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Abstract—We present an information-theoretic framework for
network management for recovery from nonergodic link failures.
Building on recent work in the field of network coding, we describe
the input–output relations of network nodes in terms of network
codes. This very general concept of network behavior as a code pro-
vides a way to quantify essential management information as that
needed to switch among different codes (behaviors) for different
failure scenarios. We compare two types of recovery schemes, re-
ceiver-based and network-wide, and consider two formulations for
quantifying network management. The first is a centralized for-
mulation where network behavior is described by an overall code
determining the behavior of every node, and the management re-
quirement is taken as the logarithm of the number of such codes
that the network may switch among. For this formulation, we give
bounds, many of which are tight, on management requirements for
various network connection problems in terms of basic parameters
such as the number of source processes and the number of links in
a minimum source–receiver cut. Our results include a lower bound
for arbitrary connections and an upper bound for multitransmitter
multicast connections, for linear receiver-based and network-wide
recovery from all single link failures. The second is a node-based
formulation where the management requirement is taken as the
sum over all nodes of the logarithm of the number of different
behaviors for each node. We show that the minimum node-based
requirement for failures of links adjacent to a single receiver is
achieved with receiver-based schemes.

Index Terms—Graph theory, network coding, network manage-
ment, network restoration, Shannon theory.

I. INTRODUCTION

N
ETWORK management for protection and restoration in

the case of failures has generally been considered in an

ad hoc manner, within the context of specific schemes. These

schemes are predominantly routing schemes, and the use of

network coding, which in contrast to routing allows a network

node to form outgoing data from incoming data in an arbitrary

fashion and possibly involving network management signals,
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to describe them may at first appear superfluous. However, it

will turn out that enlarging the set of allowed operations at net-

work nodes not only opens new and fruitful ways to protect net-

works, but the framework also naturally integrates traditional,

well-known solutions to the problem of robust networks. Fig. 1

illustrates our discussion, which uses a simple four-node ring

as its basis. We have a single sender transmitting data to a

single receiver .

To illustrate this point, we consider two of the most common

means of providing network recovery for nonergodic failures,

showing how a coding framework offers a simple and system-

atic approach to describing such recovery schemes. Within pre-

planned methods for network recovery, generally termed pro-

tection, we may distinguish between path and link or node pro-

tection. Path protection refers to recovery applied to connec-

tions following a particular path across a network. Link or node

restoration refers to recovery of all the traffic across a failed

link or node, respectively. An overview of restoration and re-

covery can be found in [1], [2]. Path restoration may be itself

subdivided into two different types: live (dual-fed) backup and

event-triggered backup. In the first case, two live flows, a pri-

mary and a backup, are transmitted. The two flows are link-dis-

joint if we seek to protect against link failure, or node-disjoint

(except for the end nodes) if we seek to protect against node

failure. Recovery is extremely fast, requiring action only from

the receiving node, but backup capacity is not shared among

connections. In the second case, event-triggered path protec-

tion, the backup path is only activated when a failure occurs on

a link or node along the primary path. Backup capacity can be

shared among different paths [3], thus improving capacity uti-

lization for backup channels and allowing for judicious planning

[4]–[12]. However, recovery involves coordination between the

sender and the receiver after a failure event and requires action

from nodes along the backup path.

The simplest scheme to consider is live path protection,

shown in Fig. 1(a). The primary path is . At

the receiver, the only network supervisory signal required is

a signal indicating whether or not the primary path is live.

The supervisory signal is denoted by , where is if the

primary path has had no failures and is otherwise. Let

denote the data being sent along directed link . In order

to express the protection mechanism in the framework of

network coding, we need to exhibit the rules by which outgoing

data streams are formed from incoming data and potentially

network management signals. For links , , ,

and , the rules are trivial in that the outgoing data equals

the incoming data, which is . The behavior, or code, at is

shown in Fig. 1(a).
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Fig. 1. Ring network illustrating path protection in (a) and link protection in
(b).

Fig. 2. Three nodes and their primary (thick) and backup (thin) links.

For failure-induced path protection, the sender knows . The

code is similar to the one in Fig. 1(a). The links in the backup

path carry the same signal as for the live path, but multiplied

by , which means that nothing is carried except in the case

offailure. The links in the primary path see their data multiplied

by . The receiver need not have knowledge of . It simply

outputs .

Link recovery is illustrated in Fig. 1(b). We have primary

links, which are the links in the clockwise direction and backup

(secondary) links, which are the links in the counterclockwise

direction. The supervisory signal is if the primary link

from to node has not failed and is otherwise. Thus, the

supervisory signal is no longer associated with a full path, but

rather with a link, regardless of what routes, if any, traverse that

link. Consider, in our ring, any three consecutive nodes , , .

These nodes and their links are shown in Fig. 2. The thick lines

represent primary links, which transmit information when no

link failures occur, and the thin lines represent secondary links,

which transmit information when a failure occurs. The code for

the primary link emanating from is

(where is the primary link into and is the secondary

link into ) except when , for which it is the incoming

signal . For the secondary link emanating from , the code is

. The output at node , as shown in

Fig. 1(b), is the sum of the signals on its incoming primary and

incoming secondary links. Thus, by specifying the local behav-

iors of nodes, the concept of link recovery fits naturally in the

framework of network coding.

Our above example illustrates how network coding can pro-

vide an efficient vehicle for formalizing traditional recovery

problems. Similar techniques can be applied to describe the op-

eration of a wide array of recovery techniques over complex

topologies, for instance, by using ring covers [13]–[16] or gener-

alized loop-back [17]. Our goal, however, is not to merely trans-

Fig. 3. Diagram of general network management problem.

late known recovery approaches and their related network man-

agement mechanisms into a network coding setting. Instead, we

seek to use a coding approach over networks to obtain funda-

mental results concerning network management.

We may formulate a basic general form of the network man-

agement problem as shown in the block diagram in Fig. 3. A

network is modeled as a mapping from a set of inputs to

a set of outputs . This mapping depends

on the state of the network: for instance, network outputs are

affected by link or node failures in the network. The mapping

can also be affected by management signals that change

the behavior of network nodes: for instance, causing a node to

switch between using different output links. Different manage-

ment signals can be applied appropriately based on observations

of the network state. We consider the network man-

agement problem of determining the minimum cardinality of the

set of management signals needed, given a set of possible net-

work states and a set of required input–output connections that

must be maintained across these states.

The particular problem we focus on in this paper is net-

work management for link failures, for which various existing

recovery schemes have been described earlier. What these

schemes have in common is a need for detecting failures, and

directing network nodes to respond appropriately.

While failure detection is itself an important issue, it is the

latter component of management overhead, that of directing re-

covery behavior, that we seek here to understand and quantify

in a fundamental way. This work is an attempt to start devel-

oping a theory of network management for nonergodic failures.

Our aim is to examine network management in a way that is ab-

stracted from specific implementations, while fully recognizing

that implementation issues are interesting, numerous and diffi-

cult. Network coding gives us a framework for considering this.

Our approach has its roots in recent work on network coding

[18], [19]. Ahlswede et al. [19] showed that the traditional ap-

proach of transmitting information by routing or replication is

not always sufficient to achieve maximum capacity for multi-

cast, and that this sometimes requires coding together signals

from different incoming links. Koetter and Médard [20]–[22] in-

troduced an algebraic framework for analyzing network coding,

and showed that with coding, a multicast network has a linear

receiver-based solution for all recoverable failures, defined as a

solution in which only the receiver nodes react to the failure pat-

tern, while the other nodes (interior nodes) do not change their

behavior.

