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Abstract. The Korteweg–de Vries equation occurs as a model for unidi-
rectional propagation of small amplitude long waves in numerous phys-
ical systems. The aim of this work is to propose a well-posed mixed
initial–boundary value problem when the spacial domain is of finite ex-
tent. More precisely, we establish local existence of solutions for ar-
bitrary initial data in the Sobolev space H1 and global existence for
small initial data in this space. In a second step we show global strong
regularizing effects.

1. Setting of the problem and main results

In 1895 Korteweg and de Vries [18] introduced the equation that bears
their names in the context of unidirectional water waves propagating in an
infinite channel. These authors have considered a layer of incompressible
fluid over a flat bottom and assumed that the flow was irrotational (see
Colin–Dias and Ghidaglia [9] and [10] for rotational flows). Under the influ-
ence of gravity, the motion of surface waves leads to a system of p.d.e.’s in
the variables η(x, t) and v(x, t) where η is the wave height measured from an
undisturbed water level and v(x, t) is the spatial derivative of the restriction
to the surface of the velocity potential. Considering waves with wavelength
l and amplitude a which satisfy a = O(ε) and l = O(ε−1/2) (where ε denotes
a small parameter) and in the hypothesis of unidirectional waves, one gets,
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at the leading order in ε and after scaling transforms, the following equation
for η :

ηt + hηx +
εh3

12
ηxxx +

3
2
ηηx = 0. (1.1)

Here h denotes the (finite) depth of the fluid. In the case of an infinite
channel (i.e., x ∈ R) it is possible to perform further scaling and change in
the independent variables x and t in order to obtain the classical form the
KdV equation, namely,

ut + uux + uxxx = 0. (1.2)

However, in case of a domain which is not invariant by translation with
respect to x the term in ηx cannot be removed and the relevant equation
reads now as (still after scaling)

ut + ux + uux + uxxx = 0. (1.3)

In [3] and [4], Bona and Winther have considered the initial–boundary value
problem for (1.3) in the quarter plane {(x, t), x > 0, t > 0}. As boundary
condition, they have prescribed the value of u at the boundary x = 0, namely,

u(0, t) = g(t), t � 0. (1.4)

As x goes to +∞, Bona and Winther have imposed a kind of decay by
looking for solutions which are continuous ( with respect to time ) functions
from [0,+∞) into Hm(0,∞), the Sobolev space of order m � 0 constructed
on L2(0,∞).

In this paper we are interested in the case where (1.3) is posed on the strip
(0,+∞)× (0, L) where L is a finite positive number. Namely, we would like
to model the case where a wave-maker is putting energy in a finite-length
channel from the left (x = 0) while the right end (x = L) of the channel is
free.

As it is well-known, (1.3), when it is posed on the whole line, has a
Hamiltonian structure associated to the Hamiltonian

H(u) =
1
2

∫ +∞

−∞
(u2

x − u2 − u3/3) dx (1.5)

(in fact the structure of (1.3) is even much richer, and we refer to Olver
[19] for further elements pertaining to the Hamiltonian structure; see also
Ablowitz and Segur [1] concerning exact integrability of (1.3)).

On the other hand,
∫ +∞
−∞ u2dx is also conserved and the conservation of

H(u) and
∫ +∞
−∞ u2dx are indeed sufficient for the proof of a priori estimates

on the H1 norm of u(·, t) which lead to existence results (see Temam [20]
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and Bona and Smith [2]) in Hm-spaces for m � 1. The pure initial value
problem for (1.3) has been very much investigated and sharp (and quite
surprising) results have been obtained; e.g., Kenig, Ponce and Vega [17]
have proved local-in-time existence results for initial data in H−3/4+ε(R), a
space of distributions. Bourgain [5] has proven global existence results for
small initial data in L2(R).

All these results, for data with very weak regularity, are based on local
regularizing effects of the Airy equation and are possible because the problem
is posed on R.

Concerning the problem on a finite interval, we first try to construct
solutions by the classical energy method. It is therefore necessary to consider
the evolution of the two integrals

∫ L
0 u2dx and

∫ L
0 (u2

x − u2 − u3/3) dx. This
leads us to propose two boundary conditions at x = L that will indeed allow
us to obtain suitable a priori estimates that can be viewed as perturbations
of d

dtH(u) = 0 and d
dt

∫ +∞
−∞ u2 dx = 0; see (2.10), (2.11), (3.10) and (3.11).

These boundary conditions read as

∂u

∂x
(L, t) = h(t),

∂2u

∂x2
(L, t) = k(t), t � 0. (1.6)

In a second step we address the question of smoothing effects. These are
not possible on a finite interval with periodic boundary condition since the
problem is then time-reversible. In our case we do not have time reversibility
since changing t into −t amounts to exchanging the left and right boundaries.
Actually we are able to show global smoothing effects and therefore construct
solutions for L2 initial data.

The results in this paper concern the following IBVP for the KdV equa-
tion. Given g, h, and k from [0, T ) into R and u0 from [0, L] into R, find u
from [0, L] × [0, T ) into R such that

ut + ux + uux + u3x = 0, for (x, t) ∈ (0, L) × (0, T ), (1.7)

u(0, t) = g(t), for t ∈ [0, T ), (1.8)
∂u

∂x
(L, t) = h(t), for t ∈ [0, T ), (1.9)

∂2u

∂x2
(L, t) = k(t), for t ∈ [0, T ), (1.10)

u(x, 0) = u0(x), for x ∈ [0, L]. (1.11)

Here L > 0 and T ∈ (0,+∞].
We are going to establish the following results.
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Theorem 1.1. (Local existence) Let u0∈ H1(0, L) and g, h, k ∈ C1([0,+∞))
satisfy the compatibility condition u0(0) = g(0). Then there exists T > 0 and
a function u ∈ L∞(0, T ;H1(0, L))∩ C([0, T ], L2(0, L)) with traces at x = L :
ux(L, ·) ∈ H−1(0, T ), uxx(L, ·) ∈ H−2(0, T ) which solves (1.7) to (1.11) in
the distribution sense and (1.11) for almost every x ∈ [0, L].

By imposing conditions on the size of the data u0, g, h and k it is actually
possible to show a global existence result. We refer to Section 3 for the
precise meaning of the condition on the data (see (3.12) and (3.15)) and
state:

Theorem 1.2. (Global existence) Let u0, g, h, and k be as in Theorem 1
and satisfy the smallness assumptions (3.12) and (3.15). Then we can take
T = +∞ in the statement of Theorem 1.1.

On the other hand, we show that the Airy equation,

∂u

∂t
+

∂3u

∂x3
= 0, 0 < x < L, t � 0,

u(0, t) =
∂u

∂x
(L, t) =

∂2u

∂x2
(L, t) = 0, t � 0

u(x, 0) = u0(x), 0 < x < L,

has some parabolic-type smoothing effects:∫ L

0
xu2(x, t) dt + 3

∫ t

0

∫ L

0

(
∂u

∂x

)2

(x, s) dx ds =
∫ L

0
x|u0(x)|2 dx.

