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Abstract

This paper presents a mathematical definition of the ‘‘probability-weighted amount of information’’

(PWI), a measure of specificity of terms in documents that is based on an information-theoretic view of

retrieval events. The proposed PWI is expressed as a product of the occurrence probabilities of terms and

their amounts of information, and corresponds well with the conventional term frequency–inverse docu-
ment frequency measures that are commonly used in today’s information retrieval systems. The mathe-

matical definition of the PWI is shown, together with some illustrative examples of the calculation.
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Keywords: tf–idf; Term weighting theories; Information theory; Text categorization

1. Introduction

‘‘Term frequency–inverse document frequency’’ (tf–idf) is one of the most commonly used term
weighting schemes in today’s information retrieval systems. Despite its popularity, tf–idf has often
been considered an empirical method, specifically from a probabilistic point of view, with many
possible variations. In this paper, we first revisit the classical, but nevertheless important, question
‘What is the mathematical implication of tf–idf ?’ in an information-theoretic framework.

In the literature, many studies relate to the problem of quantifying the significance of terms (for
example, see Baeza-Yates & Ribeiro-Neto, 1988; Kageura & Umino, 1996; Manning & Scht€uuze,
1999). In the information retrieval field, term weights are mainly used to represent the usefulness
of terms in the retrieval process; for example, frequency (Luhn, 1957), signal-to-noise ratio
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(Dennis, 1964; Salton & McGill, 1983), idf (Sparck-Jones, 1972), relevance weighting methods
(Robertson & Sparck-Jones, 1976) and tf–idf and its variations (Salton & Buckley, 1988).

Other relevant fields include automatic term extraction in computational terminology, and also
feature subset selection in machine learning. Approaches from computational terminology mainly
concern the problem of determining the specificity of a term within a given document set, the
purpose of which is to construct automatically a basic terminology dictionary from a corpus of a
specific subject. Examples of commonly used statistical measures in term extraction include chi-
squared statistics (Nagao, Mizutani, & Ikeda, 1976), pairwise mutual information (Church &
Hanks, 1990), Dice coefficient (Smadja, 1993), log-likelihood ratio (Dunning, 1993) and Jaccard
similarity measure (Grefenstette, 1994).

On the other hand, approaches from the machine learning side mainly concern the problem of
reducing the dimension of the features of the documents so that subsequent learning algorithms
can be applied effectively, sometimes avoiding the over-fitting problem. In machine learning, such
statistical measures as document frequency (Yang & Pedersen, 1997), information gain (Lewis &
Ringuette, 1994; Yang & Liu, 1999), chi-squared statistics (Wiener, Pedersen, & Weighend, 1995),
odds ratio (Mladeni�cc, 1998) and expected cross entropy (Koller & Sahami, 1996, 1997) are used.
There are also a great number of comparative studies in each field, from both theoretical and
empirical points of view.

The present research is motivated by the assumptions that the long history of such a variety of
measures is in itself evidence of the unfeasibility of determining the superiority of specific mea-
sures. It also suggests that the issue is a problem of statistical parameter estimation rather than
simply a comparison of the performance of different measures. Following these assumptions, in
this paper we try to clarify the statistical model on which the different measures are commonly
based. We expect that such an investigation will be useful not only for comparing the performance
of different measures, but also for developing a better method of selecting and verifying a sta-
tistical model in connection with conventional statistical language modelling studies.

The conventional measures of term significance are basically derived from a statistical table of
co-occurrence frequencies, co-occurrences of terms either with documents in which they occur, or
with other terms with which they co-occur in the same documents (or text segments). The majority
of the existing probabilistic approaches initially calculate the probabilities of terms using a sta-
tistical table, and then use these values to estimate certain statistical values such as the conditional
probabilities of documents, or the information gain of a specific term, depending on their ob-
jectives. However, for some heuristic measures, such a statistical calculation is not clearly defined:
they are tf–idf and its variations. The problem becomes one of characterizing these measures
within the same probabilistic framework.

Based on this background, we show an information-theoretic interpretation of tf–idf in this
paper. By its definition, tf–idf is a metric that multiplies the two quantities tf and idf. Here, tf
provides a direct estimation of the occurrence probability of a term when it is normalized by the
total frequency in the document, or the document collection, depending on the scope of the
calculation. Note that the normalization factor is common for all the terms in the scope, and thus
can be omitted. On the other hand, idf can be interpreted as ‘the amount of information’ in
conventional information theory (Brookes, 1972; Wong & Yao, 1992), given as the log of the
inverse probability (Cover & Thomas, 1991). Bearing these in mind, the principal idea of this
paper is that, given a component of textual data such as a document or a term, the significance of
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the component is expressed as a product of the probability that it occurs and the amount of
information that it represents. Although conventional information theory does not deal explicitly
with such a quantity (but uses one in the calculation of entropy, which is generally defined as the
expected amount of information), we have postulated that the current popularity of the tf–idf
measure suggests the usefulness of such a quantity as a measure of significance (Aizawa, 2000).

The remainder of this paper reports some of the preliminary results of our attempt to expand
such ideas. The subsequent sections are organized as follows. Section 2 provides a simple overview
of the conventional measures of term significance. Section 3 presents the information-theoretic
interpretation of tf–idf with its extended notion of the probability-weighted amount of infor-
mation (PWI). Section 4 deals with issues in selecting probabilistic models. Section 5 shows ex-
amples of the calculation of tf–idf and the newly proposed PWI using a large-scale document
collection. Section 6 gives our conclusions.

2. A brief look at conventional statistical measures

2.1. Classifying the conventional measures

In this section, we provide two different views of classifying the conventional measures of term
significance. Our first categorization is based on the ways that these measures are used.

