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Abstract 

The fault tolerance provided by FT-CORBA is 
basically static, that is, once the fault tolerance 
properties of a group of replicated processes are 
defined, they cannot be modified in runtime. A support 
for dynamic reconfiguration of the replication would 
be highly advantageous since it would allow the 
implementation of mechanisms for adaptive fault 
tolerance, enabling FT-CORBA to adapt to the 
changes that can occur in the execution environment. 
In this paper, we propose a set of extensions to the 
FT-CORBA infrastructure in the form of interfaces 
and object service implementations, enabling it to 
support dynamic reconfiguration of the replication. 
 
1. Introduction 
 

Fault tolerance support for applications developed 
under the CORBA distributed object model is 
specified in the Fault-Tolerant CORBA (FT-CORBA) 
standard [19]. This specification defines a set of 
service interfaces for the implementation of reliable 
applications. Fault tolerance in distributed and 
heterogeneous environments is usually achieved using 
replication techniques. The object services that 
provide the basic functionalities for building fault-
tolerant distributed applications in FT-CORBA are the 
Replication Management Service, the Fault 
Management Service and the Logging and Recovery 
Service. 

Even though availability and reliability are vital 
requirements for critical applications, the use of 
adaptive techniques in fault-tolerant systems is quite 
recent [14][7][6]. When these techniques are applied, 
the resource management of the computational system 

is significantly improved. The main idea of the 
adaptive approach is to provide mechanisms to the 
fault-tolerant system that allow it to obtain 
information about the execution environment; using 
this information, the system can adapt itself to the 
environment variations. Adaptations allow the system 
to maintain the levels of reliability and availability 
using only the resources necessary for the attainment 
of the desired requirements. The usual manner to 
support adaptation is the implementation of 
mechanisms to support dynamic reconfiguration. 

The fault tolerance provided by FT-CORBA is 
basically static, i.e., the fault tolerance properties 
cannot be modified in runtime. Moreover, the system 
cannot be reconfigured to change the replication 
technique used. Support for dynamic reconfiguration 
of the replication mechanisms would be highly 
advantageous since it would allow the FT-CORBA 
infrastructure to cover these requirements. This 
support would allow the implementation of 
mechanisms for adapting the system to changes in the 
execution environment. These changes are related to 
the frequency/class of faults and the load of replicated 
components (for load balance).  

In this paper, we propose a set of extensions, such 
as interfaces and service object implementations [19], 
to the FT-CORBA infrastructure to provide support 
for dynamic reconfiguration of replication. With this 
approach, the dynamic reconfiguration is entirely 
transparent to the application. Moreover, the model 
presents practical solutions to integrate requirements 
of Quality of Service (QoS) [23]. QoS must guide the 
choice of the replication technique. In this way, 
different levels of QoS can be specified to match 
different requirements of fault tolerance. We include 
in the Adaptive GroupPac mechanisms to identify the 



 
 

necessity to reconfigure and to accomplish changes in 
the system with the objective of attending the QoS 
requirements without compromising aspects of 
performance and stability. 

This paper is organized as follows: Section 2 
presents an overview of OMG’s FT-CORBA 
specifications. Section 3 presents the concepts related 
to adaptive fault tolerance. Section 4 shows the 
Adaptive FT-CORBA architecture (AFT-CORBA) 
implemented in the Adaptive GroupPac. Section 5 
discusses issues related to the implementation. The 
model’s performance assessment is shown in Section 6 
and, lastly, Section 7 is the conclusion of the paper. 

 
2. The FT-CORBA Specification 
 
The FT-CORBA [20] architecture (implemented in 
GroupPac [2]) has three basic modules: Replication 
Management Service (RMS), Fault Management 
Service (FMS) and Logging and Recovery Service 
(LRS), beyond the definitions for interoperability in 
the CORBA architecture. Each module is composed by 
a set of services (Figure 1).  

RMS interacts directly with the Object Group 
Management Service [20], acting dynamically in the 
join and leave of replicated objects. In the process of 
creation and removal of replicas, the object Generic 
Factory [20] is used for interacting with the Local 
Factory objects responsible for the creation and 
removal of replicas at the machines comprising the 
distributed system. The Property Management Service 
is responsible for defining the fault tolerance 
properties for each object group. This service defines 
the way in which each group is managed by the RMS. 
The Property Management Service defines, for 
instance, the replication technique implemented in a 
group, such as [20]: Cold Passive, Warm Passive and 
Active replication [22]. 