Using this property, we prove

Theorem 1.3. (Smoothing effects) Let u0 ∈ L2(0, L), there exists a unique
maximal weak solution u ∈ C([0, T max);L2) ∩ L2

loc([0, T max);H1) to (1.7)-
(1.11) with g = h = k ≡ 0.

See Definition 4.3 for the precise meaning of a weak solution to (1.7).
The paper is organized as follows. In the next section we address what

we call the homogeneous case, i.e., the case where h ≡ 0 and k ≡ 0 (but
still g �≡ 0). This allows us to prove Theorems 1.1 and 1.2 in detail without
too many technicalities. The method of the proof is based on the approach
of Bona and Smith [2], namely, the introduction of a regularized equation,
which has its own interest (see (2.41)). Then Section 3 is devoted to the
proofs of Theorems 1.1 and 1.2 in full generality. In Section 4 we prove
global smoothing effects of the Airy equation and give the proof of Theorem
1.3. Finally, in Section 5 we list open questions and directions of further
investigations.
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We have announced in [11] and [12] the results of this work. Some technical
proofs have been omitted but can be found in [13].

Acknowledgment. We would like to thank Jerry Bona, Jean-Claude Saut
and Roger Temam for very stimulating discussions pertaining to this work.

2. The homogeneous case

In this section we consider the case where k ≡ 0 and h ≡ 0; namely, we
address the following IBVP. Find u = u(x, t), x ∈ [0, L] and t � 0 a solution
to

∂u

∂t
+

∂u

∂x
+ u

∂u

∂x
+

∂3u

∂x3
= 0, 0 < x < L, t > 0, (2.1)

u(0, t) = g(t), t � 0, (2.2)

∂u

∂x
(L, t) = 0,

∂2u

∂x2
(L, t) = 0, t � 0, (2.3)

u(x, 0) = u0(x), 0 < x < L. (2.4)

First, as usual, we will establish (in Section 2.1) a priori estimates on the
solutions to (2.1)–(2.4). Then we will construct suitable approximations uε

to u for ε > 0, ε small (Section 2.2) via a regularized equation. Finally,
Section 2.3 will be devoted to the construction of a solution to (2.1)–(2.4)
by letting ε go to zero.

2.1. Two a priori estimates. In this section, we do not care about reg-
ularity and perform formal estimates on the solutions to (2.1)–(2.4). More
precisely, we assume that u (and therefore u0 and g) are so smooth that all
the computations made hereafter are justified.

Let v be defined by

v(x, t) := u(x, t) − g(t). (2.5)

Then (2.1)–(2.4) reads as

∂v

∂t
+ (1 + g)

∂v

∂x
+ v

∂v

∂x
+

∂3v

∂x3
= −dg

dt
, (2.6)

v(0, t) = 0, t � 0, (2.7)

∂v

∂x
(L, t) = 0,

∂2v

∂x2
(L, t) = 0, t � 0, (2.8)

v(x, 0) = v0(x) ≡ u0(x) − g(0), 0 < x < L. (2.9)
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We multiply (2.6) by v and integrate on [0, L] the resulting identity, and,
after some integrations by parts, it follows that

d

dt

( ∫ L

0
v2(x, t) dx

)
+ (1 + g(t))v2(L, t) +

2v3(L, t)
3

+ v2
x(0, t)

= −2gt(t)
∫ L

0
v(x, t) dx, (2.10)

where subscripts denote partial differentiation. Since the left-hand side of
(2.6) can be written as ∂v

∂t + ∂
∂x

{
(1 + g)v + v2

2 + ∂2v
∂x2

}
we deduce after mul-

tiplication by (1 + g)v + v2/2 + vxx that

d

dt

( ∫ L

0
(v2

x − (1 + g)v2 − v3

3
) dx

)
+ v2

xx(0, t) = (2.11)

(
(1 + g)v(L, t) +

v2

2
(L, t)

)2
− 2gt(t)vx(0, t) + 2gt(t)(1 + g(t))

∫ L

0
v(x, t) dx.

2.2. A local-in-time estimate. Our first goal is to deduce from (2.10) and
(2.11) an estimate on the H1 norm of v for arbitrarily large data L, g and
u0. To that aim we introduce the time-dependent functions

X(t) =
∫ t

0
|v(·, s)|4∞ ds, (2.12)

Y (t) =
∫ L

0
{v2

x(x, t) − (1 + g(t))v2(x, t) − v3(x, t)
3

} dx, (2.13)

where | |∞ denotes the L∞ norm and more generally | |p the Lp norm for
p ∈ (1,∞).

All the calculations rely on the classical Young inequality and on the
interpolation inequality,

w4(x) � 4
∫ L

0
w2(y) dy

∫ L

0
w2

x(y) dy, ∀x, (2.14)

which holds for functions vanishing at x = 0.
Time integration of (2.10) leads then to

|v|22(t)+
∫ t

0
v2
x(0, s) ds � γ1(t)X1/2+

2t1/4

3
X3/4+2Lγ2(t)X1/4+|v0|22, (2.15)



an initial–boundary value problem 1469

where the γi depend on g :

γ1(t) =
( ∫ t

0
{(1 + g)−(s)}2 ds

)1/2
, γ2(t) =

( ∫ t

0
|gt(s)|4/3ds

)3/4
,

γ3(t) =
( ∫ t

0
g2
t (s)ds

)1/2
(2.16)

and x− = Min (x, 0), x ∈ R.
On the other hand, time integration of (2.11) leads in its turn to

Y (t) �
(
γ4(t)X1/4 +

X1/2

2

)2
+

∫ t

0
v2
x(0, s) ds + γ2

3(t) + 2Lγ5(t)X1/4 + Y (0)

(2.17)
where

γ4(t) =
( ∫ t

0
(1 + g(s))4ds

) 1
4 and γ5(t) =

( ∫ t

0
|gt(s)|

4
3 |(1 + g(s))| 43 ds

) 3
4
.

(2.18)
Next we observe that, by definition, dX

dt = |v|4∞, and therefore by (2.14)

dX

dt
� 4|v|22|vx|22. (2.19)

Clearly, |v(t)|22 is estimated thanks to (2.15). In order to estimate |vx(·, t)|22
we are going to make use of Y (t) as follows now. We write (at time t)

|vx|22 = Y + (1 + g)|v|22 +
1
3

∫ L

0
v3dx (2.20)

and, making use of (2.14),|
∫ L
0 v3dx| � 21/2|v|5/2

2 |vx|1/2
2 . Hence, it follows

from (2.14), (2.20) and Young’s inequality that

|vx|22 � 4Y

3
+

4
3
(1 + g)+|v|22 +

(21/2

3
)4/3|v|10/3

2 . (2.21)

Combining (2.15) and (2.17) we have

Y � Y (0) + |v0|22 + γ2
3 + 2L(γ2 + γ5)X1/4 (2.22)

+ (γ1 + γ2
4)X1/2 +

(
γ4 +

2t1/4

3
)
X3/4 + X/4.

