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Abstract

Expression Quantitative Trait Locus (eQTL) analysis is a powerful tool to study the biological mechanisms linking the
genotype with gene expression. Such analyses can identify genomic locations where genotypic variants influence the
expression of genes, both in close proximity to the variant (cis-eQTL), and on other chromosomes (trans-eQTL). Many
traditional eQTL methods are based on a linear regression model. In this study, we propose a novel method by which to
identify eQTL associations with information theory and machine learning approaches. Mutual Information (MI) is used to
describe the association between genetic marker and gene expression. MI can detect both linear and non-linear
associations. What’s more, it can capture the heterogeneity of the population. Advanced feature selection methods,
Maximum Relevance Minimum Redundancy (mRMR) and Incremental Feature Selection (IFS), were applied to optimize the
selection of the affected genes by the genetic marker. When we applied our method to a study of apoE-deficient mice, it
was found that the cis-acting eQTLs are stronger than trans-acting eQTLs but there are more trans-acting eQTLs than cis-
acting eQTLs. We compared our results (mRMR.eQTL) with R/qtl, and MatrixEQTL (modelLINEAR and modelANOVA). In
female mice, 67.9% of mRMR.eQTL results can be confirmed by at least two other methods while only 14.4% of R/qtl result
can be confirmed by at least two other methods. In male mice, 74.1% of mRMR.eQTL results can be confirmed by at least
two other methods while only 18.2% of R/qtl result can be confirmed by at least two other methods. Our methods provide a
new way to identify the association between genetic markers and gene expression. Our software is available from
supporting information.
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Introduction

As a powerful tool to increase understanding of the biological

mechanisms by integrating genetic marker data with gene

expression data [1], the goal of expression Quantitative Trait

Locus (eQTL) analysis is to identify genomic locations where

genotype significantly affects gene expression [2]. This analysis was

first applied to yeast [3] and then to mouse and human [4]. Many

cis/trans loci associated with the expression level of hundreds of

transcripts were identified. In cis-acting eQTLs, the SNPs are close

to the affected gene; while in trans-acting eQTLs, the SNPs are far

away from the affected gene. Usually, the trans-effects are weaker

than the cis-effects, but the number of trans-effects is larger than

the cis-effects in mouse and human [2,4]. How close the SNP and

the affected gene should be in cis-acting eQTLs is debatable [2].

In this study, the SNPs that were within 5 Mb of the affected genes

[5] were termed cis-acting eQTLs.

Since eQTL is intended to assist in discovery of whether the

genetic marker at a certain locus is correlated with the gene

expression of a certain gene, the traditional eQTL methods are

based on the linear regression of the gene expression with the

genetic marker [6]. The expression level of one gene is assumed to

be the result of one or multiple genetic markers [7]. But on the

other hand, we can also say that one genetic marker can affect one

or multiple genes. The relationship between genetic marker and

gene expression is mutual.

Unlike traditional statistical eQTL methods, here we propose an

information theory based machine learning method to accomplish

eQTL analysis. It is different from traditional statistical eQTL

methods in the following ways:

First, the association between genetic marker and gene

expression is measured with Mutual Information (MI), which

can not only be used for both linear and non-linear dependencies,

but can also capture the potential heterogeneity of the study

population [8]. As an ideal stochastic dependence measurement

[9], MI considers all types of dependencies, including linear

relationships and monotonic dependencies [10]. MI measures the

mutual dependence between two variables [11–13]. The MI

between X and Y is defined as the marginal entropies of X minus

the conditional entropies of X|Y. The marginal entropies of X

measure the uncertainty of variable X. The conditional entropies

of X|Y measure the uncertainty remaining about X after Y is

given. Since MI is symmetric [14], i.e., the MI of X and Y is the

same as the MI of Y and X, the MI between X and Y equals the
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marginal entropies of Y minus the conditional entropies of Y|X as

well.