This leads to a very general concept of network behavior as

a code, and provides a fundamental way to quantify essential

management information as that needed to switch among dif-

ferent codes (behaviors) for different failure scenarios.
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Fig. 4. An example of a receiver-based recovery scheme. Each diagram corresponds to a code valid for failure of any of the links represented by dashed lines.
The only nodes that alter their input–output relations across the three codes are the receiver nodes � and � .

Fig. 5. An example of a network-wide recovery scheme. Each diagram gives a code which is valid for failure of any of the links represented by dashed lines.

We consider two formulations for quantifying network man-

agement. In the first, a centralized formulation, the management

requirement is taken as the logarithm of the number of codes

that the network switches among. In an alternative node-based

formulation, the management requirement is defined as the sum

over all nodes of the logarithm of the number of behaviors for

each node. For each of these formulations, we analyze network

management requirements for receiver-based recovery, which

involves only receiver nodes, and for network-wide recovery,

which may involve any combination of interior nodes and re-

ceiver nodes.

As an illustration of some key concepts, consider the simple

example network in Figs. 4 and 5, in which a source node si-

multaneously sends processes and to two receiver nodes

and . These connections are recoverable under failure of

any one link in the network. One possible set of codes forming

a receiver-based recovery scheme is shown in Fig. 4, and a

possible set of codes forming a network-wide scheme is given

in Fig. 5. For this example, routing and replication are suffi-

cient for network-wide recovery, while coding is needed for re-

ceiver-based recovery. Here linear coding is used, i.e., outputs

from a node are linear combinations of the inputs to that node.

For this example, it so happens that the minimum centralized

management requirement is for both receiver-based and

network-wide recovery, but we shall see that in some cases, the

centralized management requirements for receiver-based and

network-wide recovery can differ.

Considering the node-based network management formula-

tion, the receiver-based scheme of Fig. 4 has the receiver nodes

switching among three codes each, so the associated node-based

management requirement is . The network-

wide scheme of Fig. 5 has the source node switching among

three codes, while the receiver nodes switch between two codes

each, for a node-based management requirement of

.

Our main results provide, for centralized network manage-

ment information bits necessary to achieve recovery using linear

codes from all single link failures, lower bounds for arbitrary

connections and upper bounds for multitransmitter multicast

connections. For the node-based formulation, we are able to

show that the minimum node-based requirement for failures of

links adjacent to a single receiver is achieved with receiver-

based schemes. We have not determined if this holds in gen-

eral for all single-link failures.

Parts of this work have been presented in [23], which con-

sidered the multitransmitter single-receiver case (where there is

only one receiver node), [24], which considered failures of links

adjacent to the receiver nodes in the multitransmitter multicast

case, and [25], which considered general connections.

We present our model in Section II, state our main results in

Section III, give our mathematical development, ancillary re-

sults, and proofs in Section IV, and give conclusions and direc-

tions for further work in Section V.

II. MODEL

Our model is based on that in [20]. We represent a network

by a directed graph with vertices representing nodes and di-

rected edges representing links. In this paper, we consider only

delay-free acyclic networks. Discrete independent random pro-

cesses are observable at one or more source nodes,

and processes originating at different source nodes are indepen-

dent. There are one or more receiver nodes, comprising a set

. A network connection problem specifies, for each receiver

node , a subset of source processes to be transmitted

to . A network connection problem is feasible if the network
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Fig. 6. Illustration of linear coding at a node.

supports the replication, concurrently at each receiver ,

of each source process , i.e., has an output process

that is a copy of . A subgraph is said to support a set

of connections if the connections are feasible after deletion of

all links not in the subgraph. A multicast connection problem

entails the transmission of the same set of source processes to

each of the receiver nodes.

Edge carries the random process . Edge is an incident

outgoing link of node if , and an incident incoming

link of if . We call an incident incoming link of a

receiver node a terminal link, and other links interior links.

We choose the time unit such that the capacity of each link is

one bit per unit time, and the random processes have a con-

stant entropy rate of one bit per unit time. Sources of larger en-

tropy rate can be modeled as multiple sources at the same node.

Edges with larger capacities can be modeled as parallel edges,

though in this paper we focus on management requirements for

failure of individual unit capacity components.

The processes , , generate binary sequences.

We assume that information is transmitted as vectors of bits

which are of equal length , represented as elements in the finite

field . The length of the vectors is equal in all transmissions

and all links are assumed to be synchronized with respect to the

symbol timing.

We first consider linear coding, which has been shown by Li

et al. [18] to be sufficient for multicast. In a linear code, the

signal on a link is a linear combination of processes

generated at node and signals on incident

incoming links (refer to Fig. 6)

and an output process at receiver node is a linear com-

bination of signals on its terminal links

The coefficients can be collected into

matrices and , and the matrix

, whose structure is constrained by the network. A

triple , where

specifies the behavior of the network, and represents a linear

network code.

Fig. 7. Example illustrating integral links and recoverable link failures.
SourcesX andX are required to be concurrently transmitted to the receiver.
Links 1, 2, and 3 are integral, and failure of any one of them is recoverable.
Links 4, 6, and 7 are integral, but their failures are not recoverable. Link 5 is
not integral, but its failure is recoverable.

We also consider nonlinear receiver-based schemes, where

the interior nodes’ outputs are static linear functions of their

inputs as before, but the output processes at a receiver

node may be nonlinear functions of the signals on its terminal

links.

We assume that when a link fails, it is effectively removed

from the network, or equivalently, that a zero signal is observed

on that link. An alternative is to treat signals on failed links as

undetermined, which, as discussed in Section IV-B, restricts the

class of recovery codes that can be used. For the linear coding

matrices described above, failure of a link corresponds to set-

ting to zero the th column of matrices , , and , and the th

row of . A recovery code is said to cover (failure

of) link if all receiver nodes are able to reconstruct the same

output processes in the same order as before the failure.

III. MAIN RESULTS

In this section, we outline our main results, the proofs of

which are given in the following section. Our first result shows

the need for network management when linear codes are used.

We call a link integral if it satisfies the property that there ex-

ists some subgraph of the network containing that supports

the set of source–receiver connections if and only if has not

failed. An example illustrating this definition is given in Fig. 7.

Theorem 1 (Need for Network Management): Consider any

network connection problem with at least one integral link

whose failure is recoverable. Then there is no single linear

code that can cover the no-failure scenario and all

recoverable failures for this problem.

Although a solution with static and matrices always ex-

ists for any recoverable set of failures in a multicast scenario

[20], in such cases the receiver code must change. On the

other hand, if we allow for nonlinear processing at the receivers,

in some instances this allows for unchanged network behavior

over all recoverable failures.

Theorems 2–4 below give bounds on the number of codes

needed for link failure recovery, in various network connection

problems, where all single-link failures are recoverable. These
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bounds translate directly into bounds on the centralized net-

work management requirement, by taking the logarithm of the

number of codes. Some of these bounds are tight, in that for any

values of the parameters in terms of which the bounds are given,

there are examples in which these bounds are met with equality.

The bounds are given in terms of the following parameters:

• , the number of source processes transmitted in the net-

work;

• , the number of links in a minimum cut between the

source nodes and receiver nodes;

• , the number of receiver nodes;

• , the number of terminal links of a receiver ;

• , the minimum number of terminal

links among all receivers.