Clearly, (2.21) and (2.22) give with (2.15) an explicit estimate of |vx|22 in
terms of Xσ, σ > 0 and of the data L, g and u0.
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Finally, replacing this last estimate on |vx|22 in (2.19), we obtain

1
4

dX

dt
�

{
|v0|22 + 2Lγ2X

1/4 + γ1X
1/2 +

2t1/4

3
X3/4

}
{4

3

( (
γ1 + γ2

4

)
X1/2 +

(
γ4 +

2t

3

)1/4
X3/4 +

1
4
X + γ2

3 + 2Lγ5X
1/4

+ Y (0) + |v0|22
)

+
4
3
(1 + g)+

(
|v0|22 + 2Lγ2X

1/4 + γ1X
1/2 +

2t1/4

3
X3/4

)

+
41/3

34/3

(
|v0|22 + 2Lγ2X

1/4 + γ1X
1/2 +

2t1/4

3
X3/4

)5/3}
. (2.23)

By several applications of Young’s inequality, it follows from (2.23) that
dX

dt
� α(t) + (1 + t2/3)X2, (2.24)

where α depends only on the data through the γi’s, L, |v0|2 and |v0x|2.
Let T ∈ (0,∞) be given; we have

X(t) � X�(t), 0 � t < T �, (2.25)

where X� is the solution to{
dX�

dt = αT + (1 + T 2/3)(X�)2,
X�(0) = 0,

(2.26)

here αT = sup0�t�T α(t) and T � denotes the life span of the solution to
(2.26), T � = π

2
√

αT (1+T 2/3)
. Hence, for t � T �/2 = π

4
√

αT (1+T 2/3)
, we deduce

a bound on X(t) :

X(t) � (αT /(1 + T 2/3))1/2, 0 � t � π

4
√

αT (1 + T 2/3)
. (2.27)

Then (2.15), (2.17) and (2.21) allow us to bound the H1 norm of v :
∫ L
0 (v2 +

v2
x)(x, t) dx for t in the previous range.

2.2.1. A global-in-time estimate. Here we want to show that the previous
estimates, which are local in time for arbitrarily large data, can be turned
into global ones for small data. Our first assumption is that

inf
t�0

(1 + g(t)) ≡ α0 > 0. (2.28)

As will be seen in the sequel, the following constants appear naturally in the
estimates :

α1 =
∫ ∞

0
|gt|(t) dt, α2 = sup

t�0
(1 + g(t)), α3 =

∫ ∞

0
|gt|2(t) dt. (2.29)
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Let us then denote by M0 and M1 the function of the data:

M0 = |v0|22 + 2α1

√
L(

√
Lα1 + |v0|2), (2.30)

M1 = |v0x|22 + α3 + 2α1α2

√
L(

√
Lα1 + |v0|2) + M0(1 +

17
32

α0 +
7
4
α2 +

2α2
2

α0
).

(2.31)

We observe that |v0|22 � M0 and |v0x|22 � M1 so that if we impose on the
initial data

M0M1 � 2−6α4
0, (2.32)

then by (2.14) we have

|v0|4∞ � 4M0M1 � 2−4α4
0. (2.33)

It follows by continuation that

|v(·, t)|∞ � 3α0/4 for 0 � t � T, (2.34)

and we cannot take T = +∞ only if |v(·, t)|∞ indeed reaches the value 3α0
4 .

Actually, we are going to show that, thanks to (2.34), we have

|v(·, t)|22 � M0 and |vx(·, t)|22 � M1, 0 � t � T. (2.35)

Hence, by (2.14), |v(·, t)|∞ � α0/2, which shows that T = +∞, and therefore

|v(·, t)|∞ � α0/2, |v(·, t)|22 � M0, |vx(·, t)|22 � M1, ∀t � 0. (2.36)

It remains to show that as long as (2.34) holds true, the estimates (2.35)
are satisfied. The first step relies on the observation that (2.34) implies
that (1 + g)v2(L, t) + 2v3(L,t)

3 � α0v
2(L, t)/2 so that the following inequality

transpires from (2.10):
d

dt
|v|22 +

α0

2
v2(L, t) + v2

x(0, t) � 2
√

L|v|2|gt|. (2.37)

Then we deduce readily that

|v(·, t)|2 � |v0|2 +
√

Lα1 (2.38)

and

|v(·, t)|22 +
α0

2

∫ t

0
v2(L, s) ds +

∫ t

0
v2
x(0, s) ds � M0. (2.39)

Hence, the first part of (2.35) is established. The second step makes use of
(2.11). Let us first observe that

(1 + g)v2
0(x, t) − v3

0(x, t)/3 � (α0 −
3α0

4
· 1
3
)v2

0(x, t) � 0.
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Integrating (2.11) with respect to time leads then to (after utilization of
(2.34) and (2.38))∫ L

0
(v2

x − (1 + g)v2 − v3

3
)(x, t) dx � |v0x|22 + α2

2

∫ t

0
v2(L, s) ds (2.40)

+ α2
3α0

4

∫ t

0
v2(L, s) ds +

(
3
4

)2

(α2
0/4)

∫ t

0
v2(L, s) ds

+
∫ t

0
|gt(s)|2 ds +

∫ t

0
v2
x(0, s) ds + 2

∫ t

0
|gt(1 + g)|(s) ds

√
L

(
|v0|2 + 2

√
Lα1

)
.

Now, since ∫ L

0
((1 + g)v2 +

v3

3
) dx � |v|22

(
α2 +

1
3

3α0

4
)
,

we deduce from (2.40) that |vx(·, t)|22 � M1, and (2.35) is proved. Once
(2.28) is satisfied, (2.32) is indeed achieved by making the data v0 and g
small.

2.3. A regularized problem. Let ε > 0 be given. Our aim in this section
is to construct a solution to the following problem. Find uε = uε(x, t), x ∈
[0, L] and t � 0 a solution to

∂uε

∂t
+

∂uε

∂x
+ uε ∂uε

∂x
+

∂3uε

∂x3
− ε

∂3uε

∂x2∂t
= 0, 0 < x < L, t > 0 (2.41)

together with the boundary and initial conditions (2.2), (2.3) and (2.4).
Let us make the following change of independent variables by setting (the

dependence of w below with respect to ε is dropped for simplification of
notation):

w(x, t) = εuε(ε1/2(x − t), ε3/2t) (2.42)

so that (2.41), (2.2), (2.3), (2.4) is transformed into

∂w

∂t
+ (1 + ε)

∂w

∂x
+ w

∂w

∂x
− ∂3w

∂x2∂t
= 0, t < x < t + ε−1/2L, t > 0, (2.43)

w(t, t) = εg(ε3/2t), t � 0 (2.44)

∂w

∂x
(t + ε−1/2L, t) = 0,

∂2w

∂x2
(L + ε−1/2L, t) = 0, t � 0 (2.45)

w(x, 0) = w0(x) ≡ εu0(ε1/2x), 0 < x < ε−1/2L. (2.46)
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In order to solve (2.43)–(2.46), which is posed on a tilted domain, we notice
that (2.43) can also be written as

(
1 − ∂2

∂x2

)∂w

∂t
= − ∂

∂x

{
(1 + ε)w +

w2

2
}
. (2.47)

Inverting formally the operator 1− ∂2

∂x2 , this equation can be seen as an o.d.e.
since

(
1 − ∂2

∂x2

)−1 ∂
∂x is a bounded operator. This o.d.e. is then solved via a

fixed-point procedure. This is the subject of the next section.

