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Abstract

An information-theoretic model for steganography with a passive adversary is proposed. The adversary’s
task of distinguishing between an innocent cover message C and a modified message S containing hidden
information is interpreted as a hypothesis testing problem. The security of a steganographic system is quan-
tified in terms of the relative entropy (or discrimination) between the distributions of C and S , which yields
bounds on the detection capability of any adversary. It is shown that secure steganographic schemes exist
in this model provided the covertext distribution satisfies certain conditions. A universal stegosystem is pre-
sented in this model that needs no knowledge of the covertext distribution, except that it is generated from
independently repeated experiments.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Steganography is the art and science of communicating in such a way that the presence of a mes-
sage cannot be detected. This paper considers steganography with a passive adversary. The model
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is perhaps best illustrated by Simmons’ “Prisoners’ Problem” [1]: Alice and Bob are in jail, locked
up in separate cells far apart from each other, and wish to devise an escape plan. They are allowed
to communicate by means of sending authenticated messages via trusted couriers, provided they do
not deal with escape plans. The couriers are agents of the warden Eve (the adversary) and will leak
all communication to her. If Eve detects any sign of conspiracy, she will thwart the escape plans by
transferring both prisoners to high-security cells from which nobody has ever escaped. Alice and
Bob are well aware of these facts, so that before getting locked up, they have shared a secret code-
word that they are now going to exploit for adding a hidden meaning to their seemingly innocent
messages. Alice and Bob succeed if they can exchange information allowing them to coordinate
their escape and Eve does not become suspicious.

Of course, Eve knows what constitutes a legitimate communication among prisoners; such a
communication is called covertext. Eve also knows about the tricks that prisoners apply to add a
hidden meaning to a seemingly innocent message, thereby generating so-called stegotext. Following
the approach of information theory, we capture this knowledge by a probabilistic model, and view
Eve’s task of detecting hidden messages as a problem of hypothesis testing. We define the security of
a steganographic system in terms of the relative entropy (or discrimination) between the distributions
of the covertext and the stegotext. A stegosystem is called perfect if this relative entropy is zero. The
model is presented in Section 2.

The consequence of our security notion for the detection performance of an adversary is inves-
tigated in Section 3, following a brief review of the theory of hypothesis testing. Two elementa-
ry stegosystems with information-theoretic security are described in Section 4 for illustrating the
definition.

In Section 5, a universal stegosystem is presented that requires no knowledge of the covertext
distribution for its users; it works by estimating the distribution and then simulating a covertext by
sampling a stegotext with a similar distribution. A discussion of our model and a comparison to
related work are given in Section 6, and conclusions are drawn in Section 7.

2. Model

2.1. Preliminaries

We define the basic properties of a stegosystem using the notions of entropy, mutual information,
and relative entropy [2,3].

The entropy of a probability distribution PX over an alphabet X is defined as

H(X ) = −
∑
x∈X

PX (x) log PX (x).

When X denotes a random variable with distribution PX , the quantity H(X ) is simply called the
entropy of the random variable X (with the standard convention 0 log 0 = 0 and logarithms to
the base 2). Similarly, the conditional entropy of a random variable X given a random variable
Y is H(X |Y ) = ∑

y∈Y PY (y)H(X |Y = y), where H(X |Y = y) denotes the entropy of the conditional
probability distribution PX |Y=y . The entropy of any distribution satisfies 0 � H(X ) � log |X |, where
|X | denotes the cardinality of X .
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The mutual information between X and Y is defined as the reduction of entropy that Y provides
about X , i.e., I(X ; Y ) = H(X )− H(X |Y ). It is symmetric in X and Y , i.e., I(X ; Y ) = I(Y ;X ), and
always non-negative.

The relative entropy or discrimination between two probability distributions PQ0 and PQ1 is defined
as

D(PQ0‖PQ1) =
∑
q∈Q

PQ0(q) log
PQ0(q)

PQ1(q)

(with 0 log 0
0 = 0 and p log p

0 = ∞ if p > 0).
The conditional relative entropy between PQ0 and PQ1 given a random variable V defined in both

probability spaces is

D(PQ0|V ‖PQ1|V ) =
∑
v∈V

PV (v)
∑
q∈Q

PQ0|V =v(q) log
PQ0|V =v(q)
PQ1|V =v(q)

.