(1) Measures for term selection: Used for selecting terms that are important in a given document
set. Examples include the selection of query terms in relevance feedback and feature term se-
lection in automatic text categorization.

(2) Measures for term weighting:Used for measuring the relevance of a term within a specific doc-
ument. Most of the term weighting schemes in information retrieval are categorized into this
group.

Such a categorization is motivated by Robertson (1990, p. 364) with the following statement: ‘‘A
term weighting formula that provides appropriate weights for use in a match function for retrieval
is not necessarily an appropriate measure for term selection in the first place’’. Although we do not
specifically focus on relevance feedback as Robertson (1990) did, we follow their definition in this
paper.

Our second categorization is based on the way that these measures are mathematically defined.

(a) Measures of popularity: Defined based on the frequencies of terms or the estimated probabil-
ities of their occurrences. These measures employ a simple assumption that frequent terms are
also significant (Luhn, 1957).

(b) Measures of specificity: Defined based on the amount of information or the entropy of terms.
These measures quantify the deviations from randomness of the occurrences of terms. Exam-
ples of such measures include pairwise mutual information (Church & Hanks, 1990), signal-
to-noise ratio (Dennis, 1964; Salton & McGill, 1983) and idf (Sparck-Jones, 1972).

(c) Measures of discrimination: Defined based on the contribution of terms to the performance
of a specified discrimination function. These measures represent the power of distinguishing
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relevant and non-relevant documents, or documents from different categories. Examples of
such measures include information gain (Lewis & Ringuette, 1994; Yang & Liu, 1999) and rel-
evance weighting (Robertson & Sparck-Jones, 1976).

(d) Measures of representation:Defined based on the product of term frequency and the inverse of
log-scaled document frequency, i.e., tf–idf and its variations (Salton & Buckley, 1988). These
measures quantify the extent of usefulness of terms in characterizing the document in which
they appear.

In conventional studies of computational linguistics, it is repeatedly pointed out that (a) a simple
frequency measure places too much emphasis on high frequency terms, while (b) specificity
measures such as pairwise mutual information allocate too much weight to low frequency terms
(for example, in Chapter 5 of Manning & Scht€uuze, 1999). The difficulty with selecting or weighting
terms lies in establishing a good balance between popularity and specificity. Both (c) and (d)
above, the measures of discrimination and representation, can be interpreted as accomplishing
such balancing in some sense, although they apply different strategies.

The difference between (c) and (d) becomes clear when considering the following situation.
Suppose a term exists that appears frequently in all the documents except one. Such a term is
useful for distinguishing the exceptional document from the others, but hardly serves as a good
index for the document without the term. Therefore, the weight of such a term regarding the
exceptional document becomes relatively high with (c) and low with (d). In information retrieval,
(c) is often associated with relevance feedback with query expansion, while (d) concerns more the
representation in the vector space model.

Table 1 summarizes the two categorization methods and corresponding examples of conven-
tional measures. Because measures for term selection and measures for term weighting are not
necessarily distinguished in the actual application of information retrieval (Robertson, 1990),
both relevance weighting and tf–idf are used in both methods.

2.2. Related theoretical studies

In the information retrieval field, measures of discrimination are closely related to the prob-
abilistic retrieval model (Robertson & Sparck-Jones, 1976). Although these measures are theo-
retically well sustained, we should note here that they still require empirical adjustment in
estimating certain probabilities. For example, ‘‘the probability that a term is present in a relevant
document’’ is required in the calculation, but such a value can be estimated using only empirical
techniques at the beginning.

Table 1

Examples of types of measures to represent the significance of terms

Measures of

popularity

Measures of

specificity

Measures of

discrimination

Measures of

representation

Measures for term

selection

Total term frequency idf signal-to-noise

ratio

Information gain rel-

evance weighting

ðTotal term
frequencyÞ � idf

Measures for term

weighting

Within-document

frequency

Pairwise mutual

information

Relevance weighting ðWithin-document

frequencyÞ � idf
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Measures of representation, on the other hand, are generally associated with the vector-space
retrieval model in information retrieval (Salton & McGill, 1983). Even though tf–idf tends to be
considered as a convenient heuristic, its effectiveness has been justified through the long history of
information retrieval. Note also that numerous variants of tf–idf exist, and selecting an appro-
priate formula from these variants requires some skill when a new data set is studied.

There are many theoretical studies concerning the mathematical interpretation of idf. For
example, Croft and Harper (1979) derived an equation for idf in the context of the binary in-
dependence model. Wong and Yao (1992) compared idf with signal-to-noise ratio and showed
that both measures can be explained using Shannon’s entropy. Church and Gale (1999) examined
the gap between observed and predicted idf values. Through empirical studies, they showed that
larger idf values mean larger deviations from Poisson and therefore more ‘context’ regarding the
terms. Greiff (1998) argued the relationship between pairwise mutual information and idf, from
which the efficacy of idf was theoretically justified. Note that these theoretical or experimental
results are targeted to idf, not tf–idf.

As for the mathematical consideration of tf–idf, Joachims (1997) investigated tf–idf with a
probabilistic framework, and proposed a new measure, called PrTFIDF, for text categorization.
In their formulation, PrTFIDF was defined as the posterior probability of each category using the
retrieval with probability indexing (RPI) model proposed by Fuhr (1989). Note that PrTFIDF is
similar to, but does not exactly correspond to, tf–idf, and thus their formulation does not directly
explain tf–idf in a probabilistic framework. Recently, Hiemstra (2000) formulated tf–idf as the
conditional probability of each document for given query terms. Their explanation used two
distributions: one defined using document frequencies of terms, and the other using within-doc-
ument term frequencies. Although our approach in this paper is based on a different starting
point, we used a similar combination of distributions in our experiment.