2.3.1. An integral formulation of the regularized problem. Since L
and ε are fixed, we change a little bit the notations and study

wt + cwx + wwx − wxxt = 0, t < x < t + λ, t > 0, (2.48)

w(t, t) = γ(t), t � 0, (2.49)

wx(t + λ, t) = 0, wxx(t + λ, t) = 0, t � 0, (2.50)

w(x, 0) = ϕ(x), 0 < x < λ. (2.51)

Next we set v(x, t) = w(x, t) − γ(t) and obtain

vt − vxxt = −γt − Vx, t < x < t + λ, t > 0, (2.52)

v(t, t) = 0, t � 0, (2.53)

vx(t + λ, t) = 0, vxx(t + λ, t) = 0, t � 0, (2.54)

v(x, 0) = ϕ(x) − γ(0), 0 < x < L (2.55)

where

V (x, t) ≡ (C + γ(t)) v(x, t) +
v2(x, t)

2
. (2.56)

As previously said, one of the key points in the resolution of (2.52)–(2.55) is
the study of the inverse of the operator 1 − ∂2

∂x2 .
Of course we can only retain two boundary conditions on (t, t + λ), and

we will take the homogeneous Dirichlet boundary condition at x = t and the
homogeneous Neumann condition at x = t + λ. It is then straightforward to
check the following proposition.

Proposition 2.1. Let t � 0 and λ > 0 be given. For every h ∈ L2(t, t + λ),
there exists a unique solution ψ ∈ H2(t, t + λ) to the following boundary
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value problem:

(
1 − ∂2

∂x2

)
ψ(x) = h(x), t < x < t + λ, (2.57)

ψ(t) = 0,
∂ψ

∂x
(t + λ) = 0. (2.58)

Moreover, this function is given by the formula

ψ(x) =
∫ x

t
h(z) sinh(z − x) dz +

sinh(x − t)
cosh λ

∫ t+λ

t
h(z) cosh(t + λ − z) dz.

(2.59)

Let us now transform (2.52)–(2.55) into an integral equation thanks to
this proposition. First we integrate (2.52) with respect to time. Two cases
are to be considered: (i) x � λ and (ii) x � λ.

Case (i), x � λ. We obtain, integrating between 0 and t,

(
1 − ∂2

∂x2

)
v(x, t) =

(
1 − ∂2

∂x2

)
(ϕ(x) − γ(0)) −

∫ t

0
[γt(s) + Vx(x, s)] ds.

Case (ii), x � λ. We obtain, integrating between x − λ and t,

(
1 − ∂2

∂x2

)
v(x, t) =

(
1 − ∂2

∂x2

)
v(x, x − λ) −

∫ t

x−λ
[γt(s) + Vx(x, s)] ds

= v(x, x − λ) −
∫ t

x−λ
[γt(s) + Vx(x, s)] ds

by using the second condition in (2.50).
It follows that if we set

W (x, t) =

{ (
1 − ∂2

∂x2

)
ϕ(x) − γ(t) −

∫ t
0 Vx(x, s) ds, x < λ,

v(x, x − λ) − γ(t) + γ(x − λ) −
∫ t
x−λ Vx(x, s) ds, x � λ,

(2.60)

we have obtained that(
1 − ∂2

∂x2

)
v(x, t) = W (x, t), t < x < t + λ. (2.61)

The next step is to use Proposition 2.1 in order to obtain v explicitly as a
function of W . This is done by setting (for a fixed t) h(x) = W (x, t) in the
formula (2.59). After a straightforward but long and technical computation
(see the appendix of [13]) one finds

v(x, t) = (T v)(x, t), t < x < t + λ, 0 � t � λ, (2.62)
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where T is an integral operator defined hereinafter. Let us denote by S∞
λ the

tilted strip S∞
λ =

{
(x, t) ∈ R

2 : t � 0 and t � x � t + λ
}

and also for T > 0

ST
λ =

{
(x, t) ∈ R

2 : 0 � t � T and t � x � t + λ
}

.

Given a function v : ST
λ into R, we first construct V : ST

λ into R by setting

V (x, t) = (c + γ(t))v(x, t) +
1
2
v2(x, t). (2.63)

Then we set

(T v)(x, t) =
sinh(x − t)

cosh λ

[
ϕ(t) sinhλ − ϕ(λ) sinh t − γ(t) sinhλ

+
∫ t+λ

λ
(v(z, z − λ) + γ(z − λ)) cosh(t + λ − z) dz

−
∫ t

0
V (s + λ, s) cosh(t − s) ds −

∫ t

0

∫ s+λ

t
V (z, s) sinh(t + λ − z) dz ds

]
− ϕ(t) cosh(t − x) + γ(t) [cosh(t − x) − 1]

+ χλ(x)
(

ϕ(x) +
∫ x

t

∫ t

0
V (z, s) cosh(z − x) ds dz

)

+ (1 − χλ(x))
(

ϕ(λ) cosh(λ − x) +
∫ x

λ

∫ +

λz−λ
V (z, s) cosh(z − x) ds dz

+
∫ λ

t

∫ t

0
V (z, s) cosh(z − x) ds dz −

∫ x−λ

0
V (s + λ, s) sinh(s + λ − x) ds

+
∫ x

λ
{V (z, z − λ) + γ(z − λ)} sinh(z − x) dz

)
, (2.64)

where χλ is the characteristic function of the set {x ∈ R : x � λ} : χλ(x) = 1
for x � λ and χλ(x) = 0 for x > λ.

Remark 2.2. The discontinuity of χλ at x = λ does not introduce a dis-
continuity of T at this point since the coefficients of χλ and 1−χλ are equal
at x = λ.

As a result, we have formally transformed the original p.d.e. problem
(2.48)–(2.51) into a fixed-point problem (2.62). Our strategy now is very
classical: (i) to prove that this fixed-point problem has indeed a solution on
a suitable space of functions; (ii) to establish to what extent a solution to
(2.62) solves (2.48)–(2.51).
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2.3.2. Existence of solutions to the integral equation. Let us as-
sume that γ ∈ C0(R+), the space of continuous function on R+, and that
ϕ ∈ H1(0, λ). Since H1(0, λ) ⊂ C0([0, λ]), ϕ(0) makes sense, the only com-
patibility condition which is needed in order to solve (2.62) will be

γ(0) = ϕ(0). (2.65)

Let us then denote by ET the Banach space of those (classes of) functions
which are defined on ST and such that for almost every t ∈ (0, T ), w(·, t)
belongs to H1(t; t + λ) and satisfies

||w||Et = ess sup
0<t<T

||w(·, t)||H1(t;t+λ) < ∞. (2.66)

It is easy to check that for every 0 < T < ∞, T maps ET into itself. This
follows mainly from the fact that the mapping v 
→ V (see (2.63)) is locally
Lipschitzian on H1. Hence, the existence of a solution to the fixed-point
problem

w = T w, w ∈ ET (2.67)

will follow if we can exhibit R such that

||w||ET
� R =⇒ ||T w||ET

� R, (2.68)

||T w1 − T w2||ET
� ||w1 − w2||ET

/2, ∀wi such that ||wi||ET
� R. (2.69)

We are now in a position to state and prove the following result.

