An infrared-optical study of IRAS point sources in the

Virgo region

H. T. MacGillivray ${ }^{2}$, P. J. Puxley ${ }^{1}$, A. Savage ${ }^{2 \dagger}$

and R. D. Wolstencroft ${ }^{2}$
Astronomy Department, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ
${ }^{2}$ Royal Observatory, Blackford Hill, Edinburgh EH93HJ ${ }^{2}$ Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ
${ }^{3}$ Department of Astronomy, Tabriz University, Iran
Accepted 1987 March 3. Received 1987 February 10
 detected by the Infrared Astronomical Satellite (IRAS) in a $113 \mathrm{deg}^{2}$ area centred on the Virgo cluster. The identifications are made using four deep IIIa-J plates
 ated with stars, 113 with optically bright ($B_{J}<16$) galaxies, 32 with faint ($B_{J}>16$)
 area is affected by infrared cirrus, with which five of the seven empty fields are ssociated.
We have created an infrared-optical Virgo galaxy database, complete to about
$B=16$, by combining our data with the catalogue of Bingeli, Sandage \& Tam-

1 Introduction

This is the second paper reporting the results of a large-scale programme underway at Edinburgh to identify optically IRAS point sources. The Infrared Astronomical Satellite is described in detail in the Explanatory Supplement edited by Beichman et al. 1985 (hereafter IRAS ES). Paper 1 *Visiting Professor at ROE.
\dagger Present address: UK Schmidt Telescope Unit, Coonabarabran, NSW, Australia.
$564 \quad$ S. K. Leggett et al.
(Wolstencroft et al. 1986) give optical identifications for 312 IRAS point sources in a $304 \mathrm{deg}^{2}$ area at the South Galactic Pole (SGP)
 they deliberately avoided the Virgo cluster, concentrating on field galaxies. This cluster of nearby bright galaxies can, however, be used to study the effect of environment on IRAS galaxies, and the wealth of published data on the cluster has enabled us to create a very useful infrared-optical database.
The identification procedure used here is semi-automatic. The central $29 \mathrm{deg}^{2}$ of each $41 \mathrm{deg}^{2}$ SERC IIIa-J Schmidt glass atlas plate are digitized by the plate measuring machine COSMOS. The COSMOS system has been recently reviewed by MacGillivray \& Stobie (1984). Objects within a 1 arcmin radius of the $I R A S$ point source (IRPS) position are extracted using STARLINK supported catalogue handling software, with additional programs written by one of us (RGC) specifically for this project.
The candidates are inspected by eye using plate overlays. Identifications with bright stars are unambiguous, and these give the initial positional errors for the field, which then allow identification of the other sources. This process is usually straightforward, and the IRAS flux distribution can be used to confirm the candidate.
This paper presents identifications for the $I R A S$ point sources from four plates centred on the Virgo cluster region, which cover the sky area given by a right ascension range $12^{\mathrm{h}} 02^{\mathrm{m}}$ to $12^{\mathrm{h}} 47^{\mathrm{m}}$, and a declination range $7^{\circ} 59^{\prime}$ to $18^{\circ} 38^{\prime}$. This region is 113 square degrees in area and contains 206 IRAS point sources. The source density of 1.8 per square degree compares with 1.1 per square degree at the SGP (Paper 1). The increase in density is due to the cluster galaxies only-the stellar density is very similar as would be expected since this area is near the North Galactic Pole (galactic latitude about 80°).
The identifications are given in Section 2, where the positional errors and confidence limits are described. Properties of the empty fields are discussed in Section 3, the stellar sources in Section
We have paired our data with the optical catalogue of Virgo galaxies by Binggeli, Sandage \&
 investigate, in Section 5, the properties of IRAS galaxies and non-IRAS galaxies, as well as cluster members and field galaxies.
The Virgo cluster region on
The Virgo cluster region on IIIa-J plates is shown in Plate 1 ; this shows the area covered by this
work. The region of overlap with Binggeli et al. is indicated on this plate. Plate 2 shows the IRAS work. The region of Overlap with Binggeli et al. is indicated on this plate. Plate 2 shows the IRAS
skyflux image at $100 \mu \mathrm{~m}$ on which the brightest galaxies can be seen, and on which the positions of

 or $100 \mu \mathrm{~m}$. The $60 \mu \mathrm{~m}$ skyflux image shows the brighter galaxies and slight traces of cirrus; the 25 and $12 \mu \mathrm{~m}$ images show a few stellar sources. Comparison of Plates 1 and 2 shows that IRAS detected the optically bright spiral galaxies (see Section 5.3 for detailed discussion).

2 The identifications

The identifications are given in Table 1, which gives the following information.
Column 1: IRAS name, abbreviated right ascension and declination HHMM.M \pm DDMM. Columns 2, 3: optical position, measured by COSMOS (1950). For empty fields the IRAS position is given in brackets.
Columns 4, 5: positional difference (optical-IRPS position), arcsec.
Column 6: name of optical source.