Note that our bounds do not depend on the total number of links

in the network.

Theorem 2 (General Lower Bound for Linear Recovery): For

the general case, tight lower bounds on the number of linear

codes for the no-failure scenario and all single link failures are

receiver-based

network-wide

Theorem 3 (Upper Bounds for Linear Recovery):

a. For the single-receiver case, tight upper bounds on the

number of linear codes needed for the no-failure case and

all single-link failures are as shown in the table at bottom

of the page.

b. For the multicast case with receivers, an upper

bound on the number of linear codes for the no-failure

scenario and all single-link failures is

c. For the nonmulticast case, an upper bound on the number

of linear codes for the no-failure scenario and all single-

terminal link failures is given by

where the sums are taken over receiver nodes .

Network-wide schemes are more general than receiver-based

schemes. The additional flexibility of network-wide schemes al-

lows for smaller centralized network management requirements

than receiver-based schemes in some cases, though the differ-

ences in bounds that we have found are not large. Fig. 8 gives a

plot of how the bounds look for single-receiver networks with

minimum cut size .

Our lower bounds for the general case and our upper bounds

for the single-receiver case are tight. Establishing tight upper

bounds for the general case is an area of further research.

Up to this point, we have been considering linear codes in

which the outputs at all nodes are linear functions of their inputs.

If the restriction on linear processing at the receivers is relaxed,

there are network connection problems for which no network

management is needed. For this case, we have the following

bounds.

Theorem 4 (Nonlinear Receiver-Based Recovery): For a re-

covery scheme in which linear coding occurs at interior nodes

but nonlinear decoding may be employed at receiver nodes, tight

bounds on the number of receiver-based codes for the no-failure

scenario and single-terminal link failures are

lower

bound

upper

bound

for

for or

Related work by Cai and Yeung [26] gives bounds on the sizes

of information sources that can be transmitted through a given

network with error-correcting network codes.

We have seen that the centralized management requirement

may be less for network-wide schemes than for receiver-based

schemes in some cases. Unlike the centralized formulation, the

node-based formulation imputes higher management overhead

to recovery schemes that involve more nodes, giving rise to the

following result.

Theorem 5 (Node-Based Formulation): For linear coding in

the single-receiver case, the minimum node-based management

requirement for terminal link failures and the no-failure scenario

is achieved with receiver-based schemes.

This does not however hold for the multireceiver case. A

counterexample is shown in Fig. 9. Here, the source multicasts

one process to two receivers. Linear receiver-based recovery

for terminal link failures requires each of the two receivers to

switch between two codes, whereas network-wide recovery al-

lows for recovery with only the source node switching between

two codes.

receiver-

based

for or

for

network-

wide

for ,

for , ,

for
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Fig. 8. Plot of tight upper and lower bounds for centralized network management in single-receiver networks with fixed minimum cut size m = 8 and arbitrary
numbers of links. The parameter r denotes the number of source processes transmitted in the network.

Fig. 9. Counterexample showing that Theorem 5 does not hold for the
multireceiver case.

IV. DETAILED DEVELOPMENT, ANCILLARY RESULTS, AND

PROOFS

A. Mathematical Model

A linear network code is specified by a triple of matrices ,

, and , defined in Section II. The product

defines a transfer matrix from the source processes to the

output processes [20]. is always invertible since

is upper-triangular for acyclic networks. Matrix can be

viewed as a transfer matrix from the source processes to sig-

nals on source nodes’ outgoing links, and as a transfer ma-

trix from signals on terminal links to the output processes.

specifies how signals are transmitted between incident links.

sums the gains along all paths be-

tween each pair of links, and equals , since matrix

is nilpotent for acyclic networks. A code is equiva-

lently specified by the triple , where .

A pair , or , is called an interior code.

We use the following notation in this paper.

• denotes the th entry of a matrix .

• and denote column of and respectively. We

call the column vector corresponding to a link the

signal vector carried by .

• , , and denote the submatrix of , , and

, respectively, consisting of columns that correspond

to links in set .

• , , and are the altered values of , , and ,

respectively, resulting from failure of link .

• , , and are the altered values of , , and ,

respectively, under the combined failure of links in set .

• is the set of terminal links of receiver .

• is the set of terminal links of receiver that are down-

stream of link . If there is a directed path from a link or

node to another, the former is said to be upstream of the

latter, and the latter downstream of the former.

Fig. 10 gives an example illustrating the structure of the transfer

matrices for a single receiver and source nodes , each with

source processes.
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Fig. 10. An example illustrating the structure of transfer matrices for a single receiver � and n source nodes � , each with r source processes.

In the general case, each receiver requires a subset of

the set of source processes. A code is valid if for all

receivers ,

where is a particular permutation of

, and is the unit column vector whose only

nonzero entry is in the th position.1 In the single-receiver and

multicast cases, we choose the same ordering for input and

output processes, so this condition becomes .

An interior code is called valid for the network

connection problem if there exists some for which

is a valid code for the problem.

The overall transfer matrix after failure of link is

where is the identity matrix with a zero in the

th position, , and

If failure of link is recoverable, there exists some

such that for all

where .

In receiver-based recovery, only changes, while in net-

work-wide recovery, any combination of , , and may

change.

B. Codes for Different Scenarios

As a first step in analyzing how many codes are needed for

the various scenarios of no failures and individual link failures,

we characterize codes that can cover multiple scenarios.

1Each receiver is required to correctly identify the processes and output them
in a consistent order.

Lemma 1 (Codes Covering Multiple Scenarios):

1. If code covers the no-failure scenario and

failure of link , then

where is the zero matrix.

2. If code covers failures of links and , then

, either

a)

and

or

b)

and

where

Proof: A code which covers the no-failure sce-

nario and failure of a link satisfies,

since can be nonzero only for terminal links that are

downstream of link .
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A code that covers failures of links and satis-

fies,

Either both sides are equal to , or else vectors and which,

respectively, span the column spaces of the left- and right-hand

side expressions are multiples of each other, i.e., ,

and vectors

and

which, respectively, span the row spaces of the left- and right-

hand side expressions satisfy

An intuitive interpretation of this lemma is provided by con-

sidering a simple characterization of codes relative to a given

link as follows. A code is termed active for a receiver

in a link if is affected by the value on link , i.e.,

. A code is active in a link if it is

active in for some receiver . Otherwise, the code is nonac-

tive in . For a code which is nonactive in a link , the value on

could be set to zero (by upstream links ceasing to transmit on

the link), canceled out, or disregarded by the receivers.

By Part 1 of Lemma 1, a code which covers the no-failure

scenario as well as one or more single-link failures must be non-

active in those links. By Part 2 of Lemma 1, a code which covers

failures of two or more single links is, for each receiver, either

nonactive in all of them (case a) or active in all of them (case

b). In the latter case, those links carry signals that are multiples

of each other. We term a code active if it is active in those links

whose failures it covers, and nonactive otherwise. If signals on

failed links are undetermined, then consideration must be re-

stricted to nonactive codes.

These expressions simplify considerably for terminal links as

follows.

Corollary 1:

1. If code covers the no-failure scenario and

failure of terminal link , then .

2. If covers failures of two-terminal links and

, then either

a)

and

or

b) and are terminal links of the same receiver

and

where

Proof of Theorem 1: Consider an integral link whose

failure is recoverable, and a subgraph on which the set of

source–receiver connections is feasible if and only if has not

failed. does not include all links, otherwise, failure of would

not be recoverable. Then the set of links not in , together with

, forms a set of two or more links whose individual failures

are recoverable but whose combined failures are not. By Lemma

1, a code which covers the no-failure scenario and failure of a

link is nonactive in . However, a code which is nonactive in

all the links in is not valid. Thus, no single code can cover

the no-failure scenario as well as failures of all individual links

in .