Although the probabilistic and vector-space models have long been conceived as alternatives, a
few studies have mentioned the duality of the two models. Robertson (1994), considering the
symmetric representation of queries and documents in information retrieval systems, discussed the
potential advantages of, and the objections to, the dual models. Amati and Van Rijsbergen (1998)
formulated a duality theory in which the probabilistic and vector-space models were defined as
two probabilistic models, each the dual of the other. Because their view of the problem matches
well with our formulation, we will refer to their work again.

3. Extending the notion of tf–idf

3.1. Basic formulae of information theory

We first introduce some of the basic formulae of information theory (Cover & Thomas, 1991)
that we use in our theoretical development. Let xi and yj be two distinct events from finite event
spaces X and Y. Assume a joint probability distribution Pðxi; yjÞ is given for xi 2 X and yj 2 Y .
Using Pðxi; yjÞ and the definition of the marginal distribution, it immediately follows that the
probability that xi is observed is

P ðxiÞ ¼
X
yj2Y

P ðxi; yjÞ; ð1Þ
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and the probability that yj is observed is

P ðyjÞ ¼
X
xi2X

Pðxi; yjÞ: ð2Þ

The above equations simply mean that if xi is observed, it is always observed with some yi 2 Y and
vice versa.

The basic quantity in information theory is the amount of information, which is defined as the
log of the inverse of the probability, i.e., logð1=P ðxiÞÞ ¼ � log P ðxiÞ. Now, let X and Y be random
variables representing distinct events in X and Y, which occur with certain probabilities. The
amount of information expected for X or Y is called the self-entropy and is denoted as HðXÞ or
HðYÞ in this paper. By the general definition of information theory, the self-entropy of X is
calculated as

HðXÞ ¼ �
X
xi2X

PðxiÞ log P ðxiÞ; ð3Þ

and the self-entropy of Y is calculated as

HðYÞ ¼ �
X
yj2Y

PðyjÞ log P ðyjÞ: ð4Þ

The self-entropy expresses the degree of uncertainty about which an event will occur in a future
observation. Naturally, the amount becomes higher for larger numbers of events with equally
likely probabilities.

The pairwise mutual information between xi and yj is the difference between the amounts of
information based on (i) the actual joint probability, P ðxi; yjÞ, and (ii) the expected probability
when the independence of the two events are assumed, P ðxiÞP ðyjÞ. Denoting the pairwise mutual
information as Mðxi; yjÞ, the definition is given as

Mðxi; yjÞ ¼ log
Pðxi; yjÞ
P ðxiÞP ðyjÞ

: ð5Þ

The pairwise mutual information is sometimes used as a measure for extracting collocations or
other lexical tiers in computational linguistics (for example, Church & Hanks, 1990).

On the other hand, the expected mutual information, or simply the mutual information between
X and Y, represents the reduction of uncertainty about either X or Y when the other is known.
Denoting the mutual information IðX;YÞ, the definition is given as

IðX;YÞ ¼
X
xi2X

X
yj2Y

Pðxi; yjÞMðxi; yjÞ ¼
X
xi2X

X
yj2Y

P ðxi; yjÞ log
P ðxi; yjÞ
PðxiÞPðyjÞ

¼ HðXÞ �HðXjYÞ ¼ HðXÞ þHðYÞ �HðXYÞ: ð6Þ

The mutual information is a measure of interactions between the two random variables and is
sometimes used, in the information retrieval field, to exploit statistical dependencies between
terms (Crestani, 2000; Van Rijsbergen, Happer, & Porter, 1981). Note that by its definition, the
mutual information is symmetric in X and Y, i.e., IðX;YÞ ¼ IðY;XÞ.

The reduction of uncertainty of Y after observing a specific event xi can be expressed using the
Kullback–Leibler information, which is also used as a distance measure of two probability dis-
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tributions. The Kullback–Leibler information between PðYjxiÞ and P ðYÞ, denoted as
KðP ðYjxiÞkP ðYÞÞ in this paper, 1 is calculated as

KðPðYjxiÞkP ðYÞÞ ¼
X
yj2Y

P ðyjjxiÞ log
P ðyjjxiÞ
PðyjÞ

: ð7Þ

Similarly, the reduction of uncertainty of X after observing a specific event yj is given by the
Kullback–Leibler information between P ðXjyjÞ and PðXÞ:

KðPðXjyjÞkP ðXÞÞ ¼
X
xi2X

PðxijyjÞ log
P ðxijyjÞ
P ðxiÞ

: ð8Þ

Applying the general property of conditional probability, P ðxi; yjÞ ¼ P ðyjjxiÞPðxiÞ ¼ PðxijyjÞP ðyjÞ,
to Eqs. (6)–(8), it is straightforward to show that the following relationships hold between the
expected mutual information and the Kullback–Leibler information:

IðX;YÞ ¼
X
xi2X

P ðxiÞKðPðYjxiÞkP ðYÞÞ ¼
X
yj2Y

PðyjÞKðPðXjyjÞkP ðXÞÞ: ð9Þ

If the occurrence of xi is totally non-informative for Y, then P ðYjxiÞ ¼ P ðYÞ and
KðP ðYjxiÞkP ðYÞÞ becomes zero. As each xi provides more information for Y, the values of
KðP ðYjxiÞkP ðYÞÞ and IðX;YÞ become greater and vice versa. The correspondence becomes
even clearer when the definition of the mutual information is rewritten as IðX;YÞ ¼
KðP ðX;YÞkPðXÞP ðYÞÞ.