Proposition 2.3. Let γ ∈ C0(R+) and ϕ ∈ H1(0, λ) be given. There exists
T > 0 such that (2.67) has a unique solution w ∈ ET . Moreover, the function
w is continuous on ST

λ and satisfies (provided the compatibility condition
γ(0) = ϕ(0) holds true)

w(x, 0) = ϕ(x) − γ(0), w(t, t) = 0. (2.70)

Proof. Since it is only a local-in-time result (see however below), it is
sufficient to assume a priori that T � λ. We write

T w = T 0 + T w − T 0

and observe that there exists R0 > 0 independent of T such that ||T 0||ET
�

R0. Moreover, since H1 is an algebra we have ||T w − T0||ET
� TαC1(C2 +

||w||εT )2 for some α > 0, where C1 and C2 are constants which are indepen-
dent of T , 0 < T � λ. Hence

||T w||ET
� R0 + TαC1(C2 + ||w||ET

)2,

and choosing R = 2R0, we know that (2.68) will hold true for sufficiently
small T . Then in order to obtain (2.69) we observe that for ||w||ET

� R =
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2R0, there exist β > 0 and C3, independent of t, such that (C3 depends on
R)

||T w1 − T w2||ET
� C3T

β||w1 − w2||ET
,

and by making T even smaller, we can ensure C3T
β � 1/2, and (2.69) is

proved.
Now by the contraction principle we have shown that for T sufficiently

small, (2.67) has a unique solution w ∈ ET . By Remark 2.1, T w is a con-
tinuous function of (x, t) ∈ ST

λ , and therefore w = T w is continuous on ST
λ .

Then w(t, t) = (T w)(t, t) = (by (2.64))= 0, and w(x, 0) = (T w)(x, 0) = (by
(2.64)) = ϕ(x) − ϕ(0) + cosh(x−λ)

cosh λ (γ(0) − ϕ(0)), which proves (2.70).

Remark 2.4. Classically, (2.67) satisfies a continuation principle; however,
the situation is slightly different from the usual Cauchy–Lipschitz setting for
o.d.e’s for two reasons. The first one is that the problem is not posed on a
cylindrical domain but on a tilted strip, but this does not introduce major
changes. The second reason is related to the time delay λ. This also does not
introduce a difficulty. By the continuation principle, we have the following
alternative. Either T = λ or T < λ, and in this last case, either the solution
can be continued on [T, T + τ ], τ > 0, T + τ � λ or limt→T ||w||ET

= +∞.
This allows us to construct a maximal solution on [0, Tmax[ with Tmax � λ.
At this point we see that the restriction T � λ which appears in the course
of the proof of Proposition 2.3 can be removed because if Tmax = λ, we can
start again at time λ and Proposition 2.2 allows us to continue the solution
beyond this point provided we ensure the ad hoc compatibility condition at
the point x = t = λ. It is indeed the case since γ and the solution w(·, ·) are
continuous.

Proposition 2.3 and the previous remark allow us to state the following
result.

Theorem 2.5. Let γ ∈ C0(R+) and ϕ ∈ H1(0, λ) be such that γ(0) = ϕ(0).
There exists T ∈ (0,+∞] such that the integral equation (2.67) has a unique
solution w ∈ ET and either T = +∞ or 0 < T < ∞, and then lim

t→T
||w||Et =

+∞.

2.4. About smoothness of the solution to the integral equation.
Since we want to satisfy (2.54), it is clear that we need more smoothness on
the solution to (2.67). It is straightforward to show the following result.

Theorem 2.6. Let γ ∈ C0(R+) and ϕ ∈ H1(0, λ) be such that γ(0) = ϕ(0),
and let w denote the maximal solution w ∈ εT obtained in Theorem 2.1.
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(i) If ϕ ∈ H2(0, λ) satisfies ϕx(λ) = 0, then

sup
0�t�τ

||w(·, t)||H2(t,t+λ) < ∞, ∀τ < T. (2.71)

Moreover, wx ∈ C0(ST
λ ) and

wx(t + λ, t) = 0. (2.72)

(ii) If ϕ ∈ H3(0, λ) satisfies ϕx(λ) = 0 and ϕxx(λ) = 0, then

sup
0�t�τ

||w(·, t)||H3(t,t+λ) < ∞, ∀τ < T. (2.73)

Moreover, wxx ∈ C0(ST
λ ) and

wxx(t + λ, t) = 0. (2.74)

(iii) If ϕ ∈ H3(0, λ) satisfies ϕx(λ) = 0, ϕxx(λ) = 0 and γ ∈ C1(R+),
then

sup
0�t�τ

||∂w

∂t
||H4(t,t+λ) < ∞. (2.75)

The points (i) and (ii) are obvious consequences of the fact that w = T w,
while (iii) follows from the expression of ∂

∂t(T w).

Corollary 2.7. Under the hypotheses of Theorem 2.6 point (iii), w solves
(2.52)–(2.55) in the classical sense.

2.4.1. Estimates on the solutions to the regularized problem. From
Theorem 2.6 (Corollary 2.7) we have constructed solutions to (2.52)–(2.55)
which satisfy (2.72) and (2.74) on a time interval 0 < t < Tε with a con-
tinuation principle in Et (Theorem 2.5). Performing the inverse change of
variables in (2.42), i.e., setting

uε(x, t) = ε−1w(ε−1/2x + ε−3/2t, ε−3/2t), (2.76)

we have shown the existence of classical solutions to (2.41) satisfying the
boundary and initial conditions (2.2), (2.3) and (2.4). At this point, we use
(2.5) and then obtain for vε

vε(x, t) ≡ uε(x, t) − g(t), (2.77)



an initial–boundary value problem 1479

and for 0 � t < Tε

∂vε

∂t
+ (1 + g)

∂vε

∂x
+ vε ∂vε

∂x
+

∂3vε

∂x3
− ε

∂3vε

∂x2∂t
= −dg

dt
, (2.78)

vε(0, t) = 0, (2.79)

∂vε

∂x
(L, t) = 0,

∂2vε

∂x2
(L, t) = 0. (2.80)

Proposition 2.8. Let vε ∈ C([0, Tε);H3(0, L)) satisfy

∂vε

∂t
∈ C([0, Tε);H4(0, L))

and (2.78)–(2.80); then one has the two following “energy” equations:

d

dt

∫ L

0
((vε)2 + ε(vε

x)2) dx + (1 + g)(vε)2(L) +
2(vε)3(L)

3
+ (vε

x)2(0)

= −2gt

∫ L

0
vεds; (2.81)

d

dt

∫ L

0

(
(vε

x)2 − ((1 + g)vε)2 − (vε)3

3

)
dx + ε(vε

t )
2(L) (2.82)

+ (vε
xx − εvxt)2(0) = gt

∫ L

0
(vε)2dx +

(
(1 + g)vε(L) +

(vε)2

2
(L)

)2

+ 2gt(1 + g)
∫ L

0
vεdx − 2gtv(0) − 2εvε

t (L)gt.