The Fault Management Service implements the 
interfaces of the Fault Monitoring (detection) and 
Notification services. Fault detection is carried out in 
three levels: server, object and process. These 
detectors are based on timeout mechanisms. The host 
detector is replicated to guarantee the continuity of 
service even when host failures occur. The Fault 
Notification Service performs the function of 
informing RMS of the faults detected by the detectors. 
With this notification, RMS keeps a consistent list of 
group members. FT-CORBA assumes perfect fault 
detectors [5]. 

The main objective of the Recovery and Logging 
Service is to register requests received by the server, 

keep the state of the replicas consistent, and carry out 
recovery procedures on faulty replicas. This service 
acts in the failure of the primary object and in the 
inclusion of a new member in a group. For example, 
when the primary object fails, the Recovery Service 
sends to the new elected primary the requests sent to 
the previous primary since the last checkpoint. 

The communication between the object is carried 
out through the Object Request Broker (ORB), in 
some cases with the aid of a group communication 
system. The group communication system supplies the 
CORBA middleware with mechanisms for reliable 
group communication. These mechanisms are used to 
support the replication techniques, providing some 
guarantee of atomicity and order in the delivery of 
messages.  

 
3. Adaptive Fault Tolerance 
 
Fault tolerance in distributed systems has been 
typically provided using a combination of 
software/hardware redundancy, which in most cases 
has been statically configured. Considering the 
dynamic characteristics of distributed systems, like the 
current tendency to increase in scale, the fixed and 
established coordination of these models of 
redundancy can be quite inefficient. Static 
mechanisms of redundancy also have a high cost 
because the resources need to be allocated considering 
the most critical level of faults, i.e. the worst case. 

Adaptive software allows its configuration to be 
modified to attend changes in its execution 
environment. In the context of adaptive fault 
tolerance, the environment changes can be, for 
example, changes in the communication standards, 
frequency of partial failures, types of faults, or new 
application requirements [11]. Adaptive fault 
tolerance is obtained with mechanisms that satisfy 
varied fault tolerance requirements dynamically 
through the efficient use of a limited and changeable 
amount of processing resources [14]. Adaptive 
software can involve the exchange of algorithms in 
execution time to attend the changes of the 
environment [6]. 

The main goal of adaptive fault tolerance is to 
allow that a system maintains its level of reliability 
and availability, through adaptation and 
reconfiguration in response to changes in its 
environment of execution or to changes in the 
reliability policies. With the use of static polices, the 
level of reliability supplied for the system will always 
be limited to the use of the pre-established redundant 



 
 

resources. With a configurable reliability policy, the 
system can allocate dynamically the resources 
necessary to get the desired reliability. In this way, it 
is possible to optimize the resources usage and to 
reduce the cost without affecting the system 
performance. 

 
4. Adaptive GroupPac Architecture  
 
In the adaptive model, the main idea is that the 
developer can specify the quality of service 
requirements, defining the desired levels of 
availability and performance for this service. The 
adaptive model extends the FT-CORBA specifications 
(Section 2) including new IDL interfaces and 
mechanisms for dynamic reconfiguration of 
replication techniques. In the FT-CORBA 
architecture, presented in Figure 1, the services of 
Adaptation Management and QoS Management have 
been added. They are used to implement the necessary 
configurations to attend to the specified requirements. 
These services can also be replicated through the 
Replication Management Service in order to increase 
their availability.  

In order to guarantee the system consistency 
during the reconfiguration phase, replicas stay in a 
suspended state. In this state, the Request Interceptors, 
implemented in GroupPac, are in charge of 
postponing the processing of client’s requests and 
keeping them waiting until the system is able to 
execute these requests [13]. Using this approach, no 
requests are lost and the fault tolerance is improved. 
The extensions made to the FT-CORBA infrastructure 
are detailed bellow: 

 
Replication Management (RM)  

 
The original functionalities defined in the FT-CORBA 
specification were kept. The new functionalities 
included in this module allow the replication of the 
Adaptation Management Service and the QoS 
Management Service in order to increase the 
availability of the two services. The replication of 
these services is implicit in this module in order to 
guarantee the standards adopted by FT-CORBA 
specifications. 
 