Second, in this method, the status of the genetic marker is

considered the class label and the expression levels of genes are

considered features. The expression levels of genes are then used

to predict the status of the genetic marker. The idea of predicting

genotype from gene expression is originated from a series of

reverse engineering works from gene expression to its genetic basis

[15–17]. The genes that one genetic marker can affect are

determined by both the MI between the gene and the genetic

marker, and the MI among genes. In other words, not only the

relevance between the gene and the genetic marker, but also the

redundancy among genes was considered. The relevance guaran-

tees detection of the strong associations and the redundancy can

filter the indirect associations. The affected genes are optimized

with feature selection techniques: Maximum Relevance Minimum

Redundancy (mRMR) and Incremental Feature Selection (IFS).

The biological rationale of applying these feature selection method

to eQTL study is that if a set of genes are highly co-expressed, they

are very likely involved in the same biological process and have

similar biological functions. The feature selection procedure will

reduce the number of regulated genes but the representative ones

will be selected. The biological functions of regulated genes by the

SNP will be clearer.

Our methods provide a new way to identify the associated

genetic marker - gene expression eQTL pairs with advanced

information theory and optimize the detection of affected genes

corresponding to genetic markers with feature selection and

machine learning. We applied the method on a published eQTL

mouse data set [18] and simulated data set. On the published data

set, our method identified more consensus eQTLs than traditional

methods. On the simulated data set, the area under the precision-

recall curve (AUPR) of our method is greater than traditional

methods, such as R/qtl [19], and MatrixEQTL (modelLINEAR

and modelANOVA) [20].

Materials and Methods

Dataset
The eQTL dataset we used were obtained from a published

study by Jonathan David Smith [18]. The gene expression data

was downloaded from Gene Expression Omnibus (GEO) with

accession number of GSE8512. The SNP data was provided by

Jonathan David Smith [18]. There were 207 apoE-deficient F2

mice utilized from an AKRxDBA/2 intercross. The numbers of

male and female mice were 114 and 93, respectively. The gene

expression was measured with Affymetrix Mouse Genome 430 2.0

Array. There were 45,101 probes in this platform. Meanwhile, the

genotypes of 1,967 informative SNP markers: 1 = homozygous

AKR allele, 2 = heterozygous, 3 = homozygous DBA/2 allele,

were measured.

The genotype of SNP j can be inferred based on genes regulated

by SNP j

Gj~function(g1,g2, � � � ,gi, � � � ,gV) ð1Þ

Where Gj is the genotype of SNP j, gi is the expression level of

regulated gene i(1ƒiƒV) and,V depends on the selection of

regulated genes which will be elaborated below.

In the original study by Jonathan David Smith [18], the R/qtl

[19] software was used to detect the eQTLs. In their eQTL

analysis, the association between phenotype and locus was

determined by linear correlation analysis using both dominant

and additive models, and the model with the highest correlation

coefficient was selected [18,21].

mRMR Method
We used the mRMR method [22,23] to rank the genes

according both to their relevance to the genotype and to the

redundancy among the genes. The genes with top ranks should

have maximum relevance to the genotype class and also be

minimally redundant, i.e., maximally dissimilar to one another.

The maximum relevance makes sure that the genes are associated

with the genotype and the minimum redundancy reduces the

indirect associations. Both relevance and redundancy are defined

by mutual information (MI), which measures how much one

vector is related to another. MI is defined as follows:

I(X ,Y )~

ðð
p(X ,Y ) log

p(X ,Y )

p(X )p(Y )
dXdY ð2Þ

where X and Y are two vectors, p(X ,Y ) is the joint probabilistic

density, p(X ) and p(Y ) are the marginal probabilistic densities.

Let Vazb denotes the whole vector set containing all the genes,

Va(5Vazb) denotes the selected vector set with a vectors, and

Vb(5Vazb) denotes the to-be-selected vector set with b vectors.

