM and ID3 tend to produce only perfect rules, i.e., 

rules with an effective transition probability of 1 or 0 (as 

reported by Cendrowska [29]). While ITRULE will find these 

rules, it also generates probabilistic rules or domain heuristics. 

For example, rules 1 and 2 tell us that if the black knight, king, 

and white rook are in line and if the rook bears on either the 

black king or knight, then there is roughly an 80% chance 

that the game is safe. More significantly, the probability that 

the game is lost has risen from an a priori value of 0.054 

to an a posteriori probability of 0.2 1. In a statistical decision 

sense this change in probability could be very significant if 

the risk (associated with losing) significantly outweighs the 

benefit associated with a safe position. The rules shown in Fig. 

8 were produced by the general “attribute-attribute’’ version 

of the algorithm rather than running it as a classifier. Hence, 

nonclassification rules appear in the output, i.e., rules 4-6. 
These rules are essentially the opposite of predictive class 

rules-given the class value of ‘‘lost,’’ it is highly likely that 

certain piece configurations occurred, giving useful analysis 

information. 

From Fig. 8 we can also discern the limitation imposed 

by using only a conjunctive hypothesis space for learning. 

Clearly, the first three rules could be replaced by a more 

concise rule using the function “any 2 of 3.” More generally, 

the extension to arbitrary “X of N” functions in the hypothesis 

representation language (of which disjunction (“1 of N” )  and 
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it in-line = t rk.brs.bkg = t ] then [ game=safe] 0.790 0.250 0.946 0.207 0.052 161 127 

iq in-line = t rk.brs.kn = t ] then [ game=safe] 0.790 0.250 0.946 0.207 0.052 161 127 

iq rk.brs.bkg = t rk.brs.kn = t ] then [ game = safe] 0.790 0.250 0.946 0.207 0.052 161 127 

iq game= lost 1 then [ in-line = t ] 0.972 0.054 0.499 0.819 0.044 34 0 

iq game= lost 1 then[rk.bn.bkg=t ] 0.972 0,054 0,499 0.819 0.044 34 0 

iq game= lost 1 then [ rk.brs.kn = t ] 0.972 0.054 0.499 0.819 0.044 34 0 

it in-line = f 1 then[ gatm=safe] 1.000 0.501 0.946 0.078 0.039 324 324 

iq rk.brs.bkg = f 1 then [ game-safe] 1.000 0.501 0.946 0.078 0.039 324 324 

iq rk.brs.kn = f 1 then[ game=safe] 1.000 0.501 0.946 0.078 0.WQ 324 324 

iq bkg-kn = not3 wkg-kn =not 1 ] then [ game=safe] 1.OOO 0.445 0.946 0.078 0.035 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA288 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA288 

Fig. 8.  The 10 best rules from the chess data set (up to order 2). 

conjunction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(“N of N ” )  are special cases) is a topic under 

current investigation [48]. As always, richer representation 

languages imply a larger search space for the induction algo- 

rithm-finding e#cient representation languages for arbitrary 

domains remains an open problem. 

Ix. EXPERIMENTAL EVALUATION OF 

THE EFFECTIVENESS OF THE BOUNDS 

Given that the computational complexity of ITRULE does 

not admit to direct analysis, we resorted in Section VI1 to 

intuitive arguments as to why we expected it to behave well 

in practice, on average. Recall that the number of possible rules 

is exponential in the number of attributes and the cardinality 

of their event spaces. We argued that in practice our bounds 

may be expected to become more effective as we go to higher 

and higher order rules-what we could not show was whether 

the constraints introduced by the bounds could overcome the 

tendency of the rule space to grow exponentially. In this 

section we present experimental evidence, based on the data 

sets described in the last section, which suggest that, in fact, 

the bounds are quite powerful. Naturally, for finite sample 

sizes the small sample bias in the point probability estimates 

also tends to cut down on the number of rules examined. 
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k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA500 

k = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA100 

2 2 0 0  Order of rules 

Fig. 9. Cumulative total of rules generated by ITRULE plotted on a log-scale 
versus rule order, with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk = { 20.100.iOO): the theoretical cumulative total 
if no bounds were used is also shown. 