IRAS point sources in the Virgo region 565
Column 7: morphological classification: galaxies by eye following de Vaucouleurs (1959); stars from The Bright Star Catalogue (Hoffleit 1982) or the SAO catalogue.
Column 8: type code as described in the notes at the end of the table
Column 9: optical magnitude: galaxies B-magnitude either from catalogues or estimated off the plate (see Paper 1); stars V-magnitude from catalogues or, for the few uncatalogued stars, B estimated from the diffraction spike length on the plate (UKSTU Handbook) Column 10: B_{J} magnitude measured by COSMOS for the galaxies. limits only, : denote moderate quality fluxes.
Column 15: logarithm of the ratio of the far-infrared luminosity to the optical luminosity for those galaxies with better than upper limit detections at both 60 and $100 \mu \mathrm{~m}$, and that have
COSMOS B-magnitudes. COSMOS B-magnitudes.
Column 16: logarithm of the fa
that have measured redshifts, and better than upper limit detections at both 60 and $100 \mu \mathrm{~m}$. Column 17: notes of flags given in the IRPS Catalogue (described at the end of the table); sources are flagged that have nearby extended structure (cirrus and small extended structure), or are themselves extended (poor point source correlation coefficient), those that have nearby point sources (confused), and those that are variable. These are described in detail in the IRAS ES. R indicates that there are further remarks at the end of the table.
Plate 3(a)-(g) show finding charts for the optical identifications of the IRAS galaxies and empty fields, in RA order. The finding charts are $2 \times 2 \operatorname{arcmin}^{2}$ unless otherwise marked. They have been made from UK Schmidt Telescope plate material, apart from one source ($12156+0801$), on the edge of a IIIa-J plate, which has a finding chart from a Palomar plate.
The IRPS positional errors are approximately Gaussian, with a FWHM of about $20-30 \mathrm{arcsec}$ in both right ascension and declination for this region. The COSMOS measured offsets (opti-cal-IRAS) for the stellar sources and the galaxies are plotted in Figs 1 and 2. The semi-major and

Axis offset larcsec
Figure 1. Positional differences between the COSMOS measured optical position and the IRAS position for the 54
 equivalent to 2.45σ and equal 27 and 6 arcsec. The bars are not orthogonal because of the different scales of the axes. (b) Histograms showing the offsets (optical-IRAS) along the major and minor axes. There is a small offset from $(\Delta \alpha, \Delta \delta)=\left(0,{ }^{*} 0\right)$, and the $I R A S$ positional errors are approximately Gaussian.

spləy кıduә	
:somxepes poyissepoun	Z
:səixeper --9q gS	
¢sarxepes q-e gS	
	6
:sotxepes q-e XS	8

:sวixpjeŝ -aq VS L
ใsว!xe[es q-e VS 9

ssreis poyissejoun lutef t

Right ascension offset (arcsec)
Figure 2. Positional differences between the COSMOS measured optical position and the IRAS position for the 145 galaxy sources. (a) Plot of declination offset against right ascension offset, arcsec. The bars define the major and
minor axes and the 95 per cent confidence error ellipse. For a two-dimensional Gaussian distribution these are equivalent to 2.45σ and equal 54 and 18 arcsec. The bars are not orthogonal because of the different scales of the axes (b) Histograms showing the offsets (optical-IRAS) along the major and minor axes. There is a small offset from $(\Delta \alpha, \delta)=(0,0)$, and the IRAS positional errors are approximately Gaussian.
semi-minor axes of the 95 per cent confidence error ellipses (2.45σ for two-dimensional Gaussian distributions) are $27 \times 6 \operatorname{arcsec}^{2}$ for stars and $54 \times 18 \operatorname{arcsec}^{2}$ for galaxies, with the major axes at a position angle of 108°. These compare with $35 \times 7 \operatorname{arcsec}^{2}$ for stars and $45 \times 12 \operatorname{arcsec}^{2}$ for the fainter (more point-like) galaxies in the SGP area presented in Paper 1 (position angle 66°). The error ellipses are offset from $(\Delta \alpha, \Delta \delta)=0,0$ by $1-4$ arcsec (see Figs 1 and 2); a similar offset was
found in Paper 1 , although not in the same direction. This In Paper 1 these two-dimensional Gaussian position errors were combined with the probability of chance coincidence to determine likelihood ratios for our identifications. The likelihood ratio, $L R$, is given by
where, Q is the a priori probability that an optical identification exists above the survey limit; σ_{J} and σ_{N} are the 1σ position errors along the major (J) and minor (N) axes of the ellipse; $N\left(B_{J}\right)$ is the surface density of optical candidates of magnitude B_{J} or brighter; and r is given by
where $\Delta \theta$ is the positional displacement. Following the analysis of Paper $1, Q$ can be shown to be effectively unity
The adoption of a particular value of $L R$ as acceptable is necessarily a compromise between
completeness (low $L R$), and reliability (high $L R$). We adopt $L R>3$ as a ponds to a reliability of 75 per cent for an individual object in the worse case (although the majority of the identifications will have a reliability >90 per cent). Even in this area with a high

3 Empty fields

Seven IRAS sources have no obvious optical counterpart. Table 3 gives a summary of the IRAS
Sources $12041+1158,12174+1305,12289+1129$ and $12293+1148$ are completely empty within
1 arcmin of the IRPS position, but have cirrus flagged and can be seen to be in a badly affected
area from Plate 2 . All these sources are detected at $100 \mu \mathrm{~m}$ only.
$12081+1809$ does have two 15 th magnitude galaxies 1 and 1.5 arcmin off NW with $L R \leqslant 1.5$ but
cirrus is flagged and visible on Plate 2 . This is also a $100 \mu \mathrm{~m}$ only source.
The source $12156+0801$ is on the edge of the J-plate and the objects visible on the Palomar E
finding chart in Plate 3 are flaws. There is a very faint object ~ 40 arcsec east with low LR ($\sim 0.5)$
and high implied $L($ IR $) / L(B)(\geq 50)$. A CCD image kindly obtained with the 0.75 -m telescope at
SAAO by Dr J. Menzies indicates that this object is a disturbed galaxy. The region appears to be
clear of cirrus. This is a $60 \mu \mathrm{~m}$ only $I R A S$ source. The source $12234+1315$ has an uncatalogued