The relevance R of a gene g in Vb with the genotype variable c

can be computed by equation (3):

R~I(g,c) ð3Þ

The redundancy D of a gene g in Vb with all the genes in Va

can be computed by equation (4):

D~ 1
a

P
gi[Va

I(g,gi) ð4Þ

To obtain a gene gj in Vb with maximum relevance and

minimum redundancy, the mRMR function is obtained by

integrating equation (3) and equation (4):

max
gj[Vb

I(gj ,c){
1

a

X
gi[Va

I(gj,gi)

2
4

3
5 (j~1,2,:::,b) ð5Þ

For a gene pool containing N(~azb) genes, the evaluation

will be executed in N rounds. After these evaluations, an ordered

gene set S will be obtained:

S~ g
0
1,g
0
2,:::,g

0
h,:::,g

0
N

n o
ð6Þ

where each gene in S has a subscript index, indicating at which

round the gene is selected. The better a gene is, the earlier it will

satisfy equation (5) and be selected, and the smaller its subscript

index will be.

The mRMR software we used was downloaded from http://

penglab.janelia.org/proj/mRMR/.

If there are covariates that should be adjusted, the conditional

mutual information can be used to replace mutual information in

equation (5). The modified equation is equation (7)

mRMR.eQTL
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max
gj[Vb

Iconditional(gj ,cDcadjust){
1

a

X
gi[Va

I(gj,gi)

2
4

3
5 (j~1,2,:::,b) ð7Þ

where cadjust are the covariates that should be adjusted, there can

be several covariates; Iconditional(gj ,cDcadjust) is the conditional

mutual information between gj and c with adjustment of cadjust. It

can be calculated by equation (8)

Iconditional(gj ,cDcadjust)~H gj ,cadjust

� �
zH c,cadjust

� �
{H gj ,c,cadjust

� �
{H cadjust

� � ð8Þ

where H is the entropy of the empirical probability distribution.

Nearest Neighbor Algorithm
In our work, the Nearest Neighbor Algorithm (NNA) [24–28]

was used to classify mice into different genotypes. The basic idea is

to assign a new mouse to its genotype by comparing the genes of

this mouse with the genes of those that have known genotypes.

The distance between two mice Mx and My in the study is defined

as [24–28]:

D(Mx,My)~1{
Mx

:My

DDMxDD:DDMyDD
ð9Þ

where Mx
:My is the inner product of Mx and My, and DDM DD is the

Euclidean norm of vector M. The smaller D(Mx,My) is, the

similar Mx and My are.

In NNA, a vector Mt will be designated as having the same class

as its nearest neighbor Mn which has the smallest D(Mn,Mt). That

is

D(Mn,Mt)~ minfD(M1,Mt),D(M2,Mt),:::,

D(Mz,Mt),:::,D(MN ,Mt)g(z=t)
ð10Þ

where N represents the number of training mice.

Figure 1. The workflow of mRMR.eQTL. (A) The input of mRMR.eQTL includes genotype and gene expression data of the same samples. (B) For
each SNP, the SNP status is considered as class label and the gene expressions are considered as features. (C) mRMR feature selection is applied to
rank the genes based on its relevance to the genotype and redundant to other genes. (D) Incremental feature selection is applied to select the
optimal gene set that can best discriminate the genotype status. (E) The eQTL tables are generated based on the mRMR and IFS results.
doi:10.1371/journal.pone.0067899.g001

mRMR.eQTL
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Jackknife Cross-Validation Method
The Jackknife Cross-Validation Method, also known as Leave-

One-Out Cross-Validation (LOOCV), is one of the most effective

and objective ways to evaluate statistical predictions [29–31]. In

the Jackknife Cross-Validation Method, each sample in the dataset

is knocked out in turn and tested by the predictor, which is trained

Figure 2. The venn diagram of mRMR.eQTL, R/qtl, MatrixEQTL.modelLINEAR and MatrixEQTL.modelANOVA in female and male
mice. (A) The venn diagram of mRMR.eQTL, R/qtl, MatrixEQTL.modelLINEAR and MatrixEQTL.modelANOVA in female mice; (B) The venn diagram of
mRMR.eQTL, R/qtl, MatrixEQTL.modelLINEAR and MatrixEQTL.modelANOVA in male mice.
doi:10.1371/journal.pone.0067899.g002

Table 1. SNPs with significantly more Apoe partners in female mice.