Proof. Due to the smoothness properties of vε, it is allowed to take the
scalar product in L2(0, L) of (2.78) with vε and with (1+g)vε + (vε)2

2 + ∂vε

∂x2 −
ε ∂vε

∂x∂t . Then (2.81) and (2.82) follow after several integrations by parts and
use of (2.79) and (2.80). �

We observe now that we can mimic what we did in Section 2.11; i.e., we
denote by X(·) and Y (·) the functions defined in (2.12)–(2.13) with this time
vε instead of v and observe that (2.15) and (2.22) are again satisfied. Hence,
combining these estimates with Proposition 2.8, we obtain the following
result.

Proposition 2.9. Let u0 ∈ H3([0, L]) and g ∈ C1(R+) be such that u0(0) =
g(0), ∂

∂xu0(L) = ∂2

∂x2 u0(L) = 0. Then there exists T (u0, g) depending only on
|u0|H1 and |g|C1 such that there exists a unique solution uε to (2.41) satisfying
uε(x, 0) = u0(x) and the boundary conditions (2.2)–(2.3). Moreover, uε ∈
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C([0, T (u0, g)];H3) ∩ C1([0, T (u0, g)];H4) and |uε|L∞(0,T (u0,g);H1) is bounded
independently of ε, and this bound depends only on |u0|H1([0,L]) and |g|C1(R+).

Proposition 2.10. If moreover g ∈ L∞(R+), suppose that inft�0(1+g(t)) >
0. There exists δ > 0, δ depending only on |g|L∞(R+), such that if ||u0(·) −
g(0)||H1([0;L]) � δ |gt|L1(R+) � δ and |gt|L2(R+) � δ, then one can take
T (u0, g) = +∞ in Proposition 2.9.

2.5. Proof of Theorems 1.1 and 1.2 in the homogeneous case. Let
u0 ∈ H1([0, L]) and g ∈ C1(R+) be such that u0(0) = g(0). Take a sequence
uε

0 ∈ H3([0, L]) such that uε
0(0) = g(0), ∂

∂xuε
0(L) = ∂2

∂x2 uε
0(L) = 0 and uε

0 →
u0 in H1([0, L]). We still call uε the solution to (2.41) given by Proposition
2.9. Since uε

0 → u0 in H1([0, L]) and since T (uε
0) depends only on |uε

0|H1 ,
there exists T0 > 0 such that T (uε

0) > T0 for ε sufficiently small.
Moreover, the sequence uε(x, t) is bounded in L∞(0, T0;H1([0, L])). Now,

since uε satisfies (2.41), ∂tu
ε is bounded in L∞(0, T0;H−2([0, L]), and there-

fore up to a subsequence, uε → u in C([0, T0];L2([0, L])) strongly and uε ⇀ u
in L∞(0, T0;H1([0, L])) weakly. It is then easy to see that u satisfies (2.1),
(2.2) and (2.4). Moreover, if (2.28) is satisfied and if g ∈ L∞(R+), ∂tg ∈
L1 ∩ L2(R+) and if v0(x) ≡ u0(x) − g(0) and the constants α1, α2, andα3 in
(2.29) are small enough (in the sense of (2.32), then Tε = +∞ ∀ε > 0 and
u ∈ C(R+;L2([0, L])) ∩ L∞(R+;H1([0, L])), and u satisfies (2.1), (2.2) and
(2.4).
We still have to show that (2.3) is satisfied in a suitable sense. To this aim,
we prove the following result.

Proposition 2.11. Let T > 0 and A be the following space:

A =
{

(v, f) ∈ C([0, T ];H3) × C([0, T ];H1) such that

vt + vx + vxxx = fx, 0 < x < L, 0 < t < T
}

;

also, let T1, T2 be the following linear maps defined on A by

T1(v, f) = vx(L, t), T2(v, f) = vxx(L, t).

One has

|T1(v, f)|H−1([0,T ]) � C
(
|v|L∞(0,T ;L2) + |f |L∞(0,T ;L2)

)
(2.83)

and

|T2(v, f)|H−1([0,T ]) � C
(
|v|

1
2

L∞(0,T,L2)
|v|

1
2

L∞(0,T ;H1)
+|f |

1
2

L∞(0,T ;L2)
|f |

1
2

L∞(0,T,H1)

)
.

(2.84)
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Proof. In order to establish (2.83), one multiplies (2.83) by a function
ϕ(x) ∈ C3([0, L]) that will be chosen later on and one integrates over x ∈
[0, L] :

d

dt

∫ L

0
vϕ +

∫ L

0
vxϕ +

∫ L

0
vxxxϕ =

∫ L

0
fxϕ.

Integration by parts leads to

d

dt

∫ L

0
vϕ −

∫ L

0
vϕx + [vϕ]L0 −

∫ L

0
vϕxxx (2.85)

+ [vxxϕ]L0 − [vxϕx]L0 + [vϕxx]L0 = −
∫ L

0
fϕx + [fϕ]L0 .

Choose now ϕ such that ϕ(0) = ϕ(L) = ϕx(0) = ϕxx(0) = ϕxx(L) = 0 and
ϕx(L) = 1. Equation (2.85) becomes

d

dt

∫ L

0
vϕ −

∫ L

0
vϕxxx −

∫ L

0
vϕx + vxx(L, t) = −

∫ L

0
fϕx,

which implies (2.83).
For (2.84), one takes ϕ satisfying ϕ(0) = ϕx(0) = ϕx(L) = 0 and ϕ(L) = 1,

and (2.85) gives

d

dt

∫ L

0
vϕ −

∫ L

0
vϕx + v(L, t) −

∫ L

0
vϕxxx + vxx(L, t) (2.86)

+ v(L, t)ϕxx(L) − v(0, t)ϕxx(0) = −
∫ L

0
fϕx + f(L, t).

Using the fact that ∀ψ ∈ H1([0, L]), |ψ|L∞ � C|ψ|1/2
L2 |ψ|1/2

H1 in (2.86), one
gets (2.84).

Applying this proposition to equation (2.1), i.e., with f = u2

2 , one gets that
for any u ∈ L∞(0, T ;H1([0.L])) a solution to (2.1), ux(L, t) and uxx(L, t)
exist in H−1([0, T ]) and that the application u 
→ (ux(L, t), uxx(L, t)) is
continuous on bounded sets of L∞(0, T ;H1([0, L])) for the norm of L∞(0, T ;
L2([0, T ])) with values in (H−1([0, T ]))2. �

For the regularized problem (2.41) one has:

Proposition 2.12. Let T > 0 and Bε be the following space:

Bε =
{

(vε, fε) ∈ C([0, T ]; 3) × C([0, T ];H1) such that

vε
t + vε

x + vε
xxx − εvε

xxt = fε
x, 0 < x < L, 0 < t < T

}
.
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We consider the maps T1, T2 as in Proposition 2.9. One has

|T1(vε, fε)|H−1([0,T ]) � C
(
|vε|L∞(0,T ;L2) + |f |L∞(0,T ;L2) + ε|vε|L∞(0,T ;H1)

)
(2.87)

and

|T2(vε, fε)|H−2([0,T ]) � C
(
|vε|1/2

L∞(0,T ;L2)
|vε|1/2

L∞(0,T ;H1)

+|fε|1/2
L∞(0,T ;L2)

|fε|1/2
L∞(0,T ;H1)

+ ε|vε|L∞(0,T ;H1)

)
.