Adaptation Management (AM) 
 
The function of Adaptation Management is to keep the 
system configuration in accordance with the level of 
QoS established for the application. Some aspects as 

the number of replicas and the type of replication used 
by the group are part of this configuration that is 
directly related with the state machine defined by the 
developer through the QoS Management Service. 

In some situations, keeping the level of QoS 
desired for the application will require the system 
reconfiguration. The Adaptation Manager is 
responsible for performing these changes that are 
related with the join of new replicas, the exchange of 
the replication technique, definition of the primary 
member, change of the monitoring interval (of objects, 
processes and/or servers) and change of the 
checkpointing interval. In addition, there is the 
possibility of exchanging the primary replica (for 
passive and semi-active replication techniques [4][20]) 
in case the current primary is presenting a 
performance below the expected (load balancing). For 
example, the machine of the primary replica may be 
overloaded with other tasks or the service denied. 

To run in a dynamic way, the Adaptation Manager 
monitors the Replication Management to detect 
failures that can make the system fail to attain the QoS 
level specified, requesting the system reconfiguration. 
Adaptation Management also keeps the QoS 
Management informed about the current system status. 
This information is related with the amount of 
replicas, the replication technique being used, the 
monitor/checkpoint intervals, the statistics of failure 
occurrence and the primary server performance (that 
can be supplied by clients). 

 
Quality of Service Management (QSM) 
 
The QoS Manager is an interface in which the 
developer or the administrator specifies the minimum 
QoS requirements desired (Figure 4). These 
requirements can be specified dynamically using a 
state machine (Figure 2). Each state represents a level 
of QoS with a configuration desired for the system, 
such as number of replicas, replication technique, fault 
monitoring intervals and checkpoint intervals (in the 
case of passive replication [4]). 

The transition between two states can take many 
conditions into account, each one with a different 
priority degree. This approach guarantees that no 
more than one condition is satisfied at the same time. 
A transition between two QoS levels happens when 
the current QoS level does not attend the defined 
reliability requirements, e.g., when there is a detection 
of faults in replicas, faults in the Replication Manager 
or even the absence of faults during a time interval. 
Figure 2 presents a possible configuration of the state 



 
 

machine with three levels QoS. Other combinations 
are possible with the insertion of new states. When a 
transition happens, a dynamic reconfiguration will be 
executed by the Adaptation Manager in accordance 
with the new QoS requirements. In case of change of 
primary member or replication technique, the requests 
sent during the transition phase will be kept waiting 
until the system is able to receive and send them to the 
replicated server.  
 

Middle 

High 

1 failure 

2 failure 
after 15s 

Without failure 
after 60s 

1 failure 

Without failure 
after 30s 

Low 

1 failure 

2 failures 
after 15s 

Passive replication: 
2 replicas 
 

Active replication:  
6 replicas 
 

Semi-active replication: 
4 replicas 

Figure 2. State machine of the QoS Manager. 

Afterwards, to define the new configuration that 
will be implemented, the Adaptation Manager invokes 
the Properties Manager object service (Figure 1) to 
add the new fault-tolerant properties related with the 
replicated group. All fault tolerance properties can be 

modified dynamically. This characteristic differs from 
the FT-CORBA specification. 

Finally, when the new fault tolerance properties 
have been modified the Object Group Manager acts in 
the system to implement the new replication 
technique. In this transitory state, the replicated server 
does not execute any requests. The QoS Manager is 
also used by the Adaptation Manager to inform the 
programmer about the system status, when requested. 

 
5. GroupPac Adaptive Implementation 
 
The implementation of the Adaptive GroupPac system 
was made using the Java programming language, 
GroupPac [16][2][3] and JacORB version 1.4, which 
follows the CORBA specification [20]. The class 
diagram represented by Figure 3 shows the classes that 
compose the QoS Management and Adaptation 
Management. 

The Adaptive Manager keeps the adaptive 
structure of the system. This structure also contains 
the current number of replicas, the replication 
technique in use, among other information (Figure 4). 
This data allows the system to be reconfigured, 
making possible changes of some FT properties like 
the number of replicas, replication technique, 
checkpoint and monitoring intervals, membership 
style, consistency style, etc [20].  
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Figure 1. Adaptive Fault-Tolerant Architecture. 



