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Abstract

Copy number variations (CNVs) have been previously associated with several different neurodevelopmental psychiatric
disorders, such as autism, schizophrenia, and attention deficit hyperactivity disorder (ADHD). The present study consisted of
a pilot genome-wide screen for CNVs in a cohort of 16 patients with early-onset obsessive-compulsive disorder (OCD) and
12 mentally healthy individuals, using array-based comparative genomic hybridization (aCGH) on 44K arrays. A small rare
paternal inherited microdeletion (,64 kb) was identified in chromosome 15q13.3 of one male patient with very early onset
OCD. The father did not have OCD. The deletion encompassed part of the FMN1 gene, which is involved with the
glutamatergic system. This finding supports the hypothesis of a complex network of several genes expressed in the brain
contributing for the genetic risk of OCD, and also supports the glutamatergic involvement in OCD, which has been
previously reported in the literature.
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Introduction

Twin and family studies provide strong evidence of the

importance of genetic factors for the expression of obsessive-

compulsive disorder (OCD) and other disorders in the obsessive-

compulsive spectrum [1]. To date, more than 100 positional and

functional candidate genes related to serotonin, dopamine, and

glutamate transmission have been implicated in these disorders

[2]. However, most of the findings have not been replicated. A

recent meta-analysis of all genetic association studies of OCD,

which provided sufficient information for data extraction, found

that the disorder was associated with serotonin-related polymor-

phisms (5-HTTLPR and HTR2A) and that there may be

significant sex differences in the genetic bases of the disease, with

only male OCD patients carrying polymorphisms involved in

catecholamine modulation (COMT and MAOA) [3]. Secondary

analyses of polymorphisms examined in fewer than five data sets

identified other candidate polymorphisms associated with trophic

factors, neurotransmitters, and with an immunologic factor [3].

The first Genome-Wide Association Study (GWAS) of OCD,

which was recently published, analyzed 400 trios, 1,465 cases and

5,557 controls having found no associations between any SNPs

(single nucleotide polymorphisms) and OCD at a genome-wide

significant level in the combined trio-case-control sample. It is

worth mentioning, however, that the top-ranked SNPs were

related to transcriptional regulation and to glutamatergic neuro-

transmission and signaling [4].

Recently, the original genetic model for psychiatric disorders,

which explained these conditions as resulting from the effect of

common genetic variants (.1% frequency), has been challenged

by a model involving high impact variants which are individually

rare, but collectively common [5]. Research has shown that,

although SNPs outnumber CNVs (copy number variations) in the

genome by three orders of magnitude, their relative contribution

to genome variation is similar [6]. Therefore, as could be expected

from these observations, the study of CNV has allowed a more

comprehensive understanding of disease etiology, bringing rare

variants to the forefront [7].

Early studies analyzed CNVs ranging from one kilobase (kb) to

several megabases (Mb) in size, including large insertions or

deletions in the genome. However, the increased accuracy of

detection techniques has allowed the identification of smaller

CNVs, so that many recent studies involve the analysis of

fragments smaller than 1 kb [8].

CNVs are especially relevant to the study of mental disorders, as

they have been causally associated with neurodevelopmental

disorders and learning disabilities [9]. Specific rare CNVs have

also been found to be associated with autism, schizophrenia, and

attention-attention deficit hyperactivity disorder (ADHD) [10–14].

The current hypothesis for the etiology of mental disorders

suggests that these conditions are polygenic, and that both
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common and rare variations contribute to their development.

Therefore, rather than consisting of risk factors for specific

conditions, CNVs are thought to confer broad susceptibility to a

variety of neurodevelopmental disorders. Large, rare CNVs are

more pathogenic, and are more likely to be under negative

evolutionary selection [15]. Although CNVs with smaller effect

sizes may also have an important role in the etiology of mental

disorders, their individual influences and the impact of their

interaction with other CNVs on the development of mental

illnesses have been poorly studied [16].

To date, few studies have investigated CNVs in OCD patients.

One study was conducted to search for CNVs in these individuals

screened for 15q11-13 and 22q11.2 microrearrangements associ-

ated with Prader-Willi and DiGeorge Syndromes (DGS). The

study was performed in 236 OCD probands using Multiplex

Ligation-dependent Probe Amplification (MLPA), which allows

the relative quantification of the copy number in at least 50

sequences in a single experiment. The study did not detect any

CNVs in these regions, possibly due to the rare prevalence of these

chromosomal anomalies in OCD and due to the exclusion of

significant mental retardation in the samples studied [17]. Studies

have shown that pathogenic CNVs are more prevalent among the

individuals with moderate and severe intellectual disability, which

are usually exclusionary criteria of research protocols [18].