(2.88)

Proof. We still have to deal with the term −εvε
xxt. For (2.87), one obtains

−ε

∫ L

0
vε
xxtϕ(x) = ε

∫ L

0
vε
xtϕ − ε[vxtϕ]L0 = ε

d

dt

∫ L

0
vε
xϕ − 0,

thereby proving (2.87). For (2.88), one gets

−ε

∫ L

0
vε
xxtϕ(x) = ε

∫ L

0
vε
xtϕ − ε[vxtϕ]L0 = ε

d

dt

∫ L

0
vε
xϕ − ε

d

dt
vx(L).

Using (2.87), we get (2.88). �

Remark 2.13. If vε
x(L) = 0, then (2.88) holds with |T2(vε, fε)|H−1([0,T ]).

Applying these results to vε(x, t) = uε(x, t), the solution to the regularized
problem, and fε = (uε)2

2 , finishes the proofs of Theorems 1.1 and 1.2.

3. General case

In this section, we address the nonhomogeneous case. Namely, find u =
u(x, t), x ∈ [0, L] and t � 0, a solution to

∂u

∂t
+

∂u

∂x
+ u

∂u

∂x
+ u

∂3u

∂x3
= 0, 0 < x < L, t > 0, (3.1)

u(0, t) = g(t), t � 0, (3.2)

∂u

∂x
(L, t) = h(t),

∂2u

∂x2
(L, t) = k(t), t � 0, (3.3)

u(x, 0) = u0(x), 0 < x < L. (3.4)

We will extend the proofs of the previous section.
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3.1. Extension of the a priori estimates. As usual, we perform formal
computations on the solutions to (3.1)–(3.4). Let v be defined by

v(x, t) = u(x, t)− [g(t) + (h(t)− k(t)L)x+
k(t)
2

x2] ≡ u(x, t)− f(x, t). (3.5)

Equations (3.1)–(3.4) read

∂v

∂t
+

∂

∂x
((1 + f)v) + v

∂v

∂x
+

∂3v

∂x3
= −∂f

∂t
− f

∂f

∂x
, (3.6)

v(0, t) = 0, t � 0, (3.7)

∂v

∂x
(L, t) = 0,

∂2v

∂x2
(L, t) = 0, t � 0, (3.8)

v(x, 0) = v0(x) ≡ u0(x) − f(x, 0). (3.9)

Multiplying (3.6) by v leads to

d

dt

∫ L

0
v2(x, t) dx +

∫ L

0
v2(x, t)

∂f

∂x
(x, t) dx + (1 + f(L, t))v2(L, t) (3.10)

+
2v3

3
(L, t) + v2

x(0, t) = −2
∫ L

0

(
∂f

∂t
(x, t) +

∂

∂x

f2

2
(x, t)

)
v(x, t) dx.

Since the left-hand side of (3.6) can be written ∂v
∂t + ∂

∂x

(
(1+f)v + v2

2 + ∂2v
∂x2

)
,

we deduce, after multiplication by (1 + f)v + v2

2 + vxx, that

d

dt

(∫ L

0
v2
x − (1 + f)v2 − v3

3
dx

)
+ v2

xx(0, t) −
∫ L

0

∂f2

∂x2
v2 dx (3.11)

=
(

(1 + f(L, t)) v(L, t) +
v2

2
(L, t)

)2

− 2
(

∂f

∂t
+

∂f2

∂x

)
(0, t)vx(0, t)

+ 2
∫ L

0

(
∂f

∂t
+

∂

∂x

f2

2

)
(1 + f)v dx + 2

∫ L

0

(
∂3

∂t∂x2
f +

∂3

∂x3

f2

2

)
v dx.

It is clear that the same kind of proof as that of Section 2.1.1. yields a local-
in-time estimate. The new terms do not imply a serious problem. For the
global-in-time estimate, the situation is more complicated. The two basic
assumptions are

inf
t�0

(1 + f(L, t)) = α0 > 0 (3.12)

and
∂f

∂x
(x, t) � 0, 0 � x � L, t � 0, (3.13)
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which is equivalent to

h(t) − k(t)(L − x) � 0, 0 � x � L, t � 0. (3.14)

Remark 3.1. The condition (3.13) can be replaced by a weaker condition.
Let m denote the function defined by m(t) = h(t) − L(k(t) + |k(t)|)/2. It is
easy to check that ∀t � 0, ∀x ∈ [0, L], ∂f

∂x (x, t) � m(t) = min0�y�L
∂f
∂x (y, t).

Hence, (3.13) reads m � 0. Actually all the estimates can be done assuming
that

sup
t�0

( exp −
∫ t

0
m(s) ds) < ∞ (3.15)

(although they become much more technical).

Now the proof follows along the same lines as in Section 2.1.2, assuming that
the following quantities are small enough:

μ1 =
∫ +∞

0

∣∣∣∂f

∂t
+

∂

∂x

f2

2

∣∣∣
2
(s) ds, μ2 = sup

t�0
(1 + f(L, t)), (3.16)

μ3 =
∫ +∞

0

∣∣∣∂f

∂t
+

∂

∂x

f2

2

∣∣∣2(0, s) ds, μ4 =
∫ t

0

∣∣∣ ∂3

∂t∂x2
f +

∂3

∂x3

f2

2

∣∣∣
2
(s) ds,

μ5 =
∫ +∞

0

∣∣∣ ∂

∂x

f2

2

∣∣∣
∞

(s) ds,

and we refer to [13] for details.

3.1.1. Solutions to a regularized problem. Let ε > 0 be given. We want
to construct a solution to the following problem. Find uε = uε(x, t), x ∈
[0, L] and t � 0, a solution to

∂uε

∂t
+

∂uε

∂x
+ uε ∂uε

∂x
+

∂3uε

∂x3
− ε

∂3uε

∂x2∂t
= 0, 0 < x < L, t � 0, (3.17)

together with the boundary and initial conditions (3.2), (3.3) and (3.4).
The same change of variables as in Section 2.2 (formula (2.42)) w(x, t) =
εuε(ε1/2(x − t), ε3/2t) yields

∂w

∂t
+ (1 + ε)

∂w

∂x
+ w

∂w

∂x
− ∂3w

∂x2∂t
= 0, t < x < t + ε−1/2L, t > 0, (3.18)

w(t, t) = εg(ε3/2t), t � 0, (3.19)

∂xw(t + ε−1/2L, t) = ε3/2h(ε3/2t), (3.20)

∂2
xxw(t + ε−1/2L, t) = ε2k(ε3/2t), t � 0.
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Since L and ε are fixed, as in Section 2.2.1, we have to study

wt + cwx + wwx − wxxt = 0, t < x < t + λ, t > 0, (3.21)

w(t, t) = γ(t), t � 0, (3.22)

wx(t + λ, t) = η(t), wxx(t + λ, t) = K(t), t � 0, (3.23)

w(x, 0) = ϕ(x), 0 < x < λ. (3.24)

We introduce fλ(x, t) = γ(t) + (η(t) − K(t)λ)(x − t) + K(t)2

2 (x − t)2, and
v(x, t) = w(x, t) − fλ(x, t), and obtain

∂v

∂t
− vxxt = −fλt − vx, t < x < t + λ, t > 0, (3.25)

v(t, t) = 0, t � 0, (3.26)

vx(t + λ, λ, t) = 0, vxx(t + λ, t) = 0, t � 0, (3.27)

v(x, 0) = ϕ(x) − (γ(0) + (η(0) − K(0)λ)x +
K(0)2

2
x2), (3.28)

where

V (x, t) = (1 + fλ)v +
v2

2
+

f2
λ

2
. (3.29)

It is clear that one can solve (3.25)–(3.29) as in Section 2.2 using an integral
formulation.