 
 

struct Transition { 
   long TransitionName; long Priority; 
   long Faults; long Seconds; 
   string NextState; 
}; 
typedef sequence <Transition>  
                       TransitionVector; 
enum ReplicationTypeQoS{none, passive,  
                   semi-active, active}; 
struct StateQoS { 
   string Name; boolean InitialLevel; 
   replicationStyleQoS ReplicationStyle; 
   long MinimumNumberReplicas; 
   long CheckpointInterval; 
   long FaultMonitoringIntervalAndTimeout; 
}; 
typedef sequence <StateQoS> StateQoSVector; 
interface AdaptiveManager { 
   void set_QoS(in StateQoSVector states); 
}; 

Figure 4. IDL Description of Adaptive GroupPac. 

Figure 5 presents the graphical interface of the 
QoS Manager. This interface is used to specify the 
QoS system requirements, which will compose the 
state machine illustrated in Figure 2. 

 
Generic Factory 

 
The generic factory (Figure 6) of the FT-CORBA 

architecture is used in the adaptive GroupPac to create 
or remove replicas according to the configuration 
specified in the QoS Manager. A replicated object is 
created using the method create_object, from the 
TypeID, that identifies the object to be created by the 
factory. This method returns a FactoryCreationId 
identifier that can be used later to remove the object 
using the method delete_object. 

Figure 3. Class diagram of the QoS Manager and Adaptation Manager. 



 
 

 

Figure 5. Graphical Interface of QoS Manager. 

Request Interceptors 
 
During the reconfiguration process, no client request 
can be processed, otherwise the application could 
become inconsistent. For example, during the 
change of the replication technique from passive to 
semi-active, a reading operation could cause the 
reading of incorrect data if the replicas are not 
synchronized. Moreover, it is necessary to assure 
that all client requests had been answered before the 
beginning of the reconfiguration, leaving the system 
in a consistent state [14]. We use the CORBA 
interceptors to make this sort of admission control. 
The interceptor acts as a plug-in mechanism witch 
can be placed in the server side as well as in the 
client side. There are several possible functions 
regarding this mechanism [20]. In our case, it is 
used in the client side aiming to block the execution 
of the client requests during the reconfiguration 
process. 

Figure 7 presents a reconfiguration of replication 
technique, from passive to active, where the client 
sends a request M2. In the first attempt, the request 
M2 is sent to server 1 (primary replica), and its 
interceptor verifies if the system is in the 
reconfiguration state. In the affirmative case, an 
exception is returned to the client.  

To guarantee the transparency in the client side 
(it does not need to receive the exception), the 
interceptor gets the exception and makes new 
attempts until a new primary server has been chosen 
and installed (when the replication technique keeps 
unchanged) or the replication technique has been 
changed. In this case, the client interceptor gets the 

new group reference IOGR (Interoperable Object 
Group Reference [20]) and it is informed by the 
Replication Manager that the technique is active 
replication. 

 
module FT { 
  interface GenericFactory { 
    typedef any FactoryCreationId; 
    Object create_object(in TypeId  
       type_id, in Criteria the_criteria,  
       out FactoryCreationId    
       factory_creation_id) 
       raises (NoFactory, ObjectNotCreated,   
        InvalidCriteria, InvalidProperty,  
        CannotMeetCriteria); 
    void delete_object(in FactoryCreationId  
        factory_creation_id) 
        raises (ObjectNotFound); 
   }; 
}; 

Figure 6. IDL Description of the Generic Factory. 
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Figure 7. Interceptor actions during reconfiguration. 
 
6. Performance Evaluation  
 
In order to verify the performance of the 
implementation of the Adaptive GroupPac, some tests 
(obtained from the average of 1000 executions) were 
executed on a testbed composed by 5 Pentium IV 
2.6Ghz computers with 256Mb of memory, running the 
Linux Mandrake 10.2 operating system and Java 1.4.2, 
connected by an Ethernet 100Mbps local network. All 
replicas were running the Generic Factory service and 
in one of them it was instantiated the complete system 
(Replication Manager, Adaptive Manager, Fault 
Detector, Generic Factory, Name Service and HTTP 
Service). 