The data we chose for evaluation purposes were the afore- 

mentioned “voting” data set [46], the choice being made 

primarily on the basis that all variables are binary, hence, 

permitting relatively easy computation of upper bounds, etc. 

The algorithm was run with 3 different values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk (20, 100, 

500), chosen as a representative of the range of extremes which 

might be used in practice (from data analysis up to inference). 

Fig. 9 shows a semi-log plot of the number of rules generated 

by ITRULE during its search as a function of the order of the 

rules, e.g., the data point at “order 3” represents the cumulative 

total of rules of order 3 or less generated by the algorithm. It is 

important to note that each point was generated by a separate 

run of the algorithm where the maximum order of rules was 

restricted (from 1 to 6). As a comparison, the number of rules 

which would be searched if no bounds were used (let us call 

this parameter R(i )  where i is the rule order) is also shown 

in Fig. 9. This shows the exponential growth of R(z), as can 

be seen from (20) which gives us zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
j = 2  

R(i)  = EL)’( n - 1  ).n 

j=1 

where n = 17 for the voting data set. The benefit of bounding 

is immediately obvious from Fig. 9. 

Fig. 10 shows the noncumulative rule totals on a linear scale 

using the same data as for Fig. 9, i.e., it plots the number of 

additional (or new) rules processed from one order to the next. 

What is evident from this plot is the fact that for each value 

of k ,  the algorithm peaks at some order (always 3 or 4 in this 

case) and from that point onwards, the number of new rules 

begins to drop off. These same data are presented in a different 

format in Fig. 11, where we plot the ratio of the number of 

new rules generated at order i to the number at order i - 1. 

These are the p factors discussed earlier in Section VII-the 

graph verifies that the /3 factors indeed drop below 1 as we 

would like. 

Of course, these results only pertain to one data set, a data 

set which we have no particular reason to believe is “typical” 

of data sets in general. However, it has been our experience 

that the bounding is equally effective on the other data sets 

reported earlier, and on a variety of unreported data sets. 

Invariably, there will be cases such as the random problem 

described earlier, where the bounds may not be effective. 

However, we believe that such cases will be relatively rare 

in practice. 

X. CONCLUSION 

In this paper we have demonstrated the applicability of our 

proposed J-measure for induction from both a theoretical and 

practical standpoint. We developed an interpretation of the 

measure as a hypothesis preference criterion which trades- 

off simplicity and goodness-of-fit, and thus supports the basic 

inductive mechanisms of generalization and specialization. 

The ITRULE algorithm was described and we gave a practical 

example in the form of extracting rules from mutual fund data. 

The rules produced by ITRULE can be used either as a human 

aid to understanding the inherent model embodied in data, or 

as a tentative input set of rules to an expert system. In this 

case, ITRULE can ease the knowledge acquisition bottleneck 

by presenting the expert with a tentative rule set, or, in cases 

where no human expert exists, it may directly transform data 

into rule-based systems. Current work is focused on extensions 

and refinements of the basic ITRULE ideas and practical 

applications in a number of domains are in progress. 

APPENDIX 

Proof of the Specialization Theorem (Section V): 

We consider 3 distinct cases; i) p ,  > p,, ii) p ,  < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp x ,  and 

iii) Pg L P ,  L P,. 
Case i )  p ,  > p,: 
We can write 

P(4Y) = P(4Y; Z)P(ZlY) + P(4Y; Z)P(ZlY) 

P, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPs.P(ZlY) + 6’41 - P(ZlY)) 

(28) 

or equivalently: 

(29) 

where 6’ = p(zly,Z). The left-hand side, p,, is fixed and 

represents a constraint which p,, 6’ and p(z1y)  must satisfy. 