C. Bounds on Linear Network Management Requirement

1) Single Receiver Analysis: Let be a set of links on a

minimum capacity cut between the sources and the receiver,2

where , and let be the set of links comprising links

in as well as links between nodes upstream of .

We define the matrix and the

matrices and , which are analogous

to , , and , respectively, but which specify only signals on

links in . We refer to a pair as a partial interior code.

and (which correspond exactly to and , respec-

tively, for ) are the coefficients of the linear combination

of source signals and signals on incident links that appear

on link

The partial interior code corresponding to given and ma-

trices is given by and , the submatrix of

consisting of entries from rows and columns that correspond

to links in . We also define to be the submatrix of con-

sisting of columns that correspond to links in .

For a minimum capacity cut , there exists a set of link-

disjoint paths , where connects link in

to the receiver. A partial interior code can be extended

to an interior code , where and ,

by having each link transmit its signal only along the

path , i.e., , . The corresponding

is called the extension of .

Lemma 2: If failure of some link in is recoverable, re-

covery can be achieved with a code in which no link in feeds

into another.

Proof: If failure of some link is recoverable, then

there exists a partial interior code in which has

full rank. Having one link in feed into another only adds

a multiple of one column of to another, which does not

increase its rank. Thus, the extension of is a valid code

covering failure of , with the property that no link in feeds

into another.

Let us call the original network connection problem , and

define a related connection problem on a network with

• sources and nodes corresponding exactly to those in the

original network that are upstream of ;

• links corresponding to those of the original network orig-

inating at nodes upstream of ;

2A partition of the network nodes into a set containing the sources, and an-
other set containing the receiver, such that the number of directed links from the
first set to the second is minimized.
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Fig. 11. Example illustrating the definition of a related connection problem
� from an original problem �.

• a single receiver node whose terminal links corre-

spond to links in , with tail .

An example illustrating this is given in Fig. 11.

Corollary 2: If failure of some link in is recoverable in

problem , then failure of the corresponding link in is re-

coverable.

The following lemma relates codes for terminal link failures

in problem to codes for failures of links in in problem .

Lemma 3: Let be a partial interior code in which no

link in feeds into another. If there exists an matrix

such that for all , then there

exists a code covering failure of links in , such

that and . Conversely, if is a

code in which no link in feeds into another, and

covers links in , then there exists some matrix

such that and satisfy for

.

Proof: Extend to a valid interior code ,

where and , by having each link

transmit its signal along the path , such that the terminal

link on carries the same signal as link . Then the receiver

matrix whose columns for terminal links on paths are the

same as the corresponding columns of , and zero for other

terminal links, satisfies

For the converse, note that

So we can construct a matrix which satisfies the required prop-

erty as follows:

...

where are the links of in the order they appear in

.

Lemma 4: For a single receiver with terminal links, an

upper bound on the number of receiver-based codes required

for the no-failure scenario and single-terminal link failures is

for or

for .

Proof: For , . Just two codes are

needed as only one of the links needs to be active in each

code. For , . We can cover each

of the terminal links by a separate code, so

codes suffice. For , consider any valid

static code . Let be columns of

that form a basis, and the remaining columns.

Assuming that all single-link failures are recoverable, and

that there are at least nonzero columns, we can find

a set such that

and have full rank. Then the links

corresponding to and can be covered by one code, the

links corresponding to , and

by another code, and the links corresponding to

by a separate code each.

Lemma 5: For any set of codes with a common

covering failures from a set of terminal links, there

exists a set of or fewer nonactive codes that cover failures in

set .

Proof: A set of two or more terminal links covered by a

single active code carry signal vectors which are multiples of

each other. One of the links can be arbitrarily designated as the

primary link for the code, and the others the secondary links for

the code. If all codes are active codes which cover two or more

terminal link failures, then only two nonactive codes are

required, one nonactive in the primary links and the other non-

active in the rest. Otherwise, there is some nonactive code in the

set, or some active code covering only one terminal link failure,

which can be replaced by a corresponding nonactive code cov-

ering that link. The links covered by this nonactive code can be

covered together with the primary links of the active codes, with

a single nonactive code. The secondary links of the active codes

can be covered by a separate nonactive code. This forms a set

of at most nonactive codes covering the same terminal link

failures as the original set.

Corollary 3: For receiver-based recovery, the minimum

number of codes for terminal link failures can be achieved with

nonactive codes.

Lemma 6: Bounds on the number of receiver-based codes

needed to cover the no-failure scenario and failures of links in

, assuming they are recoverable, are given in the table at the

top of the following page. These bounds are the same in the case

where only nonactive codes are used.

Proof: It follows from Lemma 2 that if failure of some link

in is recoverable, it is recoverable for the related problem .

Any code covering failure of terminal links in

problem can be extended to obtain a code covering
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lower bound upper bound

for or

for

links in the original problem (Lemma 3). We can thus

apply the upper bound from Lemma 4 with in place of .

For the lower bound, from Lemma 1, a single nonactive code

in a valid receiver-based scheme can cover at most of the

links in . By Corollary 3, restricting consideration to nonac-

tive codes does not increase the receiver-based lower bound for

the related terminal link problem , which is also , and

so does not increase the receiver-based lower bound here.

Lemma 7: A lower bound on the number of network-wide

codes needed to cover the no-failure scenario and failures

of links in , assuming they are recoverable, is given by

.

Proof: It follows from Lemma 1 that a single nonactive

code covers the no-failure scenario and at most single-link

failures among links in , while a single active code covers at

most links in . Each code therefore covers at most

out of scenarios of no failures and failures of

links in .

Lemma 8: For a single receiver, there exists a valid static

interior code such that no link feeds into more than one

link in .

Proof: From Corollary 2, assuming single-link failures are

recoverable in the original problem , single-link failures are

recoverable in the related problem . Thus, a static interior

code covering these failures exists for [22]. This can

be extended to a static interior code in which no link in

feeds into another.

For any such code , suppose there is some link which

feeds into more than one link in . Let be

the set of links in that feeds into, and let .

We will show that we can obtain from a valid static code

in which feeds into only one link in .

Case 1: feeds into some link in via some path

(which includes and ) such that the code for each link

other than is , where is the incident

upstream link in of , and is a nonzero coefficient, i.e.,

the signal vector of each link in is a multiple of the signal

vector of .

Consider a code on the related problem defined

earlier, where and

for ,

otherwise

i.e., each link in feeds only into its incident downstream link

in . Let .

Consider any link . Note that , which

has full rank. For failure of any link , is available on

via , so

Thus, is a valid static code for failures in .

The extension of code is then a valid static code for

the original problem in which feeds into only one link in

.

Case 2: Coding occurs between and each , i.e., the

signal vector for each is a combination of the signal vector

for and some other signal vector, which we denote by . The

signal vector for , , is then .

We first show that there exists a proper subset such

that has full rank and which does not include all links in

, i.e., is nonempty. Suppose that such a subset

does not exist. Since has full rank and ,

must have at least one proper subset of independent columns.