The tests were executed aiming to measure the 
overhead generated with the addition of the adaptive 
module to GroupPac. The test was executed aiming to 



 
 

measure the elapsed time the system needs to recover 
from a fault intentionally generated. The system 
recovery after a fault consists of the following tasks: 
1) Fault detection and its notification to the 
Replication Manager; 2) Depending on the 
replication technique, an action needs to be executed, 
e.g., in case of passive replication, if the fault was in 
the primary server, the election of a new primary 
server for the group will be necessary; 3) If the 
minimum number of requested replicas is more than 
the current number of replicas after the fault, it will 
be necessary to create a new replica for the faulty 
group, i.e., to make the adaptation in the system. 
Figure 8 illustrates the elapsed time to recover the 
system from a fault. 
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 Figure 8. Performance of the Adaptive 
GroupPac (AFT-CORBA) and FT-CORBA. 

Figure 8 shows that when the adaptive module 
was used, the system did not incur in additional 
overhead in relation to the FT-CORBA standard 
[20], which is a good result. This is due to the 
dynamic reconfiguration task, that consists of 
modifying the properties of the group according to 
the transitions between the states that define the QoS 
level and the creation or removing replicas in the 
faulty group, it is completed before the task executed 
by the Replication Manager in the fault treatment is 
finished.  

The FT-CORBA already incurs in a decrease of 
performance in the replica creation, maintenance 
and removal. As AFT-CORBA uses all the 
infrastructure of FT-CORBA, it implies that, for 
example, the time to create a replica in AFT-
CORBA is the same that in FT-CORBA. However, 
the advantage is that AFT-CORBA takes dynamic 
decisions that allow a better use of the system 
resources. 

Moreover, it can be observed that in a group with 
only 2 replicas, the elapsed time to recover a failure in 
relation to the groups with more replicas (3, 4 and 5 
replicas) did not increase considerably. 

The reconfigurations performed by the Adaptive 
Manager in the groups when no faults happen in a 
determined time interval normally consist only in 
removing replicas and changing the properties of the 
group. These changes do not cause instability in the 
system execution.  

We have also measured the average time to change 
the replication technique. In this experiment, the 
average time to stabilization between passive replication 
and semi-active replication was approximately 360 ms 
and the average time to stabilization between semi-
active and active replication was approximately 390 ms. 

7. Related Work 
 
There exists a considerable amount of literature about 
the introduction of fault tolerance techniques in 
CORBA. These works can be classified in three 
approaches: integration [17][12], service [9] and 
interception [18][15]. These works focus basically in 
keeping performance and portability requirements. 
Conside-rations on interoperability were limited because 
these works had been done before the standardization of 
the FT-CORBA specification by the OMG.  

The AQuA architecture (Adaptive Quality of Service 
Availability) [7] aims to supply adaptive fault tolerance 
for distributed applications. AQuA allows application 
developers to specify the desired levels of dependability, 
which are reached through the configuration of the 
system in accordance with the availability of resources 
and the faults occurred. AQuA uses QuO to specify QoS 
requirements at application level, and the Proteus 
dependability manager [21] to configure the system in 
response to faults and availability requirements. 
Ensemble [10] is also used by AQuA in order to provide 
group communication services. QuO and AQuA need 
QoS requirements to be defined at compile time, while 
AFT-CCM [8] allows QoS requirements to be modified 
at execution time. As the AQuA was developed before 
FT-CORBA, its architecture is not compatible with this 
specification.  

Chameleon [1] is an adaptive infrastructure that 
provides different levels of availability through an 
architecture composed of ARMORs (Adaptive, 
Reconfigurable, and Mobile Objects for Reliability). 
Chamaleon can select different combinations of 
ARMORs in order to provide different availability 
levels. Besides providing a highly specialized fault-
tolerant environment, ARMORS are also location 



 
 

independent, i.e., they can execute these actions in 
any node in a heterogeneous network. ARMORs also 
allow functionalities to be introduced incrementally 
in the system. 

 
8. Conclusion 
 
In this paper, we present a set of extensions to the 
FT-CORBA architecture so that applications can be 
dynamically reconfigured according to the conditions 
of the execution environment. This reconfiguration 
is implemented using the standard mechanisms 
provided in CORBA [19] and FT-CORBA [20].  

Although adaptive techniques are also supported 
in several previous works in the literature to enforce 
fault tolerance requirements, these works are not 
based totally on the FT-CORBA standard. Tests 
performed with a prototype have shown that the 
adaptation mechanisms do not cause more overhead. 
Aiming to provide adaptation not only at the level of 
crash faults, we intend to add support to other fault 
classes in the future. 
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