Another study by Hooper et al., (2012) used cytogenetic analysis

and fluorescence in situ hybridization (FISH) to identify an

apparently balanced cytogenetic chromosome translocation

t(6;22)(q16.2;p13) that segregated from the mother with OCD to

her male son with Tourette Syndrome (TS) and OCD. Whole

genome mate-pair sequencing and high resolution SNP array

analysis was performed in the male proband to identify any related

or additional sub-microscopic rearrangements. The largest

heterozygous deletion identified in this secondary analysis was a

400 kb deletion located 1.3 Mb telomeric to the chromosome 6q

breakpoint. This deletion caused heterozygous loss of all coding

sequences of the GPR63, NDUFA4 and KLHL32 genes which

are expressed in the brain [19]. In addition, this deletion coincides

with a rearrangement previously reported in a girl diagnosed with

Autism Spectrum Disorder (ASD) and developmental delay [20].

In a study of 136 cases of children and adolescents with OCD

compared with 106 healthy age-matched controls, Walitza et al.,

(2011) reported that the deletion (one copy) of a small (100 bp)

CNV localized near (68-bp upstream the rs 6311 in the promoter

region of the HTR2A gene was associated to a very early-onset

and to symptom severity of OCD. The frequency of this deletion

was increased in the OCD group (n = 8) when compared to

healthy controls (n = 1), and carriers of one copy (deletion) of the

CNV were associated with a very-early-onset OCD and increased

CY-BOCS scores [21].

The first genome-wide CNV analysis in OCD (1,613 patients)

and the largest to date in Tourette Syndrome (TS) (1,086 patients)

and 720 ancestry-matched controls was conducted to observe the

effects of specific neurodevelopmental CNVs. The analyses were

restricted to large (.500 kb an rare (,1% frequency in the

Database of Genomic Variants-DGV) CNVs, using Illumina

genotyping array. The results showed evidence for an increased

burden of pathogenic neurodevelopmental deletions in OCD/TS

patients compared with controls. Deletion at 16p13.11 was

primarily associated with OCD, however 3 de novo CNVs in

this region among 6 cases with OCD/TS point to the possibility of

pleiotropic effect of this locus. These deletions at 16p13.11 have

been extended to other neurodevelopmental disorders, including

developmental delay, seizures, and autism [22].

In light of these findings and given our long-standing interest in

the contribution of genetic variation to OCD, we conducted a

preliminary study to identify rare CNVs in 16 patients with early-

onset OCD and 12 controls, using array-based comparative

genomic hybridization (aCGH).

Materials and Methods

The present study was approved by the Research Ethics

Committees of the University of São Paulo School of Medicine, as

well as by the Brazilian National Commission of Research Ethics

(CONEP, process number: 16756). All participating subjects gave

written informed consent.

The study was conducted in the Outpatient Clinic of the

Obsessive-Compulsive Spectrum Disorders Program of the

Institute of Psychiatry at the General Hospital of the University

of São Paulo, School of Medicine.

Patients were referred from primary psychiatric services, or

recruited through television, radio, and newspaper announce-

ments. Healthy controls were recruited from university staff and

students, hospital staff or by word of mouth.

Patients and healthy controls were assessed at baseline with the

Structured Clinical Interview for DSM-IV Axis I Disorders and

additional modules for tic and impulse control disorders, the

ADHD and separation anxiety sections of the Kiddie Schedule for

Affective Disorders and Schizophrenia (K-SADS), the Yale-Brown

Obsessive- Compulsive Scale (Y-BOCS), the Dimensional Yale-

Brown Obsessive- Compulsive Scale (DY-BOCS), the Yale Global

Tic Severity Scale (YGTSS), and the Beck Depression (BDI) and

Anxiety (BAI) Inventories [23,24]. Patients were included if they

were aged between 18 and 65 years and had OCD as the primary

diagnosis according to DSM-IV criteria. Healthy controls were

included if they were aged between 18 and 65 years and did not

have OCD, tic or impulse control disorders, ADHD, anxiety

disorders or major depression according to the DSM-IV.

Subjects with a primary diagnosis of a psychotic disorder or with

any other condition that could impair their understanding of the

protocol questions were excluded. Patients with a clinical

condition that could hamper the interpretation of the results,

such as those whose OCD symptoms began after significant head

trauma or were secondary to other neurological disorders and

intellectual disability were also excluded.