The relative entropy between two distributions is non-negative and it is equal to 0 if and only if the
distributions are equal. Although relative entropy is not a distance measure in the mathematical
sense, because it is not symmetric and does not satisfy the triangle inequality, it is useful to think of
it as a distance.

2.2. Stegosystems

We use the standard terminology of information hiding [4]. There are two parties, Alice and
Bob, who are the users of the stegosystem. Alice wishes to send an innocent-looking message with
a hidden meaning over a public channel to Bob, such that the presence of hidden information
goes unnoticed by a third party, the adversary Eve, who has perfect read-only access to the public
channel.

Alice operates in one of two modes. In the first case, Alice is inactive and sends an innocent, legit-
imate message containing no hidden information, called covertext and denoted by C; it is generated
according to a distribution PC known to Eve. One may imagine that the covertext is generated by a
source to which only Alice has access. In the second case, Alice is active and sends stegotext S with
distribution denoted by PS . The stegotext is computed from an embedding function F and contains
an embedded message E intended for Bob. The message is a random variable drawn from a message
space E .

Alice’s embedding algorithm may access a private random source R and a secret key K , which is
shared by Alice and Bob. We assume that R is independent of E andC and known only to Alice, and
that K is unknown to Eve. The key has been chosen at random and communicated over a secure
channel prior to the use of the stegosystem – in any case before the message E that Alice wants to
communicate to Bob becomes known. Thus, we assume that K is independent of E, R, and C .

The embedding function F and the distributions of all random variables are known to Eve.
Hence, the model respects the prudent tradition known as “Kerckhoffs’ principle” in cryptology,
which places the security of a system only in the secrecy of a key but never in the secrecy of the
design.

Fig. 1 shows the model of a stegosystem in more detail. The switch at Alice’s end of the public
channel determines if Alice is active or not.
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Fig. 1. The model of a secret-key stegosystem.

• In the first case (switch in position 0), Alice is inactive and sends only legitimate covertext C to
Bob over the public channel. The covertext is generated by the covertext source; no embedding
takes place. The adversary Eve observes C .

• In the second case (switch in position 1), Alice is active and is given a messageE that she “embeds”
into the given covertext C using the embedding function F . This is an algorithm that takes C ,
the shared key K , and private randomness R as inputs and produces stegotext S . The stegotext
is sent to Bob over the public channel. The adversary Eve and the receiver Bob observe S . Using
his extracting algorithm G, Bob extracts a decision value Ê from S and K , in the hope that this
gives him some information about E.
We assume that the covertext and stegotext distributions are known to Alice and Bob and thus

the embedding algorithm may exploit knowledge about the covertext distribution (this will be re-
laxed in Section 5). However, we require that given a covertext distribution, the embedding function
F is universal for information embedding, i.e., it works for any distribution PE of the message E.
Thus, F must not depend on knowledge of PE . This makes the stegosystem robust in the sense that
the legitimate users do not have to worry about the adversary’s knowledge of E.

Furthermore, we assume that Bob has an oracle that tells him if Alice is active or not. This is
a strong assumption, and we make it here in order to focus on the security properties of a stego-
system. Removing it does not hurt the security of a stegosystem with respect to Eve’s detection
capability — if Bob was trying to extract an embedded message from the covertext when Alice is
inactive, he would merely obtain garbage. As discussed in Remark 5 below, the oracle does not
open the way to trivial stegosystems, and in Section 4, Example 2, we demonstrate how to remove
this assumption.

From the point of view of Eve, who does not know if Alice is active, the two cases above look
similar: she observes data that is sent from Alice to Bob over the public channel. If Alice is not active,
the data was generated according to PC and if she is active, it was generated from PS . These are the
two explanations that Eve has for the observation, which faces her with a problem of hypothesis
testing [2,3].
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We quantify the security of the stegosystem in terms of the relative entropyD(PC‖PS) between PC
and PS .

Definition 1. Fix a covertext distribution C and a message space E . A pair of algorithms (F , G) is
called a stegosystem if there exist random variables K and R as described above such that for all
random variables E over E with H(E)>0, it holds I(Ê;E)>0.

Moreover, a stegosystem is called perfectly secure (against passive adversaries) if

D(PC‖PS) = 0;

and a stegosystem is called �-secure (against passive adversaries) if

D(PC‖PS) � �.