By supposition, any such subset contains , which

requires to be independent, and to be out of the

column space of (where , defined in

the previous paragraph, is the contribution to from other links

besides ). Then has rank at most , and failure of

any , would leave with less than full rank,

contradicting the fact that is valid for any single-link

failure. Thus, there exists a proper subset such that

has full rank and is nonempty. Let be some

link in .

For a particular code, let a link that feeds into more than one

link in , and whose signal vector is a linear combination of

and some other nonzero signal vector, be said to satisfy Con-

dition 1. Again, we consider two cases.

Case 2a: There exists a set of links forming a single path

from to , including and , such that none of the links

satisfy Condition 1.

Consider the family of codes on the related problem

satisfying and

for ,

otherwise.

Let be the set of possible values for in this family of codes,

corresponding to different choices of values for variables .

We will show that any single-link failure in can be covered

by for some . It will then follow that there ex-

ists a static choice of such that is valid for all

single-link failures in , since the product of the transfer ma-

trix determinants for individual link failures is a nonzero poly-

nomial in the variables , which has a nonzero solution in a

sufficiently large finite field [22].

Let be the element of obtained by setting each variable

to , and let .

First consider failure of any link . We have

by the assumption of this case. Hence, failure of is

covered by .

Next, consider some link . If has full rank,

then so does . Then, the matrix obtained from

by setting to zero each variable (i.e., having not

feed into any link) is such that covers .
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Fig. 12. An example of an AG matrix in a receiver-based code that achieves the lower bound of d e codes, with m� (m� r � 1)d e � 2.

If has less than full rank, then its rank is since

, which has rank , has only one possibly independent ad-

ditional column. is not in the column space of , since

otherwise would have had rank no greater than ,

contradicting the fact that has full rank. , the value on

after failure of and , is in the column space of .

Now cannot have rank since this would

mean that has at most rank , and the full rank

assumption on , whose column space is contained in

the column space of , would be contradicted. Thus,

has rank , which is the same as the rank of

. Since the column space of is contained

in the column space of , the column spaces must be

equal. Hence, is in its column space while is not, and

thus, is not in the column space. The column

space of equals the column space of

which has rank .

Therefore, there exists some choice of values for variables in

such that is a valid static interior code for problem .

The extension of this static is a valid static code for the

original problem in which link feeds into only one link

in .

Case 2b: Every path from to contains some link that sat-

isfies Condition 1. Consider a set of links forming a path from

to , and let be the furthest upstream link in that satis-

fies Condition 1. We apply the same line of reasoning starting

from the beginning of this proof, but with in place of .

If Case 1 or Case 2a applies for and , then we can

obtain a modified code in which feeds into only one

link in . Having eliminated one link from the set of those sat-

isfying Condition 1, we then re-apply the same reasoning from

the beginning, this time for and .

If, on the other hand, Case 2b applies for and , we

proceed recursively, applying the same reasoning for and

a link downstream of . If we come to a link that is incident

to a link in , then Case 1 or Case 2a will apply, allowing us

to eliminate from the set of links satisfying Condition 1.

Throughout this procedure, the number of links in that

feeds into is monotonically decreasing, as is the number of its

downstream links satisfying Condition 1. Thus, the procedure

terminates with a valid static interior code in which feeds into

only one link in .

Proof of Theorem 3a: We can find a valid static interior

code such that the subgraphs of links which feed

into each are link disjoint with each other, and the

paths along which transmits to the receiver are also link

disjoint (Lemma 8). A nonactive code which covers

failure of link also covers failure of all links in the

subgraph , which we refer to as the associated subgraph

of . Thus, the bounds for receiver-based, or static, recovery

here are the same as those in Lemma 6. An example of a valid

static interior code achieving the lower bound with equality is

an interior code where is of the form shown in

Fig. 12.

For network-wide recovery, which includes receiver-based

recovery as a special case, the maximum number of terminal

link codes needed is no greater than that needed in receiver-

based schemes.

For , we can obtain a bound tighter than the

receiver-based bound. By Lemma 8, there exists a valid static

interior code such that no link feeds into more than one

link in . Consider such a code . Define to

be the unit vector which has a in the th position as its only

nonzero entry. Since no link feeds into more than one link in

, a column , , can be set to for some process

carried by link , without affecting any of the other columns in

.

In order for single-link failures to be recoverable, the

submatrix of must have at least two nonzero

entries in each row. It follows that we can find distinct

and distinct such that , are

nonzero, and either

a) , are nonzero, or

b) , are nonzero.

In case b, we can switch labels among , , such that there

exist paths in from sources and to whose only common

links are on a path from source to .

Then paths from source to the receiver through and can

be covered by an active code, and the remaining links by

nonactive codes. This is because the remaining links in
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Fig. 13. An example network in which r = m� 1, which achieves the linear
receiver-based upper bound of r + 1 codes and the linear network-wide and
nonlinear receiver-based upper bounds of r codes.

Fig. 14. An example network in which r = 2 = m� 1, which achieves the
linear network-wide upper bound of three codes.

, and their associated subgraphs, can be covered by nonac-

tive codes corresponding to their receiver-based codes, and two

paths from source to and from source to (in case a) or

to (in case b), excluding the paths covered by the active code,

can be covered with two of these nonactive codes.

An example in which , and network-wide codes

are needed is given in Fig. 13. This is not the case for

, for which an example requiring three network-wide codes

is given in Fig. 14.

For , we can also obtain a bound tighter than

the receiver-based bound. We consider two cases.

Case 1: There is a set of columns in which

contains a basis and does not contain two pairwise dependent

columns. We show that the set contains three pairs of columns

such that each pair can be covered by a single nonactive code,

and that nonactive codes suffice to cover all

columns.

Let the columns in this set be , where

form a basis, and let the remaining columns in

be . Expressing each as a linear combination

, the pairwise independence of

columns in the set implies that for and , at least

two of are nonzero, and that there exist

such that . The last condition implies that

or ; we assume without loss of gen-

erality that . By the assumption of recoverability,

at least one of is nonzero.

Case 1a: for some , such that , , ,

are all distinct. Then

and

are three full-rank sets. Thus, links corresponding to each pair

of columns , and can be covered

by one nonactive code, along with links corresponding to any

columns .

Case 1b: for some ; and

. Then , so

is a full-rank set, as are

and

where is distinct from , , ; and

Thus, links corresponding to the pair of columns can

be covered by a single code, along with links corresponding to

any columns . The pairs and

can each be covered by a single code.

Case 1c: for some ; and

. This case is similar to case 1b.

Case 1d: , .

Links corresponding to columns can be covered by

a single code along with links corresponding to any columns

. Links corresponding to each pair of columns

and can be covered by a single code, for

some .

Case 2: For any basis set of columns in , there are no

two columns among those remaining that are not multiples of

each other or multiples of columns in the basis set.

Consider a pair of dependent columns. If each is a combina-

tion of two or more source processes, they can be set to different

combinations of the same source processes while preserving

the linear independence of any linearly independent subset of

columns in , in a sufficiently large finite field. This proce-

dure can be repeatedly applied to remove pairwise dependence

among columns involving two or more source processes, giving

a new valid static code in which any pair of dependent

columns involves only one source process.

If satisfies the condition of Case 1, then we know that

codes suffice. Otherwise, let us first consider the source

processes and columns that are not part of pairwise-dependent

sets. Let be the total number of processes not involved in such

sets, and be the number of columns that are not part of such

sets. Note that and .

By reasoning similar to our earlier analysis of receiver-based

recovery, we have that the corresponding links and their asso-

ciated subgraphs can be covered by nonactive

codes if , and by nonactive codes if .