Genomic DNA extraction
In those patients from whom it was possible to obtain blood

samples, peripheral blood leukocytes were used as a source of

DNA, which was extracted using the salting out method [25]. For

the eight subjects from whom blood samples could not be drawn,

DNA was extracted from saliva samples collected using the

Oragene kit manufactured by Genotek according to the protocols

available at http://www.dnagenotek.com/.

Comparative genomic hybridization based on microarray
(aCGH)

Array-CGH analysis was performed using an oligonucleotide

44 K whole-genome microarray platform (design 14950, Agilent

Technologies, Santa Clara, USA). The platform was composed of

44,290 60-mer oligonucleotide probes for mapped genes or unique

DNA sequences with an average spatial resolution of ,30–35 kb.

However, the platform does not cover the pseudoautosomal

regions of the X and the Y chromosomes. The genomic DNA of

patients and healthy controls was labeled with Cy3-fluorophores,

while the reference DNA was labeled with Cy5-fluorophore.

These were hybridized to the array in the presence of Cot-1 DNA,
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a blocking reagent which suppresses the nonspecific hybridization

of repetitive sequences.

Test DNA samples were hybridized with gender matched

reference DNA, which consisted of a pooled sample of human

placenta DNA obtained from ten normal individuals. Purification,

hybridization, and washing were carried out according to the

manufacturer’s instructions. Slides were read by a GenePix 4000B

scanner, and the scanned images of the arrays were processed

using the Feature Extraction software package (Agilent Technol-

ogies, Santa Clara, CA, USA). Fluorescence intensity was

measured by the Feature Extraction software, version 9.5, using

an Agilent whole human genome 4644k microarray. Further

details on the protocols used are available online (http://www.

home.agilent.com/).

These analyses were performed in all patients, healthy controls

and additionally, in the parents of one patient who had one rare

CNV.

Selection of high-confidence copy number alterations
Constitutive or germline CNVs were identified using the

Genomic Workbench software (Agilent Technologies, Santa

Clara, CA, USA) with the statistical algorithm ADM-2, and a

6.7 sensitivity threshold. Poor quality hybridizations (QC.0.3)

were discarded. For samples that passed quality control, CNV

calling (deletions and duplications) was performed using the Nexus

Copy Number 5.0 software, with a quality control threshold of ,

0.18. CNVs were called in Nexus using the FASST2 segmentation

algorithm; with at least three affected probes and default settings

(threshold log2 ratio of 0.3 or 1.14 for gain or high copy gain, and

20.3 and 21.14 for loss and homozygous loss, respectively), and

significance threshold set to 1.0E-6.

Samples that did not meet quality thresholds were excluded

from further analysis, as were microarrays with low quality

according to visual inspection. Although the initial sample was

composed of 20 patients and 20 controls, 12 samples were

subsequently excluded for quality reasons (4 patients and 8

controls).

CNVs were considered rare if they showed less than 50%

overlap with CNVs predicted with frequency of at least 1%

according to the March 2010 update of the Database of Genomic

Variants (DGV). The confirmation of rare CNVs and determina-

tion of the parent of origin were conducted using 60 K SNP array

analysis. Furthermore, rare CNVs were confirmed by quantitative

PCR (qPCR).

Quantitative PCR (qPCR) validation
Rare CNVs were validated using the SYBR Green system from

Applied Biosystems 7500 Real-Time PCR System. Two qPCR

primers were designed and mapped against the NCBI reference

sequence hg18 to obtain converging evidence for the detected

CNVs. Primer sequences were as follows: FMN1 forward primer:

59 CAGGTTTGTCTGAAAGTCACC 39, reverse primer: 59

CTACTCTTTGTACCTGGGAGGAC -39. The absolute num-

ber of gene copies was normalized using the GAPDH and P2RX7
genes (control genes). Triplicates were analyzed using the

comparative 22DDCt-cycle threshold method [26]. Values in the

0.8–1.2 range indicated duplication, ,0.6 were indicative of

deletions, and values.1.4 were considered duplications (Figure 1).

Statistical Analysis
We assessed the impact of CNVs in cases compared to controls

using five measures: the number of CNVs per individual, the

estimated CNV size, the percentage of CNVs that overlapped with

CNVs in the DGV (overlap with.50% of length), and the

percentage of CNVs in two different groups of CNV sizes

(CNVs.1 Mb and CNVs.100 kb – 999 kb). P-values were

calculated using two-tailed Fisher exact test and were shown for

each comparison between cases and controls. The level of

significance considered was alpha = 0.05 (Table 1).

We compared the proportion of subjects in each group

harboring CNVs with sizes between 30 kb–500 kb and.500 kb.