		$\chi^{\prime} \mathrm{I}=\left(\square^{\prime} \varepsilon\right) \mathrm{IS}$					
		＇ $\mathrm{B}=(\mathrm{t}) \mathrm{O}$	£61＇I	T $200 \checkmark^{\circ} 0$	TILIEO	TZヤOロ＊	$62 \mathrm{II}+682 \mathrm{ZI}$
		$\varepsilon=2)^{\prime} 0=1 \bigcirc$					
		＇ $\mathrm{Q}=$（£） O Р	$7100{ }^{\circ}$	จ¢Es＇0	7668て＇0	TE¢9＊＊0	SIEI＋か\＆zzI
		$\varsigma=$ ¢ $冖=10$					
		${ }^{\prime} \mathrm{G}=(\mathrm{t}) \mathrm{O} \mathrm{D}$	¢E£ ${ }^{\text {I }}$	TE00t ${ }^{\circ}$	TLZとะ0	1905\％＇0	SOCItolizi
		$1=20^{\prime} \mathrm{I}=10$					
		$\bigcirc \mathrm{C}=$（ ε ） O	7 LIT	とてかった	Tbisto	т¢ร8\％ 0	1080＋9¢IZI
		$t=23^{\prime}=10$					
		${ }^{\prime} \tau=(\underline{\text { ）}}$ IS					
		＇ $\mathrm{G}=(\mathrm{t}) \bigcirc 0$	zs＇i	TLSISO	7S 266.0	TSLI 80	$608 \mathrm{I}+1802 \mathrm{I}$
		$s=20^{\prime} \mathrm{r}=10$					
\cdots		$\chi^{\prime} I=\left(b^{\prime} \mathrm{E}\right) \mathrm{IS}$					
$\stackrel{ \pm}{ \pm}$		${ }^{\prime} \mathrm{a}=(\mathrm{b}) \mathrm{O}$	8201	$766 \varepsilon^{\circ} 0$	TEt85＊0	T $\angle 699^{\circ} 0$	$8511+1 t 021$
－		SOV7	$\mathrm{urfr}^{0} 01$	urr 09	urisz	untzI	GWVN
$\dot{\sim}$	SXXVNAY	SdyI			人	＇sax＠te	SVYI

$\begin{aligned} & \text { IRAS point sources in the Virgo region } 573 \\ & \text { star very close to the } I R A S \text { position, but the } 60 \mu \mathrm{~m} \text { flux detection would not support this }\end{aligned}$
star very close to the $I R A S$ position, but the $60 \mu \mathrm{~m}$ flux detection would not support this
identification. NGC 4406 is 7 arcmin south-east and another 16 th magnitude galaxy is 2 arcmin

$12156+0801$ and $12234+1315$ may be genuine empty field candidates. Both of these are $60 \mu \mathrm{~m}$
only $I R A S$ sources, suggestive of 'hot' galaxies which are extremely infrared luminous. In Section
 ($B>22$), the implied far-infrared luminosity is $\sim 10^{13} L_{\odot}$.

4 Stellar sources

The density of stars detected by IRAS in this area (close to the North Galactic Pole with latitude about 80°) is 0.48 per square degree, cf. 0.49 at the SGP (Paper 1). Fig. 4 shows a histogram of the V-magnitudes for the 54 stars in this sample. The distribution is similar to that at the SGP, showing a steady increase from $V=5$ to $V=8$, and then a sharp drop with a few objects having $V \sim 15$. The star counts given in Allen (1973) for this latitude imply that IRAS detected all stars brighter than $V=8$, although the early-type stars have to be brighter at V to be detected by IRAS at $12 \mu \mathrm{~m}$.
 IRAS at $12 \mu \mathrm{~m}$, or the expected IRAS flux for a given V, as a function of spectral type. Waters, Cote \& Aumann (1987) have established a well-defined $B-V: V-[12]$ relationship for ~ 6000 bright stars in IRPS, for $-0.25<B-V<1.60$ (approximately B2 to M0 spectral types). Their relationship can be written

$V-[12]=f n(B-V)$

so that for a constant $B-V$, i.e. for a given spectral type,

$V=-2.5 \log F(12 \mu \mathrm{~m})+K$,
where K is a constant. At the lower limit of detection $F(12 \mu \mathrm{~m})=0.3 \mathrm{Jy}$, so that
$V_{\max }=1.31+K$.

A histogram of the B-magnitudes for the 145 galaxies in this sample is given in Fig. 7 ; it shows a
range of 9 to 20 , peaking at $B=12$. The magnitudes used in Fig. 7 are a combination of magnitudes
measured by COSMOS ('cosmag') and catalogue values, or, in a very few cases, magnitudes Table 4 gives values of K as a function of $B-V$, and also gives $V_{\max }$.
Fig. 5 is a plot of the logarithm of the $12 \mu \mathrm{~m}$ flux density (not colour corrected, see IRAS ES) against visual magnitude. The $V-[12]$ relationships found by Waters et al. for different spectral types are illustrated, and a 2000 K blackbody line is also given. K-type stars are dominant in this sample, as they are in optical (all sky) samples for $V<8$ (Allen 1973). The maximum V-magnitude for $I R A S$ detection for K-types is about 8, and this explains the peak in the V distribution shown in Fig. 4.
If the spectral type is known, the $B-V: V-[12]$ relation allows any $12 \mu \mathrm{~m}$ excess to be deter-
mined. Fig. 5 shows that this sample contains some red giants with infrared excesses (that are probably undergoing mass loss) and some Mira-like stars.
Fig. 6 is a histogram of the ratio of the $12 \mu \mathrm{~m}$ flux density to the $25 \mu \mathrm{~m}$ flux density, for the 14 stars that have moderate- or high-quality detections at both these bands. The majority of the stars have a flux distribution at these wavelengths similar to the Rayleigh-Jeans region of a blackbody [$F(12 \mu \mathrm{~m}) / F(25 \mu \mathrm{~m}) \sim 4]$ but again there is evidence of flux excesses at longer wavelengths in some

 corresponding to blackbody temperatures of $120-4000 \mathrm{~K}$; comparing this with Fig. 6 confirms that