3.2. An information-theoretic view of tf–idf

Based on the above definitions, we next show a possible interpretation of tf–idf in view of
conventional information theory. First, it is assumed that a document is given as an unordered set
of terms. Let D ¼ fd1; . . . ; dNg be a set of documents and W ¼ fw1; . . . ;wMg be a set of distinct
terms contained in D. The parameters N and M are the total numbers of documents and terms,
respectively. In our adaptation of a probabilistic view, we also use the notation dj for an event of
selecting a document from D. Similarly, wi is used for an event of selecting a term from W. Now,
let D and W be random variables defined over the events fd1; . . . ; dNg and fw1; . . . ;wMg, re-
spectively. Introducing the random variables, we depict a situation where a query is submitted as a
probability distribution over D, and the retrieval result is returned as a distribution over D. Our
objective here is to calculate the expected mutual information between D and W to see how well
documents are specified by the submitted queries (Fig. 1).

Assuming that all documents are equally likely candidates at the initial stage, PðdjÞ ¼ 1=N for
all dj 2 D. Then, the amount of information calculated for each document is identically given by
� logð1=NÞ. It follows that the self-entropy of random variable D is

1 In information theory, Kullback–Leibler information, or divergence, is usually denoted as D. In this paper, we use

the notation K because D is more familiar as documents in the information retrieval field.
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HðDÞ ¼ �
X
dj2D

P ðdjÞ log P ðdjÞ ¼ �N
1

N
log

1

N
¼ � log

1

N
: ð10Þ

Next, consider a situation where a subset of specified documents that contain wi ð2 W Þ is
known. Let Ni be the number of documents in the subset. Assuming that the Ni documents are
equally likely, the amount of information calculated for each document in the subset is
� logð1=NiÞ. In this case, the self-entropy of D given wi becomes

HðDjwiÞ ¼ �
X
dj2D

P ðdjjwiÞ log PðdjjwiÞ ¼ �Ni
1

Ni
log

1

Ni
¼ � log

1

Ni
: ð11Þ

As we have assumed that documents without wi occur with probability zero in the selected subset,
there is no contribution from these documents, i.e., the factor N � Ni does not appear in the above
equation.

Now, let us assume that we randomly select a query term wi from the whole document set.
Denoting the frequency of wi within dj as fij, the frequency of wi in the whole document set as fwi

and the total frequency of all terms appearing in the whole document set as F, the probability that
a specific wi is selected is

P
j fij=F ¼ fwi=F . Then, the expected mutual information is calculated as

IðD;WÞ ¼ HðDÞ � HðDjWÞ ¼
X
wi2W

PðwiÞ HðDÞð � HðDjwiÞÞ

¼
X
wi2W

fwi

F

�
� log

1

N
þ log

1

Ni

�
¼

X
wi2W

fwi

F
log

N
Ni

ð12Þ

¼
X
wi2W

X
dj2D

fij
F

log
N
Ni

: ð13Þ

Fig. 1. An illustrative situation assumed in the calculation of the expected mutual information.
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Eqs. (12) and (13) represent the sum of the products of the tf, either in the form of fwi or fij, and
the idf divided by a constant factor F. Hence, we conclude that from an information-theoretic
point of view, tf–idf can be interpreted as the quantity required for the calculation of the ex-
pected mutual information that is given by Eq. (6). The idf factor expresses the change in the
amount of information after observing a specific term, and the tf factor expresses the probability
estimation that the term is actually observed. Note that Eqs. (12) and (13) provide two different
views of tf–idf. When tf refers to fwi , tf–idf is considered as a measure for term selection, and Eq.
(12), summarizing the value over all the existing words, represents the specificity of entire
documents in the retrieval system. When tf refers to fij, tf–idf is considered as a measure for
term weighting, and Eq. (13), summarizing the value over all the combinations of terms and
documents, represents the decrease of uncertainty about the relevant documents as a result of
the submitted query.

It should be noted that in the above derivation, some restrictive assumptions are used for
consistency. First, it was assumed that the distribution of query terms is proportional to the
observed frequency of terms in the target document. Second, it was implicitly assumed that

P ðdjÞ ¼
X
W ðdjÞ

fwi

F
1

Ni
� 1

N
; ð14Þ

and

P ðwi; djÞ ¼
fwi

F
1

Ni
� fij

F
; ð15Þ

where W ðdjÞ is the set of distinct terms contained in dj. In our view, these specific assumptions
themselves represent the heuristic that tf–idf employs. The next question then becomes whether it
is possible to extend the above definition of tf–idf into a more general form by applying the same
information-theoretic framework. For this purpose, we now introduce a concept of PWI.

3.3. Definition of the probability-weighted amount of information

The PWI, as formulated in this section, is defined as the contribution of a specific co-occurrence
event to the overall entropy calculation. In the following, we use the notation ‘dI’ to represent the
PWI. From Eq. (6), the PWI value of the occurrence of wi and dj is defined as

dIðwi; djÞ ¼ P ðwi; djÞMðwi; djÞ: ð16Þ
Similarly, from Eq. (9), the PWI of the occurrence of wi is defined as

dIðwi;DÞ ¼ P ðwiÞKðPðDjwiÞ; P ðDÞÞ; ð17Þ
and the PWI of the occurrence of dj as

dIðdj;WÞ ¼ PðdjÞKðP ðWjdjÞ; PðWÞÞ: ð18Þ
In all cases, the PWI is expressed as a product of probability and information, the latter being
either pairwise mutual information, in Eq. (16), or the Kullback–Leibler information, in Eqs. (17)
and (18).

A. Aizawa / Information Processing and Management 39 (2003) 45–65 53



By definition, the mutual information of all co-occurrences is simply expressed as the sum-
mation of PWI values of each case:

IðD;WÞ ¼
X
wi2W

X
dj2D

dIðwi; djÞ ¼
X
wi2W

dIðwi;DÞ ¼
X
dj2D

dIðdj;WÞ: ð19Þ

Because both tf–idf and PWI represent quantities such that their summation over all the event
space equals the mutual information, we consider dIðwi; djÞ and dIðwi;DÞ as generalized defi-
nitions of tf–idf for term weighting and tf–idf for term selection, respectively.