This model describes a stegosystem for one-time use, where Alice is always active or not. If Alice
sends multiple dependent messages to Bob and at least one of them contains hidden information,
she is considered to be active at all times and S consists of the concatenation of all her messages.

Some remarks on the definition.
(1) In a perfectly secure stegosystem, Eve cannot distinguish the two distributions and has no in-

formation at all about the presence of an embedded message. This parallels Shannon’s notion
of perfect secrecy for cryptosystems [5].

(2) The condition in the definition of a stegosystem, I(Ê;E)>0, implies that a stegosystem is “use-
ful” in the sense that Bob obtains at least some information about E. We chose not to model
“useless” stegosystems.

(3) Our model differs from the scenario sometimes considered for steganography, where Alice uses a
covertext that is known to Eve and modifies it for embedding hidden information. Such schemes
can only offer protection against adversaries with limited capability of comparing the modified
stegotext to the covertext (otherwise, they are trivially breakable). For instance, this applies to
the popular use of steganography on visual images, where a stegoimage may be perceptually
indistinguishable from the coverimage for humans, but not for an algorithm with access to the
coverimage.

(4) It would be natural to require explicitly that a perfectly secure stegosystem provides also perfect
secrecy for E in the sense of Shannon [5] by demanding that S and E are statistically indepen-
dent (as, for example, in the definition of Mittelholzer [6]). However, this is not necessary since
we required the embedding algorithm to work without knowledge of the distribution PE . This
guarantees perfect secrecy for E against Eve as follows. Fix a covertext distribution and an
embedding function F . For any distribution of E, algorithm F must produce S with the same
distribution as C . Since a concrete message value corresponds to a particular distribution of E
but the distribution of S is the same for all values, S is statistically independent from E.

Analogously, we do not impose a secrecy constraint on E for non-perfect stegosystems. The
implications for the secrecy of E are more involved and not investigated here; however, it is easy
to construct stegosystems with perfect secrecy also in this case (see the stegosystem for general
distributions in Section 4).
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(5) In our definition of a stegosystem, Bob knows from an oracle if Alice is active or not. Hence,
one might be tempted to construct the following “perfect” stegosystem that exploits this knowl-
edge for transmitting hidden information without using a shared secret key. W.l.o.g. consider an
embedding algorithm F consisting of an ideal source encoder that manages to compress some
message E1 into stegotext S1, which consists of independent and uniformly random bits. If the
covertextC is a sequence of independent and uniformly random bits of the same length, the two
distributions are the same and Eve cannot distinguish a compressed message from covertext. In
this case, Bob obtains E1 without any secret key. His advantage to distinguish stegotext from
covertext stems entirely from the oracle, and one might conclude that assuming such an oracle
allows for trivial stegosystems.

However, this conclusion does not hold because the described stegosystem is not perfectly
secure according to Definition 1. Recall that F is deterministic and is required to work for any
message distribution, so it must work also for some E2 with strictly less entropy than E1 — for
instance, when Eve has partial knowledge of the message. Let S2 = F(E2). Then it is intuitively
clear that the deterministic F will not output enough random bits and the distributions of C
and S2 are different.

Formally, this can be seen by expanding the mutual information between the message and the
stegotext in two ways. Since the encoder is deterministic and perfect, we haveH(S1) = H(E1) from
expanding I(E1; S1). The same encoder applied to E2 also uniquely determines S2, and therefore
H(S2) = H(E2)− H(E2|S2)�H(E2) from expanding I(E2; S2). Hence, H(S2) � H(E2)<H(E1) =
H(S1) by the assumption on E2, which implies that the distributions of S1 and S2 differ and this
contradicts the assumption that the stegosystem is perfect.

2.3. Stochastic processes

It is often appropriate to model an information source as a stochastic process. For example,
the covertext may be generated from independent repetitions of the same experiment. In the model
above, Eve observes the complete covertext, but it also makes sense to consider a restricted adversary
who has only access to a subset of a long covertext sequence.

Let all random variables in the model above be extended to stochastic processes and let n denote
the number of repetitions. Assume that the covertext is generated by a stationary information source.
Hence, the normalized relative entropy between the covertext and stegotext processes determines
the security in cases where Eve is restricted to see a finite part of the covertext sequence.

Definition 2. A stegosystem for stochastic processes with stationary covertext is called perfectly
secure on average (against passive adversaries) whenever

lim
n→∞

1
n
D(PC‖PS) = 0.