[^0]| S. K. Leggett et al. | | | |
| :---: | :---: | :---: | :---: |
| Table stella $+K$, | Table 4. The value of K, as a function of $B-V$, for the stellar $V: F(12 \mu \mathrm{~m})$ relation, $V=-2.51 \log F(12 \mu \mathrm{~m})$ $+K$, and maximum value of V for detection, $V_{\max }$. | | |
| B-V | Spectral | K | $\mathrm{V}_{\text {max }}$ |
| | type | | |
| 0.00 | A0V | 4.08 | 5.39 |
| 0.27 | F0V | 4.84 | 6.15 |
| 0.58 | G0V | 5.55 | 6.86 |
| 0.65 | G0III | 5.69 | 7.00 |
| 0.89 | K0V | 6.17 | 7.48 |
| 1.07 | K0III | 6.55 | 7.86 |
| 1.45 | M0V | 7.56 | 8.87 |
| 1.60 | M0III | 8.22 | 9.53 |

$\stackrel{n}{n}$

[^1]
Figure 6. Distribution of the flux density ratio $F(12 \mu \mathrm{~m}) / F(25 \mu \mathrm{~m})$, neither colour corrected, for the 14 stars with
moderate or high-quality detections at both these bands.
estimated off the plate by eye (see Paper 1). Fig. 8 plots this other B-magnitude against 'cosmag' and shows deviations of up to a magnitude, with a mean difference of 0.6 magnitudes. These deviations reflect mainly the error in the catalogue and estimated B-magnitude, and the dispersion within that group; the relative error in the cosmag is about 0.2 mag, with a zero-point uncertainty of $\leq 0.5 \mathrm{mag}$. In the following analyses we will use the 119 galaxies with COSMOS magnitudes to define a homogeneous sample.
Fig. 9 is a histogram of the values of $\log [L($ IR $) / L(B)]$ for the 97 galaxies with cosmags and better than upper limit detections at both 60 and $100 \mu \mathrm{~m}$. The parameter $L($ IR $)$ is a measure of the
flux emitted from 42 to $122 \mu \mathrm{~m}$ (in Wm^{-2}, see Lonsdale etal. 1985 where it is defined as FIR), such

T-

$\stackrel{N}{i}$

[^2]
Figure 10. Plot of the logarithm of the ratio of infrared to optical luminosity for 97 galaxies with 'cosmags' and
moderate- or high-quality detections at both 60 and $100 \mu \mathrm{~m}$, against 'cosmag'. The line gives the minimum value of $L($ IR $) / L(B)$, at given B, for detection by IRAS (see text).

[^3]

Figure 12. Plot of the logarithm of the ratio of infrared to optical luminosity against $F(100 \mu \mathrm{~m}) / F(60 \mu \mathrm{~m})$ for the sample of galaxies as in Figs 10 and 11. The symbols distinguish the galaxies by type code as follows: X , elliptical or
lenticular; + ,SA $\mathrm{a}-\mathrm{b} ; \mathrm{SX} \mathrm{a}-\mathrm{b}$ (none) $; \mathrm{O}, \mathrm{SB} \mathrm{a}-\mathrm{b} ; \boldsymbol{\bullet}$, optically faint unclassified; $\boldsymbol{\Delta}$, interacting; \cdot, SA $\mathrm{bc}-; *, \mathrm{SX} \mathrm{bc}-$; $*$ SB bc-
IRAS point sources in the Virgo region 579

 with caution as the elliptical/lenticular classification may be in error for fainter galaxies in which
 given in Table 5. The mean values of $L(\mathrm{IR}) / L(B), F(100 \mu \mathrm{~m}) / F(60 \mu \mathrm{~m})$ are as follows: $\mathrm{E} / \mathrm{S} 0-$ $1.1,2.5 ; \mathbf{S}(\mathrm{B}) \mathrm{a}-\mathrm{b}-1.5,2.6 ; \mathrm{S}(\mathrm{B}) \mathrm{bc}-\mathrm{d}-0.75,3.2$; faint - 19, 1.7; interacting-9.5, 1.8. For the 85 spirals and elliptical/lenticulars, the mean value of $L(\mathrm{IR}) / L(B)$ is $1(\pm \sim 2)$, and of $F(100 \mu \mathrm{~m}) / F(60 \mu \mathrm{~m})$ is $3(\pm \sim 1)$.
Morphological effects on infrared properties of galaxies are discussed further in Section 5.2. Table 5. Mean values of $\log [L(\mathrm{IR}) / L(B)]$ and $\log [F(100 \mu \mathrm{~m}) / F(60 \mu \mathrm{~m})]$ as a function of morphology, for the Virgo IRAS galaxies (present work), the SGP IRAS galaxies (Paper 1)
and the optically selected sample of IRAS galaxies of de Jong et al. (1984). Morphology Mean Mean No. in Source
$\log [\mathrm{L}(\mathrm{IR}) / \mathrm{L}(\mathrm{B})] \log [\mathrm{F}(100 \mu \mathrm{~m}) / \mathrm{F}(60 \mu \mathrm{~m})]$
$-0.26(0.61) \quad 0.38(0.10)$
$-0.07(0.47) \quad 0.38(0.16)$
$-0.23(0.31) \quad 0.48(0.14)$
 $0.84(0.46) \quad 0.25(0.10)$
$0.27(0.02)$
0.35
0.45
$0.19(0.04)$
$0.32(0.10)$
$0.50(0.03)$ 0.52 (0.02) $\stackrel{\rightharpoonup}{0}$
$\stackrel{\rightharpoonup}{\circ}$
$\stackrel{3}{6}$ 0.42 (0.07)
0.24 (0.10)
$0.62(0.08)$
0.30
0.21
$1.24(0.17)$