This last comparison was conducted to observe whether CNVs

involved with neurodevelopment disorder were associated with the

OCD group [6]. Pearson’s Chi-square (two-tailed) p-values were

calculated, using a pre-determined p-value threshold that correct-

ed for 2 primary comparisons using a standard Bonferroni

approach (p,0.025) [Table 2].

Results

After completing quality control and case-control matching, 12

samples were excluded (4 cases and 8 controls). Therefore, a total

of 16 cases and 12 controls were included in the final analyses. The

mean age at symptom onset in the patient group was 9.8 years

(SD = 4.03) and the mean Y-BOCS score was 30.4 (SD = 4.93).

Characteristics of CNVs in patients and controls
The median CNV size in OCD patients was 435.4 kb and the

median number of CNVs per individual was 3, with 11.3% of

these events consisting of deletions (the remaining were all

duplications). A total of 24.5% of CNVs in OCD patients

were.1 Mb, while 67.9% of variants were in the 100-999 kb

range. Patients and controls did not significantly differ with respect

to these characteristics (Table 1).

Overall, no statistically significant differences in CNV size were

found between cases and controls, even when a nominal

uncorrected p-value of 0.05 was used. Similar results were

obtained with regard to between-group differences in the

frequency of CNV occurrence (Table 1 and Table 2).

Rare CNVs analyses
One OCD patient was found to carry a rare CNV consisting of

an intragenic ,64 kb microdeletion at 15q13.3 encompassing part

of the FMN1 gene. Array CGH analyses of the patient’s parents

were performed to verify whether the CNV was de novo or

inherited. The microdeletion was found to be inherited from a

non-affected father (Figure 1).

Discussion

In this study an early-onset OCD patient (age of first obsessive-

compulsive symptoms when he was 8 years old) was found to carry

a rare intragenic ,64 kb microdeletion at 15q13.3. This

microdeletion was present in the father who did not have OCD.

The mother also did not have OCD, although his sister also had

OCD. Unfortunately the sister did not agree to participate in the

study.

This CNV encompasses two exons of the FMN1 gene, which

encodes the protein Formin1. The overexpression of Formin1b

produces an increase in the number of primary dendrites in

cultured hippocampal neurons and an increase in the number of

glutamatergic synaptic inputs [27]. Additionally, it is thought that

Formin1 may mediate the effect of the proneural transcription

factor Ngn3, which regulates dendritogenesis and synaptogenesis

[28].

The genetic findings in OCD has shown dysregulation in genes

that are expressed in the brain and are involved in the
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glutamatergic, serotonergic and dopaminergic pathways playing

an important part in the expression of OCD [2].

Recent evidence from a number of studies has highlighted the

role of glutamatergic synaptic dysfunctions in the cortico-striatal-

thalamo-cortical (CSTC) circuit in the etiology of OCD and

related disorders [29]. According to a number of independent

reports, one of the strongest candidate genes for OCD is the

neuronal glutamate transporter gene SLC1A1 (Solute Carrier,

Family 1, Member 1) [30–32]. In fact, this is the only gene whose

association with OCD has been replicated in independent samples

[4]. However, it is interesting to note that the previously

mentioned GWAS of OCD did not find any polymorphisms in

the SLC1A1 gene, although it did associate the disorder with a

number of genes involved in glutamatergic processes. These

findings corroborate the hypothesis that genes involved in the

glutamatergic system may contribute to the pathophysiology of

OCD [33,34].

The OCD Collaborative Genetics Study (OCGS) conducted a

linkage analysis on 376 affected families using genetic association

methods, and found that the SNPs most strongly associated with

OCD were in chromosome 15q. Several of those SNPs are located

in or near the FMN1 gene. One SNP (rs2306277) in particular,

located in exon 1 of the FMN1 gene, was predicted by PolyPhen 2

(a tool which predicts the possible impact of an amino acid

Figure 1. Chromosome 15q 13.3 after CNV and qPCR procedures. A. The microdeletion identified in the FMN1 region of chromosome
15q13.3 using Genomic Workbench software (Agilent Technologies, Santa Clara, CA, USA). B. Genome browser image of the region containing the
FMN1 gene. One rare deletion was identified in the male proband (64 kb loss in OCD case 222_3). C. Rare CNVs were validated by SYBR Green-based
real time PCR, and it was found that the father and son had only one copy of the exon while the gender-matched control had two copies.
doi:10.1371/journal.pone.0110198.g001

Table 1. Characteristics of all copy number variations (CNVs) in obsessive-compulsive disorder (OCD) patients and controls.