Analogously, a stegosystem for stochastic processes is called �-secure on average (against passive
adversaries) whenever

lim
n→∞

1
n
D(PC‖PS) � �.
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Notice that Alice is still either active or inactive during the entire experiment, and the stegotext
distribution will not be ergodic in general.

3. Detection performance

This section analyzes Eve’s capabilities of detecting an embedded message. Basic bounds on her
performance are obtained from the theory of hypothesis testing. A brief review of hypothesis testing
is given first, following Blahut [2] (see also Maurer [7]).

3.1. Hypothesis testing

Hypothesis testing is the task of deciding which one of two hypothesesH0 orH1 is the true expla-
nation for an observed measurement Q. There are two plausible probability distributions, denoted
by PQ0 and PQ1 , over the space Q of possible measurements. If H0 is true, then Q was generated
according to PQ0 , and ifH1 is true, thenQ was generated according to PQ1 . A decision rule is a binary
partition of Q that assigns one of the two hypotheses to each possible measurement q∈Q. The two
errors that can be made in a decision are called a type I error for accepting hypothesis H1 when H0
is actually true and a type II error for acceptingH0 whenH1 is true. The probability of a type I error
is denoted by �, the probability of a type II error by �.

A basic property in hypothesis testing is that deterministic processing cannot increase the relative
entropy between two distributions. For any function f :Q→T , if T0 = f(Q0) and T1 = f(Q1), then
D(PT0‖PT1) � D(PQ0‖PQ1).

Let d(�,�) denote the binary relative entropy of two distributions with parameters (�, 1 − �) and
(1 − �,�), respectively, d(�,�) = � log �

1−� + (1 − �) log 1−�
� .

Because deciding betweenH0 andH1 is a special form of processing by a binary function, the type I
and type II error probabilities � and � satisfy d(�,�) � D(PQ0‖PQ1). This inequality can be used as
follows: Suppose that D(PQ0‖PQ1) < ∞ and that an upper bound �∗ on the type I error probability
is given. Then the above inequality yields a lower bound on the type II error probability �. For
example, �∗ = 0 implies that � � 2−D(PQ0‖PQ1 ).

3.2. Bounds on the detection performance

Consider Eve’s decision process for detecting a hidden message in a stegosystem as a hypothesis
testing problem. Any particular decision rule is a binary partition (C0, C1) of the set C of possible
covertexts. She decides that Alice is active if and only if the observed message c is contained in C1.
Ideally, she would always detect a hidden message. (But this occurs only if Alice chooses an encod-
ing such that valid covertexts and stegotexts are disjoint.) If Eve fails to detect that she observed
stegotext S , she makes a type II error; its probability is denoted by �.

The opposite error, which usually receives less attention, is the type I error: Eve decides that
Alice sent stegotext although it was a legitimate cover message C; its probability is denoted by �.
An important special case is that Eve makes no type I error and never accuses Alice of sending
hidden information when she is inactive (� = 0). Such a restriction might be imposed on Eve by
external mechanisms, justified by the desire to protect innocent users.
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The deterministic processing property bounds the detection performance achievable by Eve. The
following result is immediate from the discussion above.

Theorem 1. In a stegosystem that is �-secure against passive adversaries, the probability � that the
adversary does not detect the presence of the embedded message and the probability� that the adversary
falsely announces the presence of an embedded message satisfy

d(�,�) � �.

In particular, if � = 0, then

� � 2−�.

In a perfectly secure system, we have D(PC‖PS) = 0 and therefore PC = PS ; thus, the observed
message does not give Eve any information about whether Alice is active or not.

4. Secure stegosystems

According to our model, we obtain a secure stegosystem whenever the stegotext distribution is
close to the covertext distribution for an observer with no knowledge of the secret key. The embed-
ding function depends crucially on the covertext distribution. We assume in this section that the
covertext distribution is known to the users Alice and Bob, and describe two basic stegosystems.

4.1. Uniform covertext distributions

The following is a simple example of a perfectly secure stegosystem.

Example 1. In the prisoner’s scenario, suppose Alice and Bob both have a copy of the Bible in
their cells. The adversary allows them to make a reference to any verse of the Bible in a message.
All verses are considered to occur equally likely in a conversation among prisoners and there is
a publicly known way to associate codewords with Bible verses. W.l.o.g. let the set of verses be
{v0, . . . , vm−1}. Furthermore, Alice and Bob share a uniformly random secret key K in Zm. If Alice
is active, she may embed a message E ∈ Zm by mentioning S = v(K+E) mod m. Bob obtains E from
S and K easily. Since we assume the distribution of a verse reference to be uniform, covertext and
stegotext distributions are equal.