$-0.45(0.15)$ $\begin{array}{ll}n & n \\ 0 & 0 \\ i & 0 \\ i & 0 \\ i & 0\end{array}$ | n |
| :---: |
| |
| |
| 0 |
| i | $\stackrel{o}{9}$

$\stackrel{\rightharpoonup}{e}$
$\stackrel{\rightharpoonup}{i}$
i $-0.26(0.21)$
 $E / S 0$
$S(B) a-b$
$S(B) b c-d$
Faint $\mathrm{S}(\mathrm{B}) 0$
$\mathrm{Sa}-\mathrm{bc}$
$\mathrm{Sc}-\mathrm{d}$
$\mathrm{SBa}-\mathrm{bc}$
$\mathrm{SBc}-\mathrm{d}$
$\mathrm{Sdm}, \mathrm{Sm}, \mathrm{Im}$,
Amorphous

Figure 13. Plot of cluster membership status, against the logarithm of the ratio of infrared to optical luminosity, for
the 75 galaxies of the sample in Figs 9,10 and 11 that are in the Binggeli et al. (1985) optical Virgo cluster catalogue.
5.1.2 The infrared-optical database
We have paired our data with the catalogue by Binggeli et al. (1985). This is an optically selected sample of 2096 galaxies in an area of $140 \mathrm{deg}^{2}$ at Virgo, which covers 77 per cent of our area (see
 galaxies. Of the 97 galaxies with good 60 and $100 \mu \mathrm{~m}$ detections and 'cosmags', 75 are in their catalogue. Fig. 13 shows $\log [L(\mathrm{IR}) / L(B)]$ as a function of cluster membership status. The background and uncertain cluster members have values of the ratio of infrared to blue luminosity similar to that of the cluster members with the highest values of $L($ IR $) / L(B)$.
In order to calculate luminosities for these galaxies, we have assumed that cluster members are

 uncertain cluster members in the sample of $75 ; 16$ of these have redshifts by Binggeli et al. and

Luminosity has been plotted against the ratio of 100 and $60 \mu \mathrm{~m}$ flux density in Fig. 14, against $L($ IR $) / L(B)$ in Fig. 15, and against spiral morphology (from Binggeli et al. who used the Revised Shapley Ames system) in Fig. 16. Cluster, background and uncertain cluster members have been identified in these figures. The plots show that the ratio $F(100 \mu \mathrm{~m}) / F(60 \mu \mathrm{~m})$ tends to decrease with increasing luminosity, and that there is a correlation between $L($ IR $) / L(B)$ and L (IR). Although luminosities $\gtrsim 10^{10} L_{\odot}$ are reached only by Sb^{\prime} s and Sc 's, luminosities of $10^{9} L_{\odot}$ are common for the spirals in this sample.
 have $0.1<L(\mathrm{IR}) / L(B)<1$ and $L(\mathrm{IR}) \sim 10^{9} L_{\odot}$; these have $B \leqslant 14$ from Fig. 10. This group describes the normal, or typical, IRAS galaxy. Fig. 15 shows that there are also galaxies with $1<L(\mathrm{IR}) / L(B) \leqslant 4$ that have a far-infrared luminosity of $10^{10}-10^{11} L_{\odot}$ and, again from Fig. 10, such galaxies have $14<B \leqslant 16$. If we extrapolate the correlation between L (IR)/L(B) and L (IR)
 $L($ IR $) / L(B)$ between 4 and 50 (see Fig. 10), the implied $L\left(\right.$ IR) must be between 10^{11} and $10^{13} L_{\odot}$.

Figure 14. Plot of $F(100 \mu \mathrm{~m}) / F(60 \mu \mathrm{~m})$ against luminosity for the 73 galaxies that are in the Virgo cluster (assumed distance 19 Mpc), or that have redshifts, as given by the Binggeli et al. (1985) optical Virgo cluster catalogue.
Assumed $H_{0}=50 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$. Cluster membership status is distinguished as follows: \cdot, cluster member; \times,

Figure 15. Plot of the logarithm of the ratio of infrared to optical luminosity against luminosity for the 73 galaxies that are in the Virgo cluster (assumed distance 19 Mpc), or that have redshifts, as given by the Binggeli et al. (1985) optical Virgo cluster catalogue. Assumed $H_{0}=50 \mathrm{~km} \mathrm{~s}^{-1}$
cluster member; \times, uncertain; ${ }^{*}$, background.

[^4]
5.2 THE INFRARED PROPERTIES OF THE VIRGO CLUSTER GALAXIES COMPARED WITH FIELD GALAXIES
5.2.1 Comparison with Paper 1, the SGP IRAS galaxies

As would be expected, the present sample has a higher surface density of visually bright galaxies than the sample in Paper 1 for the SGP area. The SGP sample has an optical magnitude range of $10<B<20$, with a broad peak at 13-17, cf. Fig. 7. Optical studies of the Virgo cluster have indicated a low background density of galaxies (e.g. Binggeli et al. 1985), however, the surface density of galaxies fainter than $B=16$ detected by IRAS is similar for this area and the SGP area. The IRAS galaxies in the SGP have higher values of $L(\mathrm{IR}) / L(B)(0.2-158$, peak values 1-3)
than the Virgo galaxies. The difference is due to the different optical magnitude (or redshift) distributions of the samples. The plots of $L(\mathrm{IR}) / L(B)$ against B for the two areas are very similar at the bright end, where the total number of galaxies is similar (due to the larger area covered in Paper 1). The SGP sample contains a larger number, in total, of optically faint galaxies that must have higher values of $L(\operatorname{IR}) / L(B)$ for detection by IRAS (see Fig. 10). Because of the greater number of high $L($ IR $) / L(B)$ galaxies in the SGP sample, that sample shows a better defined relationship between $L(\mathrm{IR}) / L(B)$ and $F(100 \mu \mathrm{~m}) / F(60 \mu \mathrm{~m})$.