OCD patients (n = 16) Controls (n = 12) P-value

All CNVs All CNVs

Samples with CNVs 16 12 0.4497

Number of CNVs 53 48 0.6188

Median number of CNVs per genome 3 2 0.6547

Median CNV size (kb) 435.4 389.8 0.1124

% Gain/Loss 88.6/11.3 85.4/14.5 0.8083/0.5287

Overlapping CNVs (%)1 58.4 68.7 0.3609

CNVs.1 Mb (%) 24.5 20.8 0.5825

CNVs.100 kb – 999 kb (%) 67.9 79.1 0.3556

P-values were calculated using two-tailed Fisher exact test.
1Overlapping CNVs = percentage of CNVs that overlap with CNVs in the DGV (overlap with.50% of length).
doi:10.1371/journal.pone.0110198.t001
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substitution on the structure and function of a human protein) to

be a missense mutation with probable protein damage. The same

study also found SNPs associated with OCD in the same

chromosomal region (15q), but in the homeobox genes MEIS2
and NANOGP8, which code for transcription factors or closely

related proteins, all of which play an important role in

neurodevelopment [35]. Other studies have also reported associ-

ations between OCD and the 15q region, although none has

identified relevant SNPs in the region of the FMN1 gene itself

[36,37].

The main CNVs associated with psychiatric disorders have

generally been rare variants in genes involved in synaptogenesis,

neuronal and axonal mobility, protein degradation via the

ubiquitin-proteasome system (ubiquitin signaling), protein com-

plexes and postsynaptic signaling [11,12,38–48]. Studies have also

suggested that the CNVs found in psychiatric probands are often

in chromosomal regions associated with microdeletion syndromes,

such as loci 16p11.2 and 7q11.23, both associated with Williams

Syndrome, locus 15q11-13, associated with Prader-Willi and

Angelman Syndromes, and, lastly, locus 22q11.2, which has been

associated with DiGeorge syndrome [6].One of the most

interesting observations in psychiatric genetic association studies

has been the wide variability in the neuropsychiatric phenotype

associated with one individual CNV or CNV region [49,50].

These findings are consistent with the hypothesis linking the

known pleiotropic effects of these CNVs with shared abnormalities

in early neural development [51].

Interestingly, a microduplication at 15q13.3 (including the first

four exons of the CHRNA7 gene) was found in a proband with

TS, ADHD and OCD and his mother who had subclinical

ADHD. The other brother with TS and OCD (without ADHD)

did not have this duplication. The authors suggest that this

duplication may have an intermediate penetrance effect and may

be involved with ADHD development [52].

Studies have described a broad variety of phenotypes associated

with 15q13.3 deletion, including schizophrenia, epilepsy, autism,

antisocial behaviors and mental retardation [36,37,53–56]. The

frequency of these deletions in control individuals has been found

to be much lower than in cases. Additionally, the types of deletions

and duplications may vary between these individuals. The authors

suggest that submicroscopic deletions and duplications in this

region are associated with milder phenotypes, have less than 100%

penetrance, and tend to be inherited in a larger fraction of cases.

Environmental factors may also be important in explaining the

lack of penetrance [57]. However, none of the studies cited herein

have reported the microdeletion found in the present study. This

may suggest a pleiotropic effect whereby multiple variants in the

same region are associated with different phenotypes [58]. Perhaps

the microdeletion found in the present study in conjunction with

environmental factors or other genetic variants may contribute for

the manifestation of OCD. The overall rate of de novo large CNVs

(.500 kb) in OCD trio samples was 1.44%, which is intermediate

between healthy controls and autism (1.8% multiplex and 3.9%

simplex) and schizophrenia (2%–3%). This finding gives some

support to the involvement of CNVs in OCD, despite this study

was unable to call CNVs smaller than 500 kb due to technical

limitations. There is still the possibility that smaller CNVs may be

related to OCD [22].

Several limitations of the present study are worth mentioning.

Firstly, the sample size was small, particularly for the purposes of

the detection and analysis of rare CNVs. Although this association

may have happened by chance alone, other possibilities such as

incomplete penetration can be taken into account. Examining the

affected sister could help understand this issue.

Furthermore, even though the 44 K platform allows for the

observation of large and rare CNVs; the probe spacing may affect

the accuracy of CNV length measurements. Future analyses

should be conducted using larger sample sizes and a better

platform resolution. However, regardless of these limitations, the

present findings give further support to the hypothesis that many

variations in genes that function in a brain network can be related

with OCD, instead of single genes that simply cumulatively add

risk.
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