SNP
Gene located close
to the SNP P value Number of Apoe partners Apoe partners

rs6350987 Kcna4 0.003421984 3 Cat, Cd44, Rbm45

rs13476656 Gm13803 0.005736386 3 Cat, Cd44, Rbm45

rs13476672 Cd44 0.005736386 3 Cat, Cd44, Rbm45

rs3689502 Gm13803 0.005736386 3 Cat, Cd44, Rbm45

rs6246565 Hsd17b12 0.005736386 3 Cat, Cd44, Rbm45

rs13478827 Gm8992 0.030289618 2 Gpnmb, Apobec1

doi:10.1371/journal.pone.0067899.t001

mRMR.eQTL
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by the other samples in the data set [25,28,32–39]. During this

process, each sample is involved in training N{1 times and is

tested exactly once. To evaluate the performance of the predictor,

the accuracy rate for the overall samples can be calculated as: Q~

P3
i~1

Ti

P3
i~1

Ni

ð11Þ

where Ti and Ni stand for the number of correctly predicted mice

Table 2. SNPs with significantly more Apoe partners in male mice.

SNP
Gene located close
to the SNP P value

Number of Apoe
partners Apoe partners

rs13480712 Hal 0.007091998 12 Ebp, Npc2, Pla2g2e, Lta4h, Vapb, Enpp1, Irak1, Ncor2, Gla,
Ccl24, Cbx3, Hecw1

rs13481811 BB123696 0.007278187 3 2010111I01Rik, Sptlc1, Nrip1

rs13480667 Ikbip 0.008178776 9 Npc2, Ngb, Pla2g2e, Lipg, Lta4h, Enpp1, Tax1bp1, Nr0b2, Il6st

rs13481820 Gm19516 0.011111922 3 Stab2, 2010111I01Rik, Sptlc1

rs13481821 Slc25a48 0.011111922 3 Stab2, 2010111I01Rik, Sptlc1

rs3698807 Gm19516 0.011111922 3 Stab2, 2010111I01Rik, Sptlc1

rs8273881 Slc34a1 0.011111922 3 Stab2, 2010111I01Rik, Sptlc1

rs13480704 Mir135a-2 0.014548555 7 Npc2, Pla2g2e, Lipg, Lta4h, Vapb, Enpp1, Il6st

rs13480695 Nr1h4 0.014572157 11 Plat, Npc2, Pla2g2e, Lipg, Usp12, Lta4h, Enpp1, Plek, Nr0b2,
Apaf1, Il6st

rs13481896 LOC101055640 0.015906918 3 Stab2, 2010111I01Rik, Sptlc1

rs13478738 Cntnap2 0.019373037 4 Dfna5, Armc9, Pnlip, Gpnmb

rs13481850 Ercc6l2 0.021689728 3 Stab2, 2010111I01Rik, Sptlc1

rs3705446 Arrdc3 0.021689728 3 Stab2, 2010111I01Rik, Sptlc1

doi:10.1371/journal.pone.0067899.t002

Figure 3. The network of Apoe partners and their upstream SNPs. (A) The network of Apoe partners and their upstream SNPs in male mice.
The red node is Apoe. The grey nodes are Apoe partners. The orange nodes are their upstream SNPs. The grey edges are protein-protein interactions.
The orange edges are eQTL relationships between SNPs and genes. (B) The network of Apoe partners and their upstream SNPs in female mice. The
red node is Apoe. The grey nodes are Apoe partners. The orange nodes are their upstream SNPs. The grey edges are protein-protein interactions. The
orange edges are eQTL relationships between SNPs and genes.
doi:10.1371/journal.pone.0067899.g003

mRMR.eQTL
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and overall mice in genotype i(i~1,2,3). Genotype i~1 means

homozygous AKR allele, i~2 means heterozygous, i~3 means

homozygous DBA/2 allele.

The accuracy of genotype prediction evaluated by Jackknife

Cross-Validation was used as a measurement of explanation ability

of gene set expression to SNP.