If , by reasoning similar to our analysis of net-

work-wide recovery for , one active code and

nonactive codes suffice to cover the links and their

associated subgraphs. Any two nonactive codes covering these

links can also cover the remaining links corresponding to the
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Fig. 15. An example network which achieves the receiver-based upper bound
of r, the network-wide upper bounds of r codes for r = 3, and r� 1 codes for
4 � r � m � 2.

Fig. 16. An example network which achieves the general case lower bounds
of Theorem 2 with equality, where r is the number of processes received by
receiver � .

dependent sets. Thus, codes suffice for , and

codes suffice for and . In all these

cases, the number of codes required is at most , which is

greater than or equal to three.

For the remaining cases, the receiver-based upper bounds are

also tight for the more general case of network-wide recovery.

The example network of Fig. 15 achieves the receiver-based

upper bound of , and the network-wide upper bounds of codes

for , and codes for .

2) General Case Lower Bound:

Proof of Theorem 2: Consider joining all receivers with

links each to an additional node . If we consider

to be the sole receiver node in the augmented network, the

number of links in a minimum cut between the sources and this

receiver is , and there is a minimum cut of links among the

original links. The number of codes needed to cover links on this

minimum cut is at least for receiver-based recovery and

for network-wide recovery (Lemmas 6 and 7). Thus,

this represents a lower bound on the number of codes required

to cover all links in the original problem.

An example which achieves the receiver-based lower bound

with equality for any values of and is given in Fig. 16, where

the number of terminal links of each receiver is set to ,

twice the number of processes needed by receiver . Here,

all links in can be covered with nonactive codes, two

of which can cover at the same time all terminal links.

This example with for each receiver also achieves

the network-wide lower bound with equality when is

not an integer. Let

Links in can be covered with a set of codes that

includes

nonactive codes, which can at the same time cover all the ter-

minal links.

For the case where is an integer, however, covering

links on the minimum cut with exactly codes would

allow for only one nonactive code (Lemma 7), so this bound is

not attained with equality for two or more receiver nodes.

3) Upper Bounds for All Link Failures, Multicast Case: Let

be the number of links in a minimum cut between the

sources and a receiver . From Lemmas 3 and 8, we know that

for each receiver node individually, there is a static solution

for all single-link failures in which each of link-disjoint

subgraphs feed into a different terminal link of ; each sub-

graph is a tree whose links are directed toward the root node ,

with an unbranched portion between the root and the branches,

which we term its trunk. We denote by , ,

the trees rooted at a receiver . The trees corresponding to

each receiver can be partitioned into a number of forests

such that failure of all links in any one forest leaves a subgraph

of the network that satisfies the max-flow min-cut condition

for receiver . The number of these forests is given by

Theorem 3a.

Proof of Theorem 3b: We first analyze the two-receiver

case, considering three cases.

Case 1: for both receivers , .

Then the trees , , associated with each re-

ceiver , , can be grouped into link-dis-

joint forests (Theorem 3a), such that failure of all links in any

one forest leaves a subgraph of the network that satisfies the

max-flow min-cut condition for receiver node . Thus, at most

codes are needed.

Case 2: . Consider the related problem where all but two

terminal links of each receiver are deleted from the network such

that the minimum cut between the source and each receiver is

exactly two. This problem is also recoverable for all single-link

failures, and requires at least as many codes for failure recovery

as the original problem. To see this, note that a valid code needs

to use at least two paths, one from the source to each receiver.

Thus, all links except for those on two paths, one from the source

to each receiver, can be covered by a single code. Each link on

these two paths must be covered by a code that uses an alter-

native pair of paths from the source to each receiver. Since the

source–receiver paths in the related problem form a subset of

those in the original problem, the related problem requires at

least as many codes as the original problem.

Therefore, in finding an upper bound we can, without loss of

generality, consider the case where the minimum cut capacity



1308 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 4, APRIL 2005

between the source and each receiver is exactly two. This puts

us in Case 3.

Case 3: One of the receivers, say , has a minimum cut of

links. We will show that there exists a set of paths sufficient

for transmission to , which does not intersect the trunk of

some tree . Then the trunk of tree can be covered by a

single code. Its branches can be partitioned into sets ,

each paired with a distinct tree , such that the subtree of

excluding branches in set can replace tree in a full rank

set. Intersections between branches in set and some tree

can then be covered together with intersections , if any.

If has a minimum cut of more than links, then

, and at most codes are required altogether.

If has a minimum cut of links, then by similar rea-

soning as for , there exists some tree whose trunk can be

covered by a single code. Its branches can be partitioned into

sets , , each paired with a distinct tree , such that the

subtree of excluding branches in set can replace tree

in a full rank set. Then, intersections between branches in set

and some tree can be covered together with intersections

, if any, and intersections between branches of in

set and branches of in set can be covered together with

intersections , if any.

Consider the following procedure that takes as inputs a set

of trees and a set of disjoint paths, and outputs a pos-

sibly modified set of paths. Let an intersection that is the furthest

upstream on the trunk of some tree be called a leading inter-

section. At each step, any path with a leading intersection that

is not the furthest upstream intersection of the path is shortened

by removing the portion of the path upstream of that leading in-

tersection. The procedure ends when the leading intersection, if

any, of each tree is with the furthest upstream intersection of

a path. An illustration of this procedure is given in Fig. 17. We

denote by the subset of trees with trunk intersections at

the end of the procedure, and by the subset of paths with

a leading intersection at the end of the procedure.

The sets and obtained at the end of the procedure are

uniquely defined by the input sets, regardless of the choices

made at steps where there is more than one candidate intersec-

tion that can be chosen by the modification procedure. First, sup-

pose to the contrary that two different sets are obtained from

the same inputs via two different sequences and of mod-

ifications. Then some tree is in the set for sequence

but not . This means that tree has a leading intersection

with some path at the end of sequence , whereas tree

has no trunk intersections at the end of . Thus, shortens

path such that its furthest upstream intersection is a leading

intersection with some other tree . The intersection

is not however a leading intersection at the end of sequence ;

the leading intersection of tree is with some other path .

This in turn means that shortens path such that its fur-

thest upstream intersection is with yet another tree; continuing

the argument in this fashion leads to a contradiction since the

number of trees in is finite.

Next suppose that two different sets are obtained via two

sequences and of modifications. Then some path has

a leading intersection at the end of one sequence but not the

Fig. 17. An illustration of the path-shortening procedure. In the first step, path
P is shortened to form P by removing the portion of P upstream of its
intersection with tree G . In the second step, path P is shortened to form P

by removing the portion of P upstream of its intersection with tree G .

other . This means that does not modify . The furthest

upstream intersection of at the end of is with some tree ;

since this is not a leading intersection following , the leading

intersection of tree following is with some other path .

Path is shortened by such that its furthest upstream inter-

section is with some other tree , whose leading intersection

is with yet another path. Continuing similarly we reach a con-

tradiction since the number of paths in is finite.

This leads to the following property.

Property: Let be the set of paths obtained from running

the procedure on a set of paths and a set of trees . Running

the procedure on and a set of trees that is a superset of

gives the same output sets and as running the procedure on

and .

Thus, the output sets are unchanged if we carry out the proce-

dure in two stages, first considering all intersections involving

trees in a subset , then carrying out the procedure to

completion on the entire set of trees.