Likewise, the one-time pad is a perfectly secure stegosystem whenever the covertext consists of
uniformly random bits. Assuming such a covertext would be rather unrealistic, but we describe it
here briefly in order to illustrate the model.

Example 2. Assume the covertext C is a uniformly distributed n-bit string for some positive n and
let Alice and Bob share an n-bit key K with uniform distribution. The embedding function (if Alice
is active) consists of applying bitwise XOR to the n-bit message E and K , thus S = E ⊕ K ; Bob can
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decode this by computing Ê = S ⊕ K . The resulting stegotext S is uniformly distributed in the set
of n-bit strings and therefore D(PC‖PS) = 0.

We may remove the assumption that Bob knows if Alice is active as follows. Let the embedded
message be k < n bits long and take a binary linear code with k information bits and block length n.
Then Alice uses the message to select a codeword and embeds it in place of E using the one-time
pad stegosystem. Bob checks if the vector extracted from the one-time pad is a codeword. If yes, he
concludes that Alice is active and decodes it to obtain the embedded message.

Incidentally, the one-time pad stegosystem is equivalent to the basic scheme of visual cryptogra-
phy [8]. This technique hides a monochrome picture by splitting it into two random layers of dots.
When these are superimposed, the picture appears. Using a slight modification of the basic scheme,
it is also possible to produce two innocent-looking pictures such that both of them together reveal
a hidden embedded message that is perfectly secure against an observer who has only one picture.
Hence, visual cryptography is an example of a perfectly secure stegosystem.

4.2. General distributions

We now describe a system that embeds a one-bit message for arbitrary covertext distributions.
The extension to larger message spaces is straightforward and omitted.

Example 3. Given a covertext C , Alice constructs the embedding function from a binary partition
of the covertext space C such that both parts are assigned approximately the same probability under
PC . In other words, let

C0 = arg min
C′⊆C

∣∣∣∣
∑
c∈C′

PC(c)−
∑
c 	∈C′

PC(c)

∣∣∣∣ and C1 = C\C0.

Alice and Bob share a uniformly distributed one-bit secret key K . Define C0 to be the random
variable with alphabet C0 and distribution PC0 equal to the conditional distribution PC|C∈C0 and
define C1 similarly on C1. Then Alice computes the stegotext to embed a message E ∈ {0, 1} as

S = CE⊕K.

Bob can decode the message because he knows that E = 0 if and only if S∈CK . Note that the
embedding provides perfect secrecy for E.

Theorem 2. The one-bit stegosystem in Example 3 has security �2/ ln 2 against passive adversaries for
� = Pr[C∈C0] − Pr[C∈C1].
Proof. We show only the case � > 0. It is straightforward but tedious to verify that

PS(c) =
{
PC(c)/(1 + �) if c∈C0,
PC(c)/(1 − �) if c∈C1.
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It follows that

D(PC‖PS) =
∑
c∈C

PC(c) log
PC(c)

PS(c)

=
∑
c∈C0

PC(c) log(1 + �)+
∑
c∈C1

PC(c) log(1 − �)

= 1 + �
2

· log(1 + �)+ 1 − �
2

· log(1 − �)

� 1 + �
2

· �

ln 2
+ 1 − �

2
· −�

ln 2
= �2/ ln 2

using the fact that log(1 + x) � x/ ln 2. �

In general, determining the optimal embedding function from a covertext distribution is an NP-
hard combinatorial optimization problem. For instance, if we find an efficient embedding algorithm
for the above one-bit stegosystem that achieves perfect security whenever possible, we have solved
the NP-complete PARTITION problem [9].

5. Universal stegosystems

The stegosystems described above require that the covertext distribution is known to its users.
This seems not realistic for many applications. In this section, we describe a method for obtaining
a universal stegosystem where such knowledge is not needed. It works for a covertext signal that is
produced by a sequence of independent repetitions of the same experiment. Alice applies a universal
data compression scheme to compute an approximation of the covertext distribution. She then pro-
duces stegotext with the approximate distribution of the covertext from her own randomness and
embeds a message into the stegotext using the method of the one-time pad. Eve may have complete
knowledge of the covertext distribution, but as long as she is restricted to observe only a finite part
of the covertext sequence, this stegosystem achieves perfect average security asymptotically.