The calculation is illustrated in Fig. 2. The table in the figure is similar to the contingency table
of terms and documents, except that each cell represents not the frequency of the co-occurrences
of a term and a document but the PWI value corresponding to the co-occurrence event. As is
easily seen, the cell values in the same row or column sum to the PWI of the corresponding term
or document, respectively, and the total sum of all the cells represents the mutual information
between terms and documents. Note that the above formulation maintains duality regarding
documents and terms. In addition, the definition is applicable not only to document-to-term co-
occurrences but also to term-to-term, category-to-term or document-to-descriptor co-occurrences.

As far as we know, there has not been such an extension of tf–idf in the conventional infor-
mation retrieval field. However, in computational linguistics, a few studies have dealt with
measures similar to PWI. For example, the weighted mutual information proposed by Fung and
McKeown (1996) follows the same definition as dIðwi; djÞ in Eq. (16). In their experiments to
extract translation pairs automatically from noisy parallel corpora, they showed that the pro-
posed weighted mutual information outperformed the Dice coefficient and also mutual infor-
mation.

4. Issues in selecting probabilistic models

4.1. Probabilistic models for tf–idf and its variations

One important implication of the formulation presented in the previous section is that the two
probability distributions, P ðwiÞ and P ðdjjwiÞ, shown in Fig. 1, can be determined independently. In
the figure, P ðwiÞ represents the probability distribution of the query terms submitted to the system

Fig. 2. The probability-weighted amount of information.
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(or the relevance of the query term to the query subject), while P ðdjjwiÞ is the conditional prob-
ability distribution of documents (or the posterior belief that the document is relevant to the
subject), given the query term. In other words, it can be considered that PðwiÞ serves as a model of
the user and P ðdjjwiÞ as a model of the retrieved documents.

Comparing Eq. (13) with Eq. (19), we can assume that the following estimation is used in the
classical definition of tf–idf:

[P-tfidf estimation]

bPP ðdjjwiÞ ¼
1

Ni
; bPP ðwiÞ ¼

X
dj

fij
F
: ð20Þ

We refer to such an estimation as P-tfidf in the following. As we have already seen in Eqs. (14)
and (15), the values of Pðwi; djÞ and PðdjÞ are calculated using the above estimation as bPP ðwi; djÞ �
fij=F and bPP ðdjÞ � 1=N , respectively. Then, using Eqs. (16) and (17), tf–idf for term weighting
becomes

d bIItfidfðwi; djÞ ¼ bPP ðwi; djÞ log
bPP ðdjjwiÞbPP ðdjÞ ¼ fij

F
log

N
Ni

; ð21Þ

and tf–idf for term selection becomes

d bIItfidfðwi;DÞ ¼ bPP ðwiÞ
X
dj

bPP ðdjjwiÞ log
bPP ðdjjwiÞbPP ðdjÞ ¼ fwi

F
log

N
Ni

: ð22Þ

Now, the existing variations of tf–idf adopt either (i) non-linear scaling of the tf factor, (ii)
adjustment of the idf values specifically for low frequency terms, or (iii) both (i) and (ii). The PWI
formulation allows us to interpret these heuristic variations as variations of probabilistic esti-
mation methods.

4.1.1. Variations of idf: the estimation of P(djjwi)
The self-entropy reaches a maximum when all the composing events have equal probabilities.

Therefore, in the information-theoretic view, tf–idf can be interpreted as employing a strategy in
its estimation of P ðdjjwiÞ that maximizes the entropy of D (uncertainty about the documents)
under the restriction that only the Ni documents with wi have non-zero probabilities. On the other
hand, another extreme case also exists in which the observed frequency is directly used as the
estimation for the real probability of wi:

[P-exact estimation]

bPP ðdjjwiÞ ¼
fij
fwi

; bPP ðwiÞ ¼
X
dj

fij
F
: ð23Þ

In this case, it is true without any specific assumptions that bPP ðwi; djÞ ¼ fij=F and bPP ðdjÞ ¼ fdj=F .
Then, using Eqs. (16) and (17), the PWI for term weighting becomes

d bIIexactðwi; djÞ ¼
fij
F

log
Ffij
fwifdj

; ð24Þ
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and the PWI for term selection becomes

d bIIexactðwi;DÞ ¼ fwi

F

X
j

fij
fwi

log
Ffij
fwifdj

: ð25Þ

As P-tfidf and P-exact represent two extreme cases, the optimal allocation, if any, should be
somewhere in the middle. Further, the two quantities match when the following conditions are
satisfied:

(C1)
fij
fwi

� 1

Ni
,

(C2)
fdj
F

� 1

N
.

(C2) comes from the implicit assumptions of Eq. (14). (C1) indicates that the occurrence of a term
does not differ much across the documents. (C2) means that all the documents have almost equal
sizes. For example, these conditions naturally hold when the document set under consideration is
a collection of relatively short articles. In addition, (C1) is automatically satisfied when fij is given
as a Boolean value, i.e., either 1 (occurs) or 0 (does not occur).

In conclusion, we can expect that the PWI values calculated using P-tfidf and P -exact are highly
correlated for a relatively homogeneous document set in which (C1) and (C2) are satisfied, when
idf provides a simple but robust estimate of information. On the other hand, the two values may
differ greatly for a data set composed of heterogeneous documents, when a more specific prob-
ability estimation method (for example, refer to Baayen, 2001) is required. These assumptions are
confirmed by experiments using an actual corpus in the next section.