A marked difference exists between the morphological dependence of the infrared to optical luminosity ratios in the SGP and Virgo samples. It was shown in Paper 1 that early-type spirals have higher values of $L(\mathrm{IR}) / L(B)$ than later types. The mean value of $\log [L(\mathrm{IR}) / L(B)]$ is 0.30

5.2.2 Comparison with other work

for $\mathrm{Sa}-\mathrm{b}$ compared with -0.21 for $\mathrm{Sbc}-\mathrm{d}$. In contrast this work shows all spirals to have
$\log [L($ IR $) / L(B)]$ about -0.2 , and although early types have a slightly higher mean value
(-0.07), there is certainly no evidence of the IR-luminous early-type spirals seen in the SGP.
This is discussed further below. Table 5 gives the mean values of the ratios $\log [L($ IR $) / L(B)]$ and
$\log [F(100 \mu \mathrm{~m}) / F(60 \mu \mathrm{~m})]$ for each galaxy type, for the Virgo and SGP samples.
Soifer et al. (1984) and de Jong et al. (1984) used the IRAS data to study an infrared ($60 \mu \mathrm{~m}$) selected sample of galaxies, and an optically selected sample of galaxies, respectively. Each sample consisted of about 100 galaxies. They obtained $L($ IR $) / L(B)$ values of between 1 and 40 for the infrared sample, and between 0.2 and 2.5 for the optical sample. The Virgo sample of IRAS galaxies presented in this work is effectively an optically selected sample, as it is dominated by bright cluster galaxies, and the SGP sample is infrared selected (field galaxies detected by $I R A S$).

 of Soifer et al.
 galaxies in the infrared selected sample of Soifer et al. They have compared these galaxies with a sample of 100 normal disc galaxies chosen by Kennicutt (1983) for a study of star formation rates. They find that up to 50 per cent of the Soifer et al. sample suffer abnormally high internal
 selected samples. However, there is evidence that the Soifer et al. mini-survey unfortunately

 correlation. The correlation is seen in both optical and infrared selected samples (e.g. those of de Jong et al. and Paper 1).
 luminosity. As this is proportional to the current star formation rate (SFR), and the blue luminosity is proportional to the average $\mathrm{SFR}, L(\mathrm{IR}) / L(B)$ is a measure of the ratio of current to average SFR, and, after dereddening, Moorwood et al. found these values to be consistent with normal rates of disc star formation. They conclude that a spiral disc which had evolved uniformly

 the star formation rate in cluster and non-cluster galaxies is similar.
Young et al. (1984) studied IRAS sources in the Hercules cluster. They find a notable lack of E and S0 galaxies, and derive luminosities between 10^{9} and $10^{10} L_{\odot}$ as we find in this study of the

 gen that has occurred in the inner regions of the Virgo cluster.

 $F(100 \mu \mathrm{~m}) / F(60 \mu \mathrm{~m})$ and $L(\mathrm{IR}) / L(B)$, and that $\mathrm{Sb}-\mathrm{c}$ spirals are the most luminous galaxy
type, reaching luminosities of $10^{10} L$

5.3 IRAS and Non-IRAS galaxies
A comparison of the density of Virgo galaxies in the optical sample of Binggeli et al. (1985)-15 per square degree down to $\mathrm{B} \sim 17$ - with the density of the IRAS galaxies studied here -1.3 per
square degree - immediately demonstrates that $I R A S$ detected only a small fraction of the Virgo square degree - immediately demonstrates that $I R A S$ detecteci only a small fraction of the Virgo
galaxies.
To compare the optical and infrared Virgo galaxies we have defined the following samples. First, the right ascension and declination range of our $I R A S$ sample and the Binggeli sample were restricted, to ensure complete overlap, to $12^{\mathrm{h}} 10^{\mathrm{m}}<\mathrm{RA}<12^{\mathrm{h}} 40^{\mathrm{m}}, 9^{\circ}<\mathrm{Dec}<16^{\circ}$. Stars and empty fields were excluded from the $I R A S$ sample. It was found that each $I R A S$ galaxy was picked up as
a single member of the optical sample only if the magnitude range was restricted to $B \leqslant 16$ (fainter galaxies were not always in the Binggeli et al. catalogue), and the position mismatch was restricted to $B \leqslant 60 \operatorname{arcsec}$ (a greater tolerance led to more than one galaxy being associated with the IRAS galaxy). Binggeli et al. state that their catalogue is complete to $B \sim 18$, and the restriction to $B \leqslant 16$ is necessary presumably because of errors in their and our magnitudes. This procedure resulted in 65 galaxies in the detected sample, leaving 324 in the undetected sample.
Fig. 17 shows a histogram of the B-magnitudes (from Binggeli et al.) for the detected and undetected galaxies. Apart from the one galaxy with $B=9$, there is no magnitude at which IRAS detected all galaxies. Fig. 18 examines the populations by basic morphological type. There are a large number of elliptical galaxies of which two (for the sample defined as above) are detected by
 detected; for example 44 per cent of Sc's brighter than $B=16$ are detected.
Plotting spiral-type class against B-magnitude for both galaxy sets, Fig. 20, shows that IRAS detects nearly all spirals of type ab and later which are brighter than 14th magnitude at B. Eightyeight per cent of Sc's brighter than $B=14$ are detected. It is interesting that a 14th magnitude galaxy must have $L(\mathrm{IR}) / L(B) \geqslant 0.4$ to be detected at both 60 and $100 \mu \mathrm{~m}$, and this does constitute the normal IRAS galaxy as discussed in Section 5.1.2. The typical IRAS galaxy, as previously