There are many practical universal data compression algorithms [10], and most encoding meth-
ods for perceptual data rely on them in some form. It is conceivable to combine them with our
universal stegosystem for embedding messages in perceptual coverdata such as audio or video.

5.1. The method of types

One of the fundamental concepts of information theory is the method of types [11,12]. It leads to
simple proofs for the asymptotic equipartition property (AEP ) and many other important results.
The AEP states that the set of possible outcomes of n independent, identically distributed real-
izations of a random variable X can be divided into a typical set and a non-typical set, and that
the probability of the typical set approaches 1 with n → ∞. Furthermore, all typical sequences are
almost equally likely and the probability of a typical sequence is close to 2−nH(X ).
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Let xn be a sequence of n symbols from X . The type or empirical probability distribution Uxn of
xn is the mapping that specifies the relative proportion of occurrences of each symbol x0 ∈ X in xn,
i.e., Uxn(x0) = Nx0 (x

n)

n , where Nx0(x
n) is the number of times that x0 occurs in the sequence xn. The

set of types with denominator n is denoted by Un and for U ∈ Un, the type class {xn ∈ X n : Uxn = U }
is denoted by T (U ).

The following standard result [3,11] summarizes the basic properties of types.

Lemma 3. Let X n = X1, . . . ,Xn be a sequence of n independent and identically distributed random
variables with distribution PX and alphabet X and let Un be the set of types. Then
(1) The number of types with denominator n is at most polynomial in n, more particularly |Un| �

(n+ 1)|X |.
(2) The probability of a sequence xn depends only on its type and is given by PX n(x

n) =
2−n(H(Uxn)+D(Uxn‖PX )).

(3) For any U ∈ Un, the size of the type class T (U ) is on the order of 2nH(U ).More precisely,

1
(n+ 1)|X | 2

nH(U ) � |T (U )| � 2nH(U ).

(4) For any U ∈ Un, the probability of the type class T (U ) is approximately 2−nD(U‖PX ). More
precisely,

1
(n+ 1)|X | 2

−nD(U‖PX ) � Pr[X n ∈ T (U )] � 2−nD(U‖PX ).

5.2. A universal data compression scheme

A universal coding scheme (E , D) for a memoryless source X works as follows. Fix a rate � <
log |X | and let �n = � − |X | log(n+1)

n . Define a set of sequences An = {xn ∈ X n : H(Uxn) � �n}. The
block code is given by an enumeration A = {1, . . . , |A|} of the elements of An. The encoder E maps a
sequence X n to a codeword in A if the entropy of the type of X n does not exceed �n and to a default
value� otherwise. Let Z denote the output of E . Given a value S ∈ A ∪ {�}, the decoder D returns
the appropriate sequence in An if S /= � or a default sequence xn0 otherwise.

Lemma 3 implies that |An| � 2n� and therefore �n�� bits are sufficient to encode all xn ∈ An [3,11].
Moreover, if H(X ) < � then values outside An occur only with exponentially small probability and
the error probability p(n)e = PZ(�) satisfies

p(n)e � (n+ 1)|X |2−nminU :H(U )>�n D(U‖PX ). (1)

The following observation is needed below. Write

H(X n) = H(X nZ ) (2)

= PZ(�)H(X
nZ |Z = �)+ (

1 − PZ(�)
)
H(X nZ |Z /= �) (3)

� PZ(�)H(X
n)+ (

1 − PZ(�)
)(
H(Z |Z /= �)+ H(X n|Z ,Z /= �)

)
(4)

� PZ(�)H(X
n)+ H(Z |Z /= �), (5)
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where (2) follows because Z is determined uniquely by X n, (3) follows from rewriting, (4) holds
because Z is uniquely determined by X n and by rewriting, and (5) follows because codewords
Z /= � can be decoded uniquely. Rewriting this as

H(Z |Z /= �) � nH(X )
(
1 − p(n)e

)
, (6)

we see that the codeword Z carries almost all information of X n.

5.3. A universal stegosystem

Suppose the covertext, which is given as input to Alice, consists of n independent realizations of
a random variable X . Our universal stegosystem applies the above data compression scheme to the
covertext. If Alice is active, she generates stegotext containing hidden information using the derived
encoder and her private random source.