4.1.2. Non-linear scaling of tf: the estimation of P(wi)
It is widely recognized that linear scaling in term frequency with the classical definition of tf–idf

lays too much stress on high frequency terms. Consequently, many non-linear scaling methods
exist; for example, where the tf factors are proportional to the square root of term frequency or to
the log of the frequency. Although these variations result in considerable difference in their cal-
culated results, selection of a method seems to be left to the implementer in current retrieval
systems.

The PWI formulation suggests that the tf factor in term weighting is given by the product of
PðdjjwiÞ and P ðwiÞ, the posterior probability of a document given a query term and the relevance
of the query term in the context of the retrieval task. This interpretation is somewhat contra-
dictory to the traditional view that considers the tf factor as intra-document characterization and
the idf factor as inter-document characterization (for example, summarized in Baeza-Yates &
Ribeiro-Neto, 1988). However, our interpretation seems to provide tf–idf variations with more
flexibility in that ‘terms that have appeared in the retrieved documents’ and ‘terms that will be
used in queries’ do not necessarily follow the same distribution. At the same time, this brings us
another difficulty in scaling the tf factor, as we now require some prior expectation about the
queries submitted to retrieval systems. The issue is beyond the scope of this paper and further
investigation will be required to analyse the query statistics and also to establish how the intention
of the user is reflected in the submitted query terms.
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4.2. Probabilistic models to calculate the PWI of term sequences

So far, we have considered only a single term as a submitted query. The following discussion
will show two different formulations to calculate the PWI values of documents associated with a
sequence of query terms.

Let w
 ¼ wi1 ; . . . ;wik be a sequence of k terms given to a system. The objective is to identify
documents related to w
. For notational simplicity, we denote the set of different terms in w
 as wþ

and the number of times wið2 wþÞ occurs in w
 as qi. The strategy for evaluating the relevance of
document djð2 DÞ is to calculate the PWI value of dj, given w
 (Fig. 3).

For selecting w
, two different formulations are considered:

(F1) In the first case, it is assumed that the k terms are selected from some unknown distribution.
(F2) In the second case, it is assumed that the k terms follow the same distribution as one of the

documents in D.

In case (F1), the query terms are generated independently of the existing documents. The objective
of the retrieval task is then to find the document closest to the submitted query terms. In case (F2),
on the other hand, it is assumed that the query terms originate in one of the existing documents.
The objective of the retrieval task is now to identify the document from which the submitted query
terms are most likely to have come. Of course, in actual applications, these two formulations
cannot explicitly be distinguished. Nevertheless, our formulation shows that they require different
mathematical treatments.

In case (F1), the occurrences of the k terms in w
 are mutually independent. As before, let us
assume that PðwiÞ, the probability that the query term is relevant, and P ðdjjwiÞ, the probability of

Fig. 3. An illustrative situation assumed in document retrieval or test categorization tasks.
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each document conditioned by wi, are given. Then, PðdjÞ is immediately calculated asP
wi
P ðdjjwiÞP ðwiÞ. Noting the additivity property of the amount of information for independent

events, we simply use the summation of the PWI values of dj given wi 2 w
 to measure the rele-
vance of dj:

dIðw
; djÞ ¼
X

wi1 ;...;wik

dIðwi; djÞ ¼
X
wi2wþ

qiPðwiÞPðdjjwiÞ log
P ðdjjwiÞ
P ðdjÞ

: ð26Þ

In the above equation, P ðwiÞ can be omitted if we assume that all the terms have equal proba-
bilities in the originating unknown distributions. Eq. (26) is closely related to the vector-space
model where the normalized inner product of term vectors weighted by tf–idf is used as the
similarity measure. Assuming P-exact estimation where P ðdjjwiÞ / fij, both methods entail the
same form of ‘‘summation of qifij logð�Þ with some normalization’’. The difference is in their
normalization of document sizes and also in their consideration of the amount of information in
the log terms.

On the other hand, in case (F2), the k terms are selected from some existing document dj 2 D.
This time, we assume that PðwijdjÞ, the probability of wi conditioned by dj, is given. Then, Pðw
jdjÞ
is calculated as Pðw
jdjÞ ¼

Q
wi2wþ PðwijdjÞqi , and P ðw
Þ is immediately determined by Pðw
Þ ¼P

dj2D P ðw

jdjÞPðdjÞ. Now, the PWI value between w
 and dj is calculated as

dIðw
; djÞ ¼ PðdjÞP ðw
jdjÞ log
P ðw
jdjÞ
Pðw
Þ ¼ PðdjÞ

Y
wi2wþ

PðwijdjÞqi log
P ðw
jdjÞ
P ðw
Þ : ð27Þ

Unlike the case in Eq. (26), the k terms, being assumed to come from the same distribution, are
not independent of each other, and Eq. (27) cannot be simplified further. Although we have
treated dj as an individual document in the above equation, dj can be any collection of terms
originating from the same distribution, provided that examples of the distribution include a subset
of relevant documents, or documents from the same category. In the last case, Eq. (27) has a clear
correspondence with the naive Bayesian method popularly used in conventional text categori-
zation studies. Because the Bayesian method selects the document (in this case, a category) with
the largest probability Pðw
jdjÞP ðdjÞ based on the maximum likelihood principle, the only dif-
ference between the two methods is the consideration of the amount of information expressed as
the log term in Eq. (27), which is usually negligible.