Incremental Feature Selection (IFS)
After the mRMR step, we obtained a gene list in their order of

selection. However, we still do not know how many genes in the

list should be chosen. In our study, Incremental Feature Selection

(IFS) [25,28,32–38] was used to determine the optimal number of

genes. We constructed N gene subsets of the gene list S provided

by the mRMR gene list defined in equation (6) by adding an

additional gene to the candidate gene subset, starting from an

initial subset containing only the first gene S1~fg1g. The gene

subset Si is defined as:

Si~fg1,g2,:::,gig(1ƒiƒN) ð12Þ

by adding gene gi to the previous subset Si{1~fg1,g2,:::,gi{1g.
For each gene subset Si(i~1,:::,N), the Jackknife Cross-

Validation Method is used to obtain the accuracy rate. The

results were plotted to produce an IFS curve with index i as its x-

axis and the overall accuracy as its y-axis. The optimal genes were

defined as the genes that reach the highest accuracy.

The Workflow of mRMR.eQTL
A pipeline of above analysis procedures were illustrated in

Figure 1. The software that implements this pipeline is called

mRMR.eQTL. There are five steps:

First, the input of mRMR.eQTL includes genotype and gene

expression data of the same samples.

Second, for each SNP, the SNP status is considered as class label

and the gene expressions are considered as features.

Third, mRMR feature selection is applied to rank the genes

based on its relevance to the genotype and redundant to other

genes. The feature selection will generate two lists: the mRMR

and MaxRel list. The MaxRel list is ranked based on relevance.

The mRMR list is ranked based on relevance and redundancy.

The user can choose use which list in the IFS.

Fourth, IFS is applied to select the optimal gene set that can best

discriminate the genotype status.

Fifth, the eQTL tables are generated based on the mRMR and

IFS results.

The mRMR.eQTL software is available in Script S1.

Results and Discussion

mRMR Results
Since the mice we studied were apoE-deficient F2 mice from an

AKRxDBA/2 intercross, for each genetic marker, i.e. SNP, there

were three statuses: homozygous AKR allele, heterozygous allele

and homozygous DBA/2 allele. The genotype is the category

variable which is usually the target class label in machine learning

studies. The gene expression level is the numeric variables which

contains data that can be used as features to represent the target

class label. Therefore, unlike traditional eQTL methods which use

the genotype data to represent the expression data, we used the

expression data as features to represent the genotype data which

were target class labels. After transforming the eQTL problems,

i.e. discovering correlations between genotype data and expression

data and placing these into machine learning questions, we applied

the advanced mRMR methods to extract informative genes that

have maximal relevance to the genotype and at the same time

have minimal redundancy among genes. The maximal relevance

ensures that the selected genes were strongly correlated with the

genotype. The minimal redundancy reduces the number of

selected genes; such a compact gene set will have fewer false

positive correlations.

The genotype of each genetic marker was considered a machine

learning problem. The genes were ranked by relevancy with the

corresponding genetic marker. After the mRMR analysis, we

obtained the mRMR score and mRMR order of all genes for each

genetic marker. The mRMR score can be used a measurement of

association between gene expression and genetic marker.

Figure 4. The precision-recall curves of our method, R/qtl, and
MatrixEQTL (modelLINEAR and modelANOVA). The red, green,
brown, purple lines represent the precision-recall curves of our method,
R/qtl, MatrixEQTL_modelLINEAR and MatrixEQTL_modelANOVA, respec-
tively.
doi:10.1371/journal.pone.0067899.g004

Table 3. The AUPR comparison of our method, R/qtl, and MatrixEQTL modelLINEAR and MatrixEQTL modelANOVA.

Our method R/qtl MatrixEQTL modelLINEAR MatrixEQTL modelANOVA

AUPR 0.131679926 0.12847128 0.108051418 0.116587322

RAUPR 1 0.975632993 0.820561052 0.885384173

doi:10.1371/journal.pone.0067899.t003

mRMR.eQTL
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IFS Results
With mRMR analysis, we can obtain the rank of association

between gene expression and genetic marker, but it is still not clear

how many genes are affected by the SNP. The number of affected

genes can be optimized with IFS methods. In this method, the

genes were progressively tested and the gene set that achieves the

best prediction performance is considered the optimal gene set.