More precisely, given � > H(X ) and n, F maps the incoming covertext X n to its encoding
Z = E(X n). W.l.o.g. assume the output of the encoder is a binary m-bit string for m = �log |A|�
(or the special symbol �) and the shared key K is a uniformly random �-bit string with ��m;
furthermore, let the message E to be embedded be an �-bit string and let Alice’s random source R
generate uniformly random (m− �)-bit strings.

If E outputs Z = �, Alice sends S = X n and no message is embedded. Otherwise, she computes
the m-bit string

T = (E ⊕ K)‖R,

where ‖ denotes the concatenation of bit strings, and sends S = D(T ).
Bob extracts the embedded message from the received stegotext S as follows. If E(S) = �, he

declares a transmission failure and outputs a default value. Otherwise, he outputs

Ê = E(S )[1,...,�] ⊕ K ,

where Z[1,...,�] stands for the prefix of length � of a binary string Z .
Note that this stegosystem relies on Alice’s private random source in a crucial way.

Theorem 4. Let the covertext consist of a sequence (X1, . . . ,Xn) of n independently repeated random
variables with the same distribution PX for n → ∞. Then given any �>0, the algorithm above im-
plements a universal stegosystem that is �-secure on average against passive adversaries and hides an
�-bit message with ��nH(X ), for n sufficiently large.

Proof. It is easy to see that the syntactic requirements of a stegosystem are satisfied because the
embedding and extraction algorithms are deterministic. For the information transmission property,
it is easy to see from the given universal coding scheme (E , D) that, whenever E(S) /= �, we have

Ê = E(S)[1,...,�] ⊕ K = E(D(T ))[1,...,�] ⊕ K = T[1,...,�] ⊕ K = E.

But this happens with overwhelming probability as shown below. Hence, I(Ê;E)�H(E|E(S) /=�)
>0 as required. It remains to show that the stegosystem is �-secure on average.

Let � = H(X )+ �/2. Then

m = �n�� �
⌈
nH(X )+ n�/2⌉

. (7)
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Define a binary random variable V as follows:

V =
{

0 if Z /= �,
1 if Z = �.

We now bound the relative entropy between covertext and stegotext. It is well-known that condi-
tioning on derived information (side information, which has the same distribution in both cases) can
only increase the discrimination between two distributions. Namely, given two random variables
Q0 and Q1 over Q, and a function f : Q → V such that the random variables f(Q0) and f(Q1) have
the same distribution PV , it holds D(PQ0‖PQ1) � D(PQ0|V ‖PQ1|V ) [2, Theorem. 4.3.6]. Hence,

D(PC‖PS) � D(PC|V ‖PS|V ) (8)

= PV (0)D(PC|V =0‖PS|V =0)+ PV (1)D(PC|V =1‖PS|V =1) (9)

� D(PC|V =0‖PS|V =0) (10)

� D(PZ |V =0‖PT ) (11)

= m− H(Z |V = 0), (12)

where (9) follows from the definition of conditional relative entropy. The second term in (9) vanish-
es because the covertext and stegotext distributions are the same whenever V = 1, and PV (0) � 1,
hence we obtain (10). Because C and S in the case V = 0 are obtained from Z and T , line (11) fol-
lows from the deterministic processing property. Since T is uniformly distributed, the next step (12)
follows from the fact that for any random variable X with alphabet X , if PU denotes the uniform
distribution over X , then H(X )+ D(PX ‖PU ) = log |X |.

Using the fact that the events V = 0 and Z /= � are the same, insert (6) and (7) into (12) to obtain

1
n
D(PC‖PS) � 1

n

(⌈
nH(X )+ n�/2⌉ − nH(X )(1 − p(n)e

))

� 1
n

(
p(n)e nH(X )+ n�/2 + 1

)

= p(n)e H(X )+ �/2 + 1
n
.

Since �n approaches � from below and � > H(X ), it follows that for all sufficiently large n, also
�n > H(X ) and the value minU :H(U )>�n D(U‖PX ) in the exponent in (1) is strictly positive. This im-
plies that the last expression is smaller than � for all sufficiently large n and that the stegosystem is
indeed �-secure on average. �

6. Discussion

6.1. Limitations

The adequacy of our information-theoretic model for real-world steganographic applications
depends crucially on the assumption that there is a probabilistic model of the covertext. Moreover,
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the users of a stegosystem need at least some way to access or to sample the covertext distri-
bution.