 (2)

Figure 17. Distribution of B-magnitudes (from Binggeli et al. 1985) for galaxies detected by $I R A S(65)$, dashed line,
and undetected by $I R A S$ (324), solid line, for all galaxies with $B \leqslant 16$, and in the region $12^{\mathrm{h}} 10^{\mathrm{m}}<\mathrm{RA}<12^{\mathrm{h}} 40^{\mathrm{m}}$,

Figure 18. Distribution of basic type (from Binggeli et al. 1985) for galaxies detected by IRAS (65), dashed line, and Figure 18. Distribution of basic type (from Binggeli et al. 1985) for galaxies detected by $I R A S(65)$, dashed line, and
undetected by IRAS (324), solid line, for all galaxies with $B \leqslant 16$, and in the region $12^{\mathrm{h}} 10^{\mathrm{m}}<\mathrm{RA}<12^{\mathrm{b}} 40^{\mathrm{m}}$,

[^5]

$\stackrel{8}{8}$

> Figure 20. Plot of spiral type class (from Binggeli et al. 1985) against B-magnitude, for galaxies detected by $I R A S$
(65), shown in the upper plot, and undetected by $\operatorname{IRAS}(324)$, shown in the lower plot, for all galaxies with $B \leqslant 16$, and (65), shown in the upper plot, and undetected by $1 R A S$
in the region $12^{\mathrm{h}} 10^{\mathrm{m}}<\mathrm{RA}<12^{\mathrm{h}} 40^{\mathrm{m}}, 9^{\circ}<\operatorname{Dec}<16^{\circ}$.
> described, is a spiral galaxy (class a-d) with $B \leqslant 14, L(\mathrm{IR}) / L(B)$ between 0.1 and 1 , and $L(\mathrm{IR}) \sim 10^{9} L_{\odot}$.

6 Conclusions

We have found that 97 per cent of $I R A S$ sources are optically identifiable above the UK Schmidt plate limit of $B=22$, both in this work and in Paper 1. This paper has given identifications for 199 of the 206 point sources detected by $I R A S$ in a $113 \mathrm{deg}^{2}$ area centred on the Virgo cluster. Fiftyfour of the sources are associated with stars, 145 with galaxies, and of the seven apparently empty fields five are very probably due to cirrus. Two sources, both detected at $60 \mu \mathrm{~m}$ only, are possibly true empty fields. The stellar sources are dominated by K-type stars, and all such stars brighter than $V=8$ are detected by $I R A S$.

6.2 THE INFRARED-OPTICAL VIRGO GALAXY DATABASE

This work presents an infrared-optical Virgo galaxy database, complete to about $B=16$, created
by combining the IRAS-COSMOS data with the optical catalogue by Binggeli et al. (1985). This

 IRAS and compare our findings with a large amount of published data on the infrared properties of the Virgo cluster and field galaxies. Our findings on the whole have confirmed previous
conclusions, but we have been able to pull together many studies and put the following concluconclusions, but we have been able to pull together many studies and put the following conclu-
sions on a firm quantitative basis. Our main conclusions are
(i) The IRAS galaxy sources are dominated by spirals; for galaxies with $B \leqslant 16$ only 4 per cent of the ellipticals and lenticulars are detected, compared with 44 per cent of the Sc ralaxies. Eightyeight of Sc's brighter than $B=14$ are detected.
(ii) The cluster galaxies define a 'normal' IRAS galaxy. That is, the majority of IRAS galaxies have the same properties as a Virgo cluster IRAS galaxy. Such a galaxy is a spiral of type $\mathrm{Sa}-\mathrm{d}$,
with $B<14$, a ratio of infrared to optical luminosity about $1, F(100 \mu \mathrm{~m}) / F(60 \mu \mathrm{~m})$ about 3 , and an infrared luminosity of $\sim 10^{9} L_{\odot}$. For a given $B, L(\mathrm{IR}) / L(B)$ can vary by a factor of about 10 . These properties show the Virgo spirals to be indistinguishable from field disc galaxies with normal star
(iii) The infrared properties of the Virgo cluster galaxies are the same as those of field galaxies at similar redshifts. Thus this cluster environment has no effect on IR properties. This is true even
(iii) Far-infrared luminosity is correlated with $F(100 \mu \mathrm{~m}) / F(60 \mu \mathrm{~m})$ and $L(\mathrm{IR}) / L(B)$. The optically faint background galaxies and the interacting galaxies are 'hotter' and more infrared luminous. Galaxies with $B>16, L(\mathrm{IR}) / L(B)>4$, and $F(100 \mu \mathrm{~m}) / F(60 \mu \mathrm{~m})<2$ may have IRAS galaxies show that galaxies with

 galaxies, the central regions of spiral galaxies become more important. This leads to Sb and
 luminous samples. The SGP (Paper 1) is such a sample.
The IRAS-COSMOS identification database can be supplied on tape if required. Please send a 600 ft tape and state if the tape is to be read on a VAX or non-VAX machine.

Acknowledgments

SKL acknowledges a SERC Research Fellowship, and a PJP a SERC Studentship. We are grateful to B. Binggeli for supplying the tape version of the Binggeli et al. Virgo cluster catalogue; tory for IRAS software, and to J. Barrow and C. Davenhall for help with its local implementation. We also thank M. Fretwell for the diagrams, and the UK Schmidt Telescope Unit and the Image Data Processing Unit at ROE for providing the plates and the COSMOS data, respectively.