Although existing retrieval theories adopt more complex forms of calculation, the difference
between (F1) and (F2) is somewhat similar to the difference between the existing vector and
probabilistic views of information retrieval. In our formulation, (F1) and (F2) are based on
different standpoints: (F1) uses PðwiÞ and P ðdjjwiÞ as primary distributions while (F2) assumes
PðdjÞ and P ðwijdjÞ are given. Such an interpretation matches well with the results of Amati and
Van Rijsbergen (1998), where the vector-space model considers terms as a basic event space and
calculates the conditional expectation of each document given query terms, while the probabilistic
model considers documents as a basic event space and calculates the conditional expectation of
each term given its relevance. Note that if P ðwiÞ and P ðdjjwiÞ are known, PðdjÞ and PðwijdjÞ are
uniquely determined from Bayes’ theorem. The reverse is also true. This enables the comparison
of (F1) and (F2) under the same probabilistic assumptions.
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5. Experiments and results

5.1. Objective of the experiments

In the previous section, we have extended the notion of tf–idf and defined a general measure,
which we call in this paper the PWI. Although tf–idf has been widely recognized as a within-
document term weighting scheme in conventional studies, our theoretical results suggest that the
proposed PWI measure can be readily used as a measure for representative terms selection and
also as a criterion for automatic text categorization. Moreover, these two applications of PWI are
specifically good fits for our purpose because we can reasonably assume that the distribution of
the extracted or submitted terms is similar to one of the indexed documents and thus can be easily
estimated. In the following, we focus on these aspects of PWI and show some illustrative examples
of the calculation results.

5.2. PWI in representative terms selection

In our first experiment, we compare the PWI values calculated using the two probability es-
timation methods: P-tfidf and P-exact given by Eqs. (20) and (23). The purpose of the experiment
is to verify the assumption that tf–idf actually is a special case of PWI when the P-tfidf estimation
is employed, and that tf–idf provides a simple but robust method to calculate the PWI value for a
relatively uniform document set. In the experiment, the following two data sets were extracted
from NTCIR-J1 (NACSIS, 1999):

(D1) 2106 abstracts of academic conference papers registered by the Japanese Society of Artificial
Intelligence (JSAI), and

(D2) 24 groups of abstracts of academic conference papers, in total 309 999, with each group cor-
responding to a different academic society.

Abstracts were pre-processed by a Japanese morphological analyser ChaSen Ver. 2.02 (Mat-
sumoto et al., 1999) to extract index terms.

For data set (D1), we treated each abstract as a separate document. The average size of a
document was 69.5 words with the standard deviation being 24.4 words, which indicates that
conditions (C1) and (C2) were satisfied in this case. For data set (D2), a group of abstracts
presented at the same academic society was considered to be a single ‘document’, that is, a col-
lection of terms originating from the distribution uniquely determined by the society. In this case,
the size variation between ‘documents’ was extremely large: while the largest document contained
about 26% of the total terms, the smallest one contained only 0.6% of the total. This implies that
the conditions (C1) and (C2) no longer hold. (D2) is also used later in automatic text categori-
zation tasks.

Table 2 compares the correlation coefficients between the tf–idf values and the PWI values
calculated using P-exact (denoted simply as pwi). The correlations between the calculation results
are also shown in Fig. 4, where the X and Y axes represent the values of tf–idf and pwi, re-
spectively. Based on this result, we can confirm that these two values are almost identical for (D1),
but differ considerably for (D2).
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In our next experiment, we investigated the advantage of the proposed PWI by applying these
different measures to an automatic term extraction task. The goal of the extraction task was to
identify the terminology related to the subject of artificial intelligence, given the same NTCIR
data (D1) and (D2).

The result is shown in Fig. 5. The X axis is the top N ranking of the automatically extracted
terms using either (i) the PWI with P-exact, (ii) information gain that is commonly used for term
selection in text categorization studies, or (iii) tf–idf with tf log scaling, as a measure for selection.

Fig. 5. Comparison of TMREC performance.

Fig. 4. Results of tf–idf and pwi calculations: (a) for (D1) and (b) for (D2).

Table 2

Correlations between tf–idf and pwi values

Document set Standard deviation of fdj values Average of fij deviations tf–idf and pwi correaltion

(D1): Homogeneous 0.37 0.18 1.00

(D2): Heterogeneous 1.44 6.27 0.52
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The Y axis is the number of ‘correctly’ extracted terms, where the ‘correctness’ was judged using
the reference terminology set manually extracted from the same data set by the TMREC orga-
nizers (Kageura et al., 1999).

As can be seen in the figure, the PWI outperformed the other two methods and was quite ef-
fective in selecting representative terms. The reasons may be as follows. First, the original tf–idf
definition basically works with the individual document bases and is unable to exploit information
of non-relevant societies. The PWI extension makes it possible to apply the notion of tf–idf to
binary groups of documents. Second, information gain sometimes selected terms that were par-
ticularly rare in the artificial intelligence field, while the objective of the extraction task was to
select ‘representative’ terms rather than ‘discriminating’ ones. Although not being directly con-
nected to tf–idf, the same definition as PWI is sometimes used for term selection in text catego-
rization studies (for example, Koller & Sahami, 1997; Slonim & Tishby, 2000).

5.3. PWI in automatic text categorization

In our second experiment, we applied the proposed PWI calculation to a text categorization
problem extracted from NTCIR-J1. The purpose of the experiment was to show that the vector-
space-oriented calculation given by (F1) and the probabilistic one given by (F2) can be compared
under the same probabilistic assumption within the unified framework of the PWI.

In the experiments, the data set (D2) from the first experiment was used as training data, where
the size was varied as 1000, 10 000, 50 000 and the maximum 309 999. The 24 societies were treated
as distinct categories, each of which was expressed as a single collection of terms rather than a
collection of independent documents. As each abstract belonged to exactly one society, the cat-
egorization task was formulated as a multi-class problem. In the evaluation, a total of 10 000
abstracts were prepared that were not contained in the training data, but with the same distri-
bution across categories. Therefore, if about 25% of the abstracts of the training data belonged to
society A, then the test data also contained about 25% abstracts from society A. The performance
was compared using the ratio of the correct judgements, i.e., the number of abstracts classified
into the class to which they originally belonged, divided by 10 000.