The use of probabilistic models is common practice in engineering today, but their application
to steganography is of a somewhat different nature, since the security of a stegosystem cannot be
demonstrated as easily as the performance of a data compression algorithm, for example. A secure
stegosystem requires that the users and the adversary share the same probabilistic model of the
covertext. As Example 2 shows, if the covertext distribution consists of uniformly random bits,
then encrypting a message under a one-time pad results in a perfectly secure stegosystem accord-
ing to our notion of security. But no reasonable warden would allow the prisoners to exchange
randomly looking messages in the Prisoners’ Problem! Thus, the validity of a formal treatment of
steganography is determined by the accuracy of a probabilistic model for the real world.

Assuming the existence of a covertext distribution seems to render our model somewhat unreal-
istic for the practical purposes of steganography. But what are the alternatives? Should we rather
study the perception and detection capabilities of the human cognition since most coverdata (im-
ages, text, and sound) is ultimately addressed to humans? Viewed in this way, steganography could
fall entirely into the realms of image, language, and audio processing. However, it seems that an
information-theoretic model, or any other formal approach, is more useful for deriving statements
about the security of steganography schemes — and a formal security notion is one of the main
reasons for introducing a mathematical model of steganography.

6.2. Related work

Most existing formal models for information hiding have not addressed steganography but the
more general problem of hiding information with active adversaries in watermarking and fingerprint-
ing applications. This is different from steganography because the existence of a hidden message is
known publicly.

Since most objects to be protected by watermarking and fingerprinting consist of audio, image,
or video data, these domains have received the most attention so far. A large number of hiding
techniques and domain-specific models have been developed for robust, imperceptible information
hiding [13]. Ettinger [14] models active adversaries with game-theoretic techniques.

We are aware of only two related information-theoretic models for steganography.
Zöllner et al. [15] define steganography using information-theoretic methods and mention that

breaking a steganographic system means detecting the use of steganography to embed a mes-
sage. However, they formally require only that knowledge of the stegotext does not decrease the
uncertainty about an embedded message, analogous to Shannon’s notion of perfect secrecy for
cryptosystems.

Mittelholzer [6] defines steganography (with a passive adversary) and watermarking (with an ac-
tive adversary) using an information-theoretic model. A stegosystem is required to provide perfect
secrecy for the embedded message in sense of Shannon, and an encoder constraint is imposed in
terms of a distortion measure between covertext and stegotext. The expected mean squared error
is proposed as a possible distortion measure.

Although the security conditions from both models may be necessary, they are not sufficient
to guarantee undetectable communication, as can be seen from the following insecure stego-
system.
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Example 4. Let the covertext consist of an m-bit string with even parity that is otherwise uniformly
random (m�2). Let a ciphertext bit be computed as the XOR of a one-bit message and a one-bit
random secret key; this is a random bit. Then the first bit of the covertext is replaced by the ciphertext
bit and the last bit is adjusted such that the parity of the resulting stegotext is odd.

Clearly, the scheme provides perfect secrecy for the message. The squared error distortion be-
tween covertext and stegotext is 1/m and vanishes as m→∞. Yet, an adversary can easily detect
the presence of an embedded message with certainty. In the sense of Definition 1, such a scheme is
completely insecure since the discrimination is infinite.

Another related work is a paper of Maurer [7] on unconditionally secure authentication in cryp-
tography, which demonstrates the generality of the hypothesis testing approach.

7. Conclusion

The approach of this paper is to view steganography with a passive adversary as a problem
of hypothesis testing because the adversary succeeds if she merely detects the presence of hidden
information.

Simmons’ original formulation of the Prisoners’ Problem includes explicit authentication, that
is, the secret key K shared by Alice and Bob is partially used for authenticating Alice’s messages.
The reason is that Alice and Bob want to protect themselves from the adversary and from
malicious couriers (and they are allowed to do so), which may give rise to a subliminal
channel in the authentication scheme. It would be interesting to extend our model for this
scenario.

Another possible extension, taken up by Katzenbeisser and Petitcolas [17] and by Hopper, et al.
[16], is to model steganography with the complexity-theoretic security notions of modern cryptogra-
phy, and to define a secure stegosystem such that the stegotext is computationally indistinguishable
from the covertext.
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