We want to find a variable 2 which maximizes J ,  subject to 

this constraint. First we note that by (29): 

min{p,, e}  5 p ,  5 Inax{p,, e }  (30) 

since p(zly)+p(Zly) = 1. Since we have assumed that p ,  > p ,  
initially, we can state that 

(31) P ,  > Pg > 6’ ’ 

From (29), we have that 

P g  - 6’ 
P ,  - 6’ 

P ( Z l Y )  = - . 

Hence, our expression for J ,  can be written as 
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Fig. I I .  Beta-factors (j) as generated by ITRULE plotted versus rule order, with k = { Z O .  100. 500) .  

The only remaining free parameters are p ,  and H ,  which we 

will choose to maximize J,. The probabilities y, and H are 

jointly constrained by the fact that 

and so 

(39) 
P, - 0 2  < PY - 81 

Ps - 0 2  P ,  - 01 

(34) 

Since this is a multiplicative term in J s ,  to maximize J ,  we 

should maximize this term and then check if the value of this 

maximum constrains p s  in any way. If it does, then we cannot 

maximize the product terms in (33) to find an achievable 

bound. From (31) we know that 0 I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ < p,. The following 

lemma is useful. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Lemma A . l :  

(35) 

which implies that the maximum occurs for H = 0. 

Accordingly, the choice of H = 0 minimizes the multiplica- 

tive term in (33) without introducing any extra constraints on 
p,. Hence, we can maximize the two terms separately and 

still obtain an achievable bound. We will refer to this bound 

as the product bound. From (33) and the result of the lemma 

we obtain 

Proof: Let H 1  < 8 2 .  Therefore: 
=p(y).pg.(l0g(:) + (- 1 - 1).10g(-))(41) 

P S  1 - P x  

P 

P x  

1 

P x  

h ( P s  - Y,) < H2(% - Yy)  (36) 

since p ,  - p ,  > 0, and by adding pspg  + 1918~ to each side 

P.SP.!J + Q1&! + b% - Q1P.Y < PSP, + Q l H P  + Q2Ps - 02Pg (37) 

I P(Y).P,. log( '1) 

I P ( Y )  .P,. 1% (-) 
we obtain (since the second term is negative) (42) 

(43) 

+ (pg - & ) . ( p ,  - 0 1 )  < ( p ,  - H 2 ) . ( p g  - 01) (38) This proves case i) of the Theorem. 
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Next we consider case ii) where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11, < p x  < py.  Intuitively 

what happens here is that the new condition “changes the 

direction of the rule” so that Z is being confirmed rather than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x. In practice this case is far lesr likely to occur than case 

i). Nonetheless, we must analyze this case to obtain a general 

bound. Proceeding as in case i )  we get the equivalent condition 

to (31): 

Pb < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp z  < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP y  < 8 (44) 

and so we have that 

(4.5) 

due to the fact that the second term is negative since (1 - p g )  < 
(1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAps). Hence, we get that 

J ,  < *( y) .pg . log( p”) 
Y X  

, which is less than (431, the bound for case i). Finally if 

p s  = pg ,  we can apply the same argument for the goodness- 

of-fit, j,, and noting that the simplicity component must be 

less than or equal to p(y), we obtain the same result as (52). 

By combining the results of cases i)-iii), we obtain the desired 

result. This proves the theorem in its entirety, which we will 

now restate: 

. ( 1 - p g )  log - 
1 - p x  

Lemma A.2: 

p ( 2 .  y) log L}.  (58) 
P r  Pz 

(46) 
1 - 1-9 

Pmo$ Let 01 > 0 2 .  Therefore: 
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each side we obtain 
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and so, unlike case i), the maximum occurs for 0 = 1. 

As before, maximizing the product term does not constrain 

p ,  in any way since 0 < - < 1 for all allowable values 

of p,. Hence, we have that 

(51) 

( 5 2 )  

This proves the bound for case ii). For case iii) we can apply 

the following arguments. If p s  = * ( . I . )  then .I, = 0 and so the 

bound holds. If p ( r )  < p s  < p g ,  then from case ii) we see 

that the simplicity component 

( 5 3 )  

while the goodness-of-fit component 

(55 )  
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