The following categorization methods were compared in the experiments: (i) tfidf-cos, the
cosine similarity between the submitted document and the target class term vectors with tf–idf
weighting; (ii) pwi-vec, the PWI with (F1) formulation given by Eq. (26); and (iii) nbayes, the
conventional naive Bayesian method. Note that no meaningful difference existed between the PWI
with (F2) formulation given by Eq. (27) and nbayes when the data size was sufficiently large. For
each of the categorization methods, the following three probability estimation methods, P-freq,
P-laplace and P-mixture, were tested.

The first model was chosen for tfidf-cos and pwi-vec, and is referred to as P-freq. Denoting the
frequency of wi in category cj as fij and the total frequency of wi for all the categories as fwi , P-freq
is given by

[P-freq estimation]

bPP ðcjjwiÞ ¼
fij
fwi

; bPP ðwiÞ ¼
1

M
: ð28Þ
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The second model was chosen for nbayes, and is referred to as P-laplace. Denoting the total
frequency of terms in category cj as fcj , P-laplace is given by

[P-laplace estimation]

bPP ðwijcjÞ ¼
1þ fij
M þ fcj

; bPP ðcjÞ ¼ fcj
F
: ð29Þ

Note that bPP ðwijcjÞ 6¼ 0 even when fij ¼ 0. Such consideration of unobserved events is crucial with
the nbayes method, as otherwise the probability bPP ðw
; cjÞ automatically becomes zero for all
categories if w
 contains only a single unknown term. P-laplace, known as the Laplace estimator,
provides a simple way to deal with the zero frequency problem and is often used in conventional
naive Bayesian approaches in the text categorization field. The third model, referred to as P-
mixture, is expressed as the mixture distribution of bPP ðcjÞ in Eq. (29) and bPP ðcjjwiÞ in Eq. (28):

[P-mixture estimation]

bPP ðcjjwiÞ ¼ ð1� riÞ
fcj
F

þ ri
fij
fwi

; bPP ðwiÞ ¼
1

M
: ð30Þ

The mixture ratio ri is determined as ri ¼ ðfwi � dÞ=fwi where d is a discounting coefficient common
for all the terms. Using the formula for absolute discounting in the probabilistic language
modelling theory (for example, Kita, 1999), the value is determined as d¼ (number of singletons)/
(total frequency). This model is motivated by recent studies in the text categorization field that
have shown that the performance of naive Bayesian categorization is sensitive to the estimation of
PðwijcjÞ (McCallum & Nigam, 1998). It has been widely recognized in probabilistic language
model studies that, despite the convenience of the Laplace estimator, it does not provide a good fit
compared with other dedicated discounting methods. We have observed that the newly introduced
P-mixture model specifically provides a good fit with our corpus.

The results are summarized in Table 3. Comparing the probability estimation methods, we can
confirm that the P-freq estimation works reasonably well with tfidf-cos and pwi-vec, while the
estimation is not applicable to nbayes, because of the zero frequency problem we have already
mentioned. P-laplace showed a specifically good fit to nbayes, but does not work well for pwi-vec.
P-mixture seems to be consistently good for all of the categorization methods. Comparing the
categorization methods, we can observe that the performance of tfidf-cos is degraded as the size of
the training data becomes large, while better performance is observed for larger sizes of the
training data with pwi-vec and nbayes. The reason may be that the tfidf-cos method requires
careful adjustment of the scaling parameter to adapt to different sizes of data. The performance of

Table 3

Results of text categorization experiments

jDj ¼ 1000 jDj ¼ 10000 jDj ¼ 50000 jDj ¼ 309999

Freq Laplace Mixture Freq Laplace Mixture Freq Laplace Mixture Freq Laplace Mixture

tfidf-cos 0.6292 0.4885 0.6246 0.6837 0.6758 0.6808 0.6539 0.6542 0.6526 0.6472 0.6480 0.6466

nbayes 0.1718 0.5967 0.6520 0.2660 0.6833 0.7752 0.3655 0.7244 0.7767 0.4154 0.7583 0.7884

pwi-vec 0.6398 0.5628 0.6454 0.7778 0.6172 0.7711 0.7920 0.6633 0.7855 0.8149 0.7146 0.8084
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pwi-vec is slightly better than that of nbayes, possibly because of the sensitivity of the latter to
errors in probability estimation.

Based on the above observations, we conclude that categorization performance is considerably
influenced by the strategies used for probability estimation, and these two should be considered in
combination. The proposed pwi-vec method seems to be promising because the method avoids the
zero frequency problem of the naive Bayes method while maintaining a well-formulated proba-
bilistic background. By applying an information-theoretic view, the method considers the oc-
currence of unobserved terms simply as non-informative. The performance of the pwi-vec method
is further studied in Aizawa (2001) in comparison with the performance of support vector ma-
chine.

6. Conclusion

In this paper, we have investigated an information-theoretic interpretation of tf–idf, and
provided a view of tf–idf as the amount of information of a term weighted by its occurrence
probability. Such a perspective enables us to extend the notion of tf–idf into a more general
formula of the PWI. By calculating the PWI values of a sequence of query terms under different
probability assumptions, we have shown that the vector-space-oriented view of the original tf–idf
can successfully be related to probability-oriented views. An illustrative example was shown in
which the proposed calculation was applied to an actual text collection and the correlations be-
tween the tf–idf and the PWI values were calculated. The effect of different probability estimation
methods on a real-scale text categorization problem was also examined in the experiment.

Although our investigation in this paper mainly concerns the consistency of the proposed PWI
with, and not its superiority to, conventional statistical measures, we believe that such an ap-
proach is worthwhile. This approach not only leads us to better understandings of the commonly
practiced heuristic measures, but also enables us to propose and verify different heuristics, in
connection with other research fields such as probabilistic language modelling.
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