We will describe an algorithm for obtaining a set of paths that

suffices for transmission to and has no intersections with the

trunk of some tree . This algorithm involves one or more runs

of the procedure described above. We denote by , , ,

respectively, the sets , , corresponding to the th run.

We set to be the full set of trees , ,

and to be any set of disjoint paths each joining a different

source to . If one of the trees in has no intersections along

its trunk, then we are done. Otherwise, consider the leading in-

tersection of each tree and the furthest upstream intersection of

each path. There exists a code in which the signal vectors of

the leading intersections of any trees form a basis set. There

exists also a code in which the signal vectors of the furthest up-

stream intersection of each path form a basis set. Thus, there ex-

ists a code which satisfies both conditions simultaneously. We

associate with each tree the signal vector of its leading inter-

section in this code, and with each path the signal vector of its

furthest upstream intersection in this code. We denote by

the set of signal vectors of the trees or paths in a set .

For the first run of the procedure, since there are trees

in and paths in , the procedure ends with at least one tree

whose trunk has no intersections.
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Each run of the procedure ends in one of the following two

cases.

Case 3a: The set of paths at the end of the procedure suffices

for transmission to . Then we have a set of paths with the

desired property.

Case 3b: The set of paths at the end of the procedure does not

suffice for transmission to . Then the set is

nonempty, and some vector in the span of is also in the

span of .

To see this, first note that that at the end of the procedure,

every path in forms the leading intersection of a distinct tree

, and acquires the signal vector associated with that tree. Also,

the signal vectors of any trees form a basis set. If the redefined

paths cannot carry a basis set, then at most trees have

leading intersections at the end of the procedure, and

. Next, observe that since the vectors in are linearly

independent, as are the vectors in , any linearly

dependent set of paths at the end of the procedure must include

paths in both and .

Consider a basis set for vectors that are both in the span of

as well as in the span of . Each vector ,

, can be expressed as a linear combination of

vectors forming a set , and paired with a vector

chosen from as follows. is paired with an arbitrarily

chosen vector . For subsequent vectors , con-

sidered, if contains any vectors , Gaussian elim-

ination is performed on vectors , to obtain a vector

in the span of a set that does not contain any vec-

tors . This is possible because of the linear indepen-

dence of vectors in . The vector under consideration is

then paired with an arbitrarily chosen vector . The pair-

ings produced in this way have the property that the expression

of any vector as a linear combination of vectors

in includes at least one vector . The

trees corresponding to vectors are then removed from to

form set . The procedure is then run recursively on the new

set of trees , which is a proper subset of the previous set .

Note that the set formed by each run of the procedure is

equal to or a subset of the sets formed by previous runs

, and the set of each run is equal to or a subset

of the sets from previous runs . This follows

from Property 1 and the following observations: that the set

of a run is a subset of that of previous runs, and that elements

are added to but never removed from sets and in the

course of a procedure. This means that paths in the set of

some run will never have leading intersections in subsequent

runs.

Next, we show that every run ends with a nonempty set

of trees with no trunk intersections. As shown earlier, this is

true for run . For , at most trees have been

eliminated from by the start of run , so

Each run ends with each tree in having either no trunk inter-

sections, or having a leading intersection with the furthest up-

stream intersection of a path. At the end of run , since at most

paths can have leading intersections, at least one

tree of does not have a trunk intersection. Thus, is

nonempty.

Finally, we show that any vector in the span of for

some run is independent of for any subsequent run

. Consider the expression of in terms of one or more

vectors in the set . At least one of these vectors is not in

the set , its corresponding tree having been eliminated

from following run . Now any vector can be expressed only

as a linear combination of a subset of vectors in or as

a linear combination of the complementary subset of vectors in

, otherwise, there would exist a dependent set of vectors

in . Since the set is equal to or a subset of ,

the set is disjoint with the set . The vectors in set

are thus linearly independent with . As a result,

the vectors in the set corresponding to a run are independent

of those in previous runs.

Since the total number of vectors in sets is upper-bounded

by , and the set for each run of the procedure ending

in Case 3b must be nonempty, the procedure eventually ends in

Case 3a.

This proves the result for the two-receiver case.

For , the trees , , associated with

each receiver , , can be grouped into

link-disjoint forests (Theorem 3a), such that failure of all links

in any one forest leaves a subgraph of the network that satisfies

the max-flow min-cut condition for receiver node . Thus, a

set of links intersecting or of the forests associated with each

receiver can be covered together.

Our analysis for the two-receiver case partitions the links up-

stream of two receivers and into at most sets such

that failure of all links in any one set leaves a subgraph of the

network that satisfies the max-flow min-cut condition for re-

ceivers and . Each of these partitions may contain links

that are part of up to forests corresponding to receiver

, which have to be covered separately. Each of the resulting

subsets may, in turn, contain links that are

part of such sets for receiver , and so on. Thus, at

most codes are required for receivers.

We are not yet certain as to how tight the bounds are for the

multireceiver all link failures case. For the two-receiver case, an

example in which codes are needed is given

in Fig. 18. In this figure, there are paths leading to each

receiver, which intersect each other in a stair-like pattern: the

first path to Receiver 1 intersects one path to Receiver 2, the

second path to Receiver 1 intersects two paths to Receiver 2, the

third intersects three, and so on. Each of the

intersections must be covered by a separate code.

The nonmulticast case differs from the multicast case in that

processes which are needed by one node but not another can

interfere with the latter node’s ability to decode the processes

it needs. As a result, a static interior solution does not always

exist, and the network management requirement for terminal

link failures may exceed the corresponding upper bound from

the multicast case. Unlike the multicast case, where the number

of codes for terminal link failures is bounded by , in the

nonmulticast case, the number of codes for terminal link failures

can grow linearly in the number of receivers.
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Fig. 18. An example multicast problem in which (r+1)(r+2)=2 codes are
needed for all link failures.

Proof of Theorem 3c: We will use nonactive codes in this

proof. Let a set of terminal links of a receiver be called a

decoding set for in a given interior code if can decode the

processes it needs from links in , but not from any subset of

. is called a decoding set for in a given failure scenario if

is a decoding set for in some valid interior code under this

scenario.

Note that , for a nonmulticast problem. From

Theorem 1, at least two codes are required to cover failures of a

receiver’s terminal links. Consider a receiver that has

terminal links, and any recoverable set of failures of one or more

terminal links of other receivers. In any interior code

that is valid under failure of these terminal links, and in which

all terminal links of have nonzero signal vectors, either has

a decoding set of links, or it has at least two possible

choices of decoding sets of links. All terminal links of except

those in a decoding set can be covered by . If has a

decoding set of links, at least one of these can be covered by

any interior code valid under failure of another set of

terminal links, and in which all terminal links of have nonzero

signal vectors. So at most of its terminal links require an

additional code.

We have not yet determined whether this bound is tight.

Fig. 19 gives an example which comes close to this bound,

requiring

codes. Here, each adjacent pair of receivers and shares

a common ancestral link which can carry two processes,

each of which is needed by only one of the two receivers. Failure

of any link to the left of , other than , requires

to carry one of the processes only, and failure of any link to the

right of , other than , , requires to carry

the other process only, necessitating separate codes.

D. Nonlinear Receiver-Based Recovery

Proof of Theorem 4: We can view the signals on a re-

ceiver’s terminal links as a codeword from a linear code

with generator matrix . The minimum number of nonlinear

receiver codes required is the maximum number of codewords

that can be the source of any one received codeword under dif-

ferent failure scenarios.