Unlike the traditional eQTL methods which usually require an

arbitrary cutoff, the IFS method is parameter free. It utilizes the

IFS curve which characterizes the distribution of prediction

performances, to optimize the affected gene selection.

eQTL Results
After the feature selection with mRMR and IFS, we obtained

6489 and 9401 eQTLs in female and male mice, respectively.

If the distance between SNP and the affected genes was smaller

than 5 Mb [5], this eQTL association was termed a cis-acting

eQTL. Since the sequences of some probes in the Affymetrix

Mouse Genome 430 2.0 Array did not achieve a perfect match

with the mouse genome, they did not have exact genome locations.

If an eQTL pair includes such probes, it was then termed

ambiguous eQTL. Based on the above criteria, there were

1298 cis-acting eQTLs, 3392 trans-acting eQTLs, 1799 ambigu-

ous eQTLs in female mice and 1698 cis-acting eQTLs, 5324

trans-acting eQTLs, 2379 ambiguous eQTLs in male mice.

To investigate the differences between cis-acting eQTLs and

trans-acting eQTLs, we compared the mRMR scores of cis-acting

eQTLs and trans-acting eQTLs and found that the mRMR scores

of cis-acting eQTLs were significantly greater than the mRMR

scores of trans-acting eQTLs. The one sided t test p values of this

comparison in female and male mice were 7.13e-47 and 1.43e-66,

respectively. Although the trans-acting eQTLs were weaker than

cis-acting eQTLs, the number of trans-acting eQTLs was larger

than the number of cis-acting eQTLs. Both the comparisons of

associations and numbers of cis-acting eQTLs and trans-acting

eQTLs in our results agreed with the prior reports that in mouse,

the cis-acting eQTLs are stronger than trans-acting eQTLs but

that there are more trans-acting eQTLs than cis-acting eQTLs

[2].

Comparison with the Original eQTL Results
We compared our eQTL results with Jonathan David Smith’s

results [18]. They used R/qtl to calculate the eQTLs in female

and male mice. Recently, a new method of eQTL, MatrixEQTL

[20], was developed. MatrixEQTL includes two models: model-

LINEAR and modelANOVA. In modelLINEAR, the effect of

genotype is considered as additive linear and the significance is

tested using t-statistic. In modelANOVA, the genotype is treated

as categorical variable and ANOVA model is applied to test the

significance. We calculated the eQTLs in female and male mice

using MatrixEQTL.modelLINEAR and MatrixEQTL.modelA-

NOVA as well. Figure 2 shows the venn diagram of these four

methods. The cutoff of R/qtl was log-odds (LOD) . = 3. The

cutoff of MatrixEQTL.modelLINEAR and MatrixEQTL.mode-

lANOVA was False Discovery Rate (FDR) , = 0.05. The cutoff of

mRMR is LOOCV Accuracy. = 0.90. The outputs of these four

methods were given in Dataset S1. In female mice, 67.9% of

mRMR.eQTL results can be confirmed by at least two other

methods while only 14.4% of R/qtl result can be confirmed by at

least two other methods. In male mice, 74.1% of mRMR.eQTL

results can be confirmed by at least two other methods while only

18.2% of R/qtl result can be confirmed by at least two other

methods. Our method, mRMR.eQTL was better than R/qtl,

which was used in the original study by Jonathan David Smith

[18].

Biological Relevance of the eQTL Results
The goal of eQTL analysis is to discover associations between

genetic markers which mark the genome locations and genes

whose expression level are affected by the genetic markers. Such

SNP - gene associations can enhance the understanding of

biological mechanisms. Here, the mice we studied were apoE-

deficient F2 mice from an AKRxDBA/2 intercross.

To investigate the roles of Apoe in the eQTL associations, we

extracted its interaction partners from STRING (http://string-db.

org/) [40]. STRING is a comprehensive and widely used

[32,33,41–44] protein interaction database. Since each SNP

corresponding to some affected genes, we sought to find which

SNPs have significantly more interaction partners of Apoe. We did

an hypergeometric test [32–34,36–38] to analyse the overlap

between Apoe’s partners and affected genes by each SNP and

found the SNPs that have significantly more than random Apoe

partners with a hypergeometric test p value less than 0.05. The

enriched SNPs in female and male mice are given in Table 1 and

Table 2, respectively.