References
Allen, C. W., 1973. Astrophysical Quantities, 3rd edn, Athlone Press, London.
Beichman, C. A., Neugebauer, G., Habing, H. J., Clegg, P. E. \& Chester,
Beichman, C. A., Neugebauer, G., Habing, H. J., Clegg, P. E. \& Chester, T. J. (eds), 1985. Explanatory
Supplement to the IRAS Catalogues and Atlases, US Government Printing Office, Washington DC.
Binggeli, B., Sandage, A. \& Tammann, G. A., 1985. Astr. J., 90, 1681.
de Jong, T., Clegg, P. E., Soifer, B. T., Rowan-Robinson, M., Habing, H. J., Houck, J. R., Aumann, H. H. \& Raimond, E., 1984. Astrophys. J., 278, L67.
de Vaucouleurs, G., 1959. Handbook of Physics, As

S. K. Leggett et al.
de Vaucouleurs, G., 1985. ESO Workshop on the Virgo Cluster of Galaxies, eds Richter, O.-G. \& Binggeli, B.,
European Southern Observatory, Garching.
Devereux, N. A., 1987. Proc. 2nd IRAS Conference, Star Formation in Galaxies, in press.
Devercux, N. A., Becklin, E. E. \& Scoville, N., 1987. Astrophys J., 312, 529.
Hawarden, T. G., Mountain, C. M., Leggett, S. K. \& Puxley, P. J., 1986. Mon. Not. R. astr. Soc., 221, 41P.
Hoffleit, D., 1982. Bright Star Catalogue. Yale University Observatory.
Kennicutt, R. C., 1983. Astrophys. J., 272, 54.
Lawrence, A., Walker, D., Rowan-Robinson, M., Leech, K. J. \& Penston, M. V., 1986. Mon. Not. R. astr. Soc.,
219, 687.
Lonsdale, C. J., Helou, G., Good, J. C. \& Rice, W., 1985. Cataloged Galaxies and Quasars Observed in the IRAS
Survey, JPL.
MacGillivray, H. T. \& Stobie, R. S., 1984. Vistas Astr., 27, 433.
Moorwood, A. F. M., Veron-Cetty, M.-P. \& Glass, I. S., 1986. Astr. Astrophys., 160, 39.
Olnon, F. M., Baud, B., Habing, H. J., de Jong, T., Harris, S. \& Pottasch, S. R., 1984. Astrophys. J., 278, L41.
Rieke, G. H. \& Lebofsky, M. J., 1986. Astrophys. J., 304, 326.
Sandage, A., Binggeli, B. \& Tammann, G. A., 1985. Astr. J., 90, 1759.
Soifer, B. T. et al., 1984. Astrophys. J., 278, L71.
Waters, L. B. F. M., Cote, J. \& Aumann, H. H., 1987. Astr. Astrophys., 172, 225.
Wolstencroft, R. D., Savage, A., Clowes, R. G., MacGillivray, H. T., Leggett, S. K. \& Kalafi, M., 1986. Mon. Not.
R. astr. Soc., 223, 279 (Paper I).
Young, E., Soifer, B. T., Low, F. J., Neugebauer, G., Rowan-Robinson, M., Milney, G., Clegg, P. E., de Jong, T.
\& Gautier, T. N., 1984. Astrophys. J., 278, L75.

[^0]: 5 Galaxy sources
 5.1 PROPERTIES OF THE VIRGO $I R A S$ galaxies

[^1]: Figure 5. Plot of $\log [F(12 \mu \mathrm{~m})]$, not colour corrected, against V-magnitude for the 54 stellar sources. The lines show an empirical $V:[12]$ relationship as a function of spectral type (or $B-V$, see Table 4) and the relation derived for a blackbody with $T=2000 \mathrm{~K}$. The symbols distinguish the stars by type code as follows: \bigcirc, early-type stars (A,F);
 late-type stars ($\mathrm{G}-\mathrm{M}$) $; \times$, late M , carbon or Mira types; + , optically faint unclassified stars.

[^2]: $\log \frac{L_{\mathbb{R}}}{L_{B}}$
 Figure 9. Distribution of the logarithm of the ratio of infrared to optical luminosity for 97 galaxies with 'cosmags'
 and moderate- or high-quality detections at both 60 and $100 \mu \mathrm{~m} \cdot \log [L($ IR $) / L(B)]=\log [3.25 F(60 \mu \mathrm{~m})+$

[^3]: In Paper 1 it was shown that for a given B, there is a minimum value of $L(\operatorname{IR}) / L(B)$ for the source to be detected by $I R A S$, given by $\log \left[\frac{L(\mathrm{IR})}{L(B)}\right]=0.4 B_{J}-5.95$.

[^4]: in progress). These measurements support the $L(\mathrm{IR}) / L(B): L(\mathrm{IR})$ correlation, and show that galaxies with an infrared to blue luminosity ratio greater than 30 may have a far-infrared luminosity greater than $10^{12} L_{\odot}$, i.e. a quasar-type luminosity. About 1 in 20 of the field galaxies identified in Paper 1 have $L(\mathrm{IR}) / L(B)>30$. This is comparable to the 1 in 30 galaxies with $L(\mathrm{IR})>10^{12} L_{\odot}$ found by Lawrence et al. (1986) for their samples of IRAS galaxies with redshifts. If the empty fields are $I R A S$ galaxies with $B>22$, the implied infrared luminosity is about $10^{13} L_{\odot}$.

[^5]: Figure 19. Distribution of spiral type (from Binggeli et al. 1985) for galaxies detected by IRAS (65), dashed line, and undetected by IRAS (324), solid line, for all galaxies with $B \leqslant 16$, and in the region $12^{\mathrm{h}} 10^{\mathrm{m}}<\mathrm{RA}<12^{\mathrm{h}} 40^{\mathrm{m}}$,