Assuming that zero signals are observed on failed links, no

network management is needed for single-link failures if each

codeword differs from any other in at least two positions which

are both nonzero in at least one of the codewords.

First we consider the lower bound. For a single receiver ,

recovery from single terminal link failures with no network man-

agement requires the code with generator matrix to have

minimum weight and satisfy the property that for any pair of

codewordswhich differ in only two places,one of them must have

nonzero values in both places. Now if there were a code of weight

, rank , and length , it would be a maximum distance

separable code, which has the property that the codewords run

through all possible -tuples in every set of coordinates. In a set

of coordinates, where each entry is an element in , consider

the codewords with exactly one nonzero entry in this set

of coordinates. For a weight code, these codewords

must all be nonzero in the remaining coordinate. They must also

all differ from each other in the remaining coordinate if they

are to satisfy the property that for any pair of codewords which

differ in only two places, one of them must have nonzero values

in both places. This is possible for , but not for , as

there are only possible values for the remaining coordinate.

There will be at least different codewords which give the same

received codeword for different failures. For , there

exist codes of weight in some large enough finite field . A

simple example is a network consisting of parallel links between

a single source of processes and a receiver.

Thelinearreceiver-basedupperboundsofLemma4applysince

linear coding is a special case. For , the bound of

codes is tight, as shown in the example of Fig. 20. For ,

there are at least two terminal links that carry the single process,

and loss of either link leaves the receiver able to decode using an

ORoperation,soonecodesuffices.For ,supposeweneed

codes for each of the terminal link failures. This means

that thereare differentcombinationsofsourceprocesses that

give the same received codeword, each under a different terminal

linkfailure,sincenotwocombinationsofsourceprocessesgivethe

same received codeword under the same scenario. The common

codeword would then have in all places, which implies

that the weight of the code is . However, this is not possible in

a valid static code as loss of a single link could then render two

codewordsindistinguishable.Thus,atmost differentcodewords

canbethesameunderdifferentsingle-linkfailures.Anexamplein

which and nonlinear receiver-based codes are needed

is given in Fig. 13.

Next we consider the multiple-receiver case. We refer to the

code generated by as a code, and the codewords as

codewords. A codeword under a single-link failure of a receiver

cannot coincide with a different codeword under no failures

of terminal links of since this would imply that the code has

minimum distance , which would not be the case in a valid static

code. So a receiver which receives a no-failure codeword can

ignore management information regarding failures. Thus, the

management information does not need to distinguish among

terminal link failures of different receivers. As such, a static code
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Fig. 19. An example network in which (t � 2) + (r � 1) codes are needed.

Fig. 20. An example network in which 2 � r � t � 2, which achieves the
nonlinear receiver-based upper bound of r codes.

in a multiple-receiver problem such that each receiver requires

nonlinear codes requires codes in total.

E. Node-Based Management Requirement

To prove Theorem 5, we first establish the following lemmas.

Lemma 9: In a given network, for any set of nonactive codes

there exists a set of receiver-based codes

such that covers the same terminal link failures as

, for all .

Proof: Each nonactive code covers a set of terminal links

whose complement corresponds to columns of

that contain a set of independent columns. Let the nonzero

entries of and be parameterized by elements forming a

vector . There are submatrices consisting of of

these columns that have nonzero determinant . For any

set of such codes, there exist static coefficients in a large

enough finite field such that all are nonzero.

Corollary 4: The terminal link failures covered by each code

in a network-wide scheme can be covered by one or two codes

in a receiver-based scheme.

Proof: Terminal link failures covered by a single network-

wide code active in those links correspond to columns in

which are multiples of each other (Lemma 1). Only one of these

columns is needed to form a basis, so a single nonactive code

can cover all but one of these links, and another nonactive code

can cover the remaining link. The result follows from applying

Lemma 9.

Lemma 10: If the no failure scenario and all single-terminal

link failures are covered by a set of codes

having a common matrix, then they can be covered by a set

of codes

with a common matrix.

Proof: Since an active code cannot cover the no-failure

scenario (Lemma 1), there is at least one nonactive code. If

codes

are all nonactive, there is a set of codes with common

that cover the same terminal link failures (Lemma 9).

Otherwise, there is at least one active code among them. We

denote the set of terminal links covered by a code by

, and the set of remaining terminal links by . Consider any

active code and any nonactive code .

Columns are multiples of each other, i.e.,

for constants and a vector . Now

has full rank. If does not contain a full

basis, then one of the columns is not in the range

of . Then contains a full

basis, i.e., has full rank. If contains

a full basis, can be any link in . Thus, is part of a

valid nonactive code covering the rest of the links

in apart from , together with links in .

Proceeding similarly, the secondary links of each active code

can be covered together with some nonactive code, and its pri-

mary link can be covered by a new nonactive code. A set of

nonactive codes covering the same failures as the original set

can thus be constructed. By Lemma 9, there exists a set of re-

ceiver-based codes covering the same failures.

Proof of Theorem 5: If interior nodes each

switch among codes, respectively, and the receiver switches

among codes, the node-based management requirement is

where is the number of different values for among all

the codes. because between two distinct values

of , there is at least one interior node which switches code.

Let a set of codes covering the no-failure scenario and all

terminal link failures be called complete. We show that for any

complete set of network-wide codes with values for and

values for , there exists a complete set of receiver-

based codes. Then the receiver-based management requirement
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is , which is less than or equal to the network-wide

requirement.

Case 1: . There exists a complete set of codes

with a static matrix, which are receiver-based codes.

Case 2: . There exists a complete set of codes with

a static matrix. By Lemma 10, there exists a complete set of

receiver-based codes with a static matrix.

Case 3: , . If any set of codes

has a common matrix, there is a corresponding set of

nonactive codes covering the same terminal links (Lemma 5).

Each of the remaining codes can be covered by one or two non-

active codes (Corollary 4). Replacing active codes by nonactive

codes in this way, the maximum resulting number of nonactive

codes is . This is because each of the original codes is a

pairing between one of matrices and one of matrices.

If there are codes corresponding to all combinations, then

each code has an matrix that is the same as for other

codes, and nonactive codes suffice. If there are

matrices that are not common across two or more codes, then

the number of nonactive codes needed is at most

for

Thus, there exists a complete set of receiver-based codes

(Lemma 9).

V. CONCLUSION AND FURTHER WORK

As the complexity of networks increases, so do the network

management overhead and the catastrophic effects of imper-

fect network management. It is thus useful to understand net-

work management in a fundamental way. We have proposed a

framework for considering and quantifying network manage-

ment, seeking through our abstraction not to replace implemen-

tation, but to guide it.

We have given a framework for quantifying network manage-

ment in terms of the number of different network behaviors, or

codes, required under different failure scenarios. We have com-

pared the management requirements for network-wide and re-

ceiver-based recovery, and have provided bounds on network

management for various network connection problems in terms

of basic parameters, including the number of source processes,

the number of links in a minimum source–receiver cut, and the

number of terminal links.

Several areas of further research result from this work. One

such area is network management needs for network connection

problems in which certain links are known to fail simultane-

ously. For instance, if we model a large link as several parallel

links, the failure of a single link may entail the failure of all

associated links. Such dependence may significantly lower our

network management requirements. Other directions for further

work include extending our results to networks with cycles and

delay, studying the capacity required for transmission of net-

work management signals, and considering network manage-

ment for wireless networks with ergodically varying link states.

We expect that similar approaches to the ones presented in this

paper may be useful.
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