To view the manner in which the SNPs affect their downstream

genes and in which these genes interact with Apoe, we plotted

Figure 3 which shows the eQTL associations between the

enriched SNPs and their downstream genes in female and male

mice and the protein interactions between Apoe and its partners.

In female mice, two SNPs of Gm13803, rs13476656 and

rs3689502, regulates three Apoe’s interaction partners, Cat,

Cd44 and Rbm45. In male mice, two SNPs of Gm19516,

rs13481820 and rs3698807, regulates three Apoe’s interaction

partners, Stab2, 2010111I01Rik and Sptlc1. The eQTL results

provided useful clues about the functions of predicted genes,

Gm13803 and Gm19516.

Comparison with other Methods on Simulated Dataset
We generated simulated genotype and gene expression data

using SysGenSIM [45]. The parameters used in the simulation are

as following: population size with 250, size of genes/SNPs

with1000, network topology with small-world, and average degree

of node with 10. To evaluate the eQTL identification performance

of our method, R/qtl, and MatrixEQTL (modelLINEAR and

modelANOVA), we plotted the precision-recall curve and

calculate the area under the precision-recall curve (AUPR) which

was widely used in evaluating eQTL and network construction

methods [46–48]. For calculating the precision-recall, the MaxRel

score in our method was used as a measurement to get the eQTL

prediction. In R/qtl, the prediction measurement is LOD. For

MatrixEQTL (modelLINEAR and modelANOVA), the predic-

tion measurement is {log10(FDR). The precision-recall curves of

our method, R/qtl, and MatrixEQTL (modelLINEAR and

modelANOVA) were shown in Figure 4.

The AUPR and relative AUPR (RAUPR) of our method, R/

qtl, and MatrixEQTL modelLINEAR and MatrixEQTL mod-

elANOVA were given in Table 3. The RAUPR scaled the AUPR

to the maximum value obtained across the four methods [49]. Our

method has the greatest AUPR among the four methods.

The Advantages and Disadvantages of our Method
Compared with the traditional linear regression based eQTL

methods [50–52], our information-theoretic machine learning

method has several advantages: firstly, we use MI to measure the

association between genetic marker and gene expression. MI can

detect both linear and non-linear dependencies and deal with the

mRMR.eQTL
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heterogeneity of the study population [8,53]. Thus, our method

can identify more eQTLs than can the linear regression models.

Secondly, since our method is based machine learning, we use

advanced features selection methods - mRMR and IFS, to

optimize the affected gene selection. Both mRMR and IFS have

been widely used in machine learning areas and many difficult

problems have been solved with these feature selection methods

[25,28,32–38]. In mRMR, the maximal relevance guarantees that

the selected genes are associated with the genotype of the genetic

marker and the minimal redundancy reduces the false positive

associations. The IFS method borrows the IFS curve to analyse the

performance distribution of a possible affected gene set and

determine the optimal affected genes that have the best

performance. Both mRMR and IFS methods are easy to

understand and practice.

There are still some disadvantages to our method: firstly, since

our methods originated from information theory and machine

learning, it might be difficult for the traditional statistical geneticist

to understand. Some equivalent terms we used may be strange to

them, such as the MI we used to measure the association and the

IFS curve we used to optimize the affected genes. Secondly, we

used the gene expression data to represent the genotype. It is a

concept different from the traditional method which is the

contrary [7]. Some people may find it difficult to understand.

We are of the opinion, however, that the aim of eQTL analysis is

to identify the association between genetic marker and gene

expression regardless of the representation form taken.

Supporting Information

Dataset S1 The outputs of mRMR.eQTL, R/qtl, Ma-
trixEQTL.modelLINEAR and MatrixEQTL.modelA-
NOVA in female and male mice.

(RAR)

Script S1 The script of mRMR.eQTL.

(RAR)
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