One then obtains the same kind of local existence result as Theorems 2.5
and 2.6 for the integral equation; we omit the details. Concerning the regu-
larized equation (3.17), one has the analogues of Proposition (2.9) and (2.10):

Proposition 3.2. Let u0 ∈ H3([0, L]), g, h, k,∈ C1(R+) satisfying u0(0) =
g(0), ux(L) = h(0), and uxx(L) = k(0). Then there exists T0 depending only
on |u0|H1 , |g|C1 , |h|C1 and |k|C1 such that there exists a unique solution uε to
(3.17) satisfying uε(x, 0) = u0(x) and the boundary conditions (3.2)–(3.3).
Moreover, uε ∈ C([0, T0];H3)∩ C1([0, T0];H4) and |uε|L∞(0,T0;H1) is bounded
independently of ε, and this bound depends only on |u0|H1([0,L]), |g|C1 , |h|C1 ,
|k|C1 .

Proposition 3.3. Let f(x, t) = g(t) + (h(t) − k(t)L)x + k2(t)
2 x2. Suppose

that f, ∂f
∂x , ∂f

∂t ∈ L∞([0, L] × R
+) and that

inf(1 + f(L, t)) = α0 > 0 and h(t) − k(t)(L, x) � 0, 0 � x � L, t � 0.

Then there exists δ > 0, such that if |u0(·) − f(·, 0)|H1 � δ and if the quan-
tities (μi)5i=1 defined in (3.16) satisfy μi � δ, i = 1 to 5, the one can take
T0 = +∞ in Proposition 3.1.
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The only thing that one has to prove is that the “energy” estimates proved
in Section 3.1 are still valid for the regularized problem (3.17). It is the same
as in Section 2.2. �

3.2. Proof of Theorem 1.1 and Theorem 1.2 in the general case.
Let u0 ∈ H1([0, L]), (g, h, k) ∈ (C1(R+))3 be such that u0(0) = g(0). Take a
sequence uε

0 ∈ H3([0, L]) such that uε
0(0) = g(0), ∂uε

0
∂x (L) = h(0), ∂2uε

0
∂x2 (L) =

k(0), and uε
0 → u0 in H1([0, L]). We still call uε the solution to (3.17)

satisfying uε(x, 0) = uε
0 and the boundary conditions (3.2) and (3.3), given

by Proposition 3.1.
Since uε

0 → u0 in H1([0, L]) and since T0 depends only on |uε
0|H1 , one can

take T0 depending only on |u0|H1 . One concludes as in Section 2.3.
Of course the boundary conditions ux(L, t) = h(t) and uxx(L, t) = k(t) are

satisfied respectively in H−1([0, T ]) and H−2([0, T ]) in the sense of Proposi-
tion 2.11. �

4. Local weak solutions in L2([0, L])

Let us consider the homogeneous problem

∂u

∂t
+

∂u

∂x
+ u

∂u

∂x
+

∂3u

∂x3
= 0, 0 < x < L, t > 0 (4.1)

u(0, t) =
∂u

∂x
(L, t) =

∂2u

∂x2
(L, t) = 0, t � 0 (4.2)

u(0, t) = u0(x), 0 < x < L. (4.3)

The aim of this section is to construct local weak solutions to (4.1)–(4.3).

4.1. Construction of the linear semigroup. We first construct a solu-
tion u to

∂u

∂t
+

∂3u

∂x3
= 0, 0 < x < L, t > 0, (4.4)

satisfying (4.2) and (4.3). One has
Theorem 4.1.

i) Let u0 ∈ H3(0, L) such that u0(0) = ∂u0
∂x (L) = ∂2u0

∂x2 (L) = 0. There
exists a unique solution denoted by S(·)u0 to (4.4), (4.2), (4.3) satis-
fying S(·)u0 ∈ L∞(R+;H3(0;L)).

ii) There exists a constant C(L) such that
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|S(·)u0|L∞(R+;L2) +
∣∣ ∂

∂x
S(·)u0

∣∣
L2(R+;L2)

+
∣∣√t

∂2

∂x2
S(·)u0

∣∣
L2

loc(R
+;L2)

� C(L)|u0|L2 .

Let
E = {V ∈ C ∩ L∞(R+;L2) ∩ L2(R+;H1)

such that
√

t∂2V
∂x2 ∈ L2

loc(R
+;L2)}. We therefore obtain

Corollary 4.2. The semigroup (S(t))t�0 extends continuously from
L2(0, L) into E.

Proof of Theorem 4.1. In order to prove i), one first constructs regularized
solutions as in Section 2. Let uε(x, t) be the solution to

∂uε

∂t
+

∂3uε

∂x3
− ε

∂3uε

∂x2∂t
= 0, 0 < x < L, t � 0 (4.5)

and suppose uε satisfies (4.2) and (4.3).
Local-in-time solutions to this problem can be obtained as in Section 2.

In order to show that the solutions are global, it is enough to obtain global
bounds in H3(0, L).

Multiplying (4.5) by uε leads to

d

dt

∫ L

0
(uε)2 + ε

(
∂uε

∂x

)2

dx +
(

∂uε

∂x

)2

(0, t) = 0. (4.6)

Multiplying ∂
∂t (4.5) by ∂uε

∂t leads to

d

dt

∫ L

0

(
∂uε

∂t

)2

+ ε

(
∂2

∂x∂t
uε

)2

dx +
(

∂2uε

∂x∂t

)2

(0, t) = 0. (4.7)

Using (4.6) and (4.7), one gets that uε ⇀ u in L∞(R+, H3) w� and ∂uε

∂t ⇀ ∂u
∂t

in L∞(R+;L2) w� with ∂u
∂t + ∂3u

∂x3 = 0, thereby proving that u ∈ L∞(R+;H3).
Hence i) of Theorem 4.2 follows (of course u ∈ C(R+;H2)).

In order to prove ii), first multiply (4.4) successively by u(x, t) and xu(x, t);
one obtains

d

dt

∫ L

0
u2dx +

(
∂u

∂x

)2

(0, t) = 0, (4.8)

d

dt

∫ L

0
xu2dx + 3

∫ L

0

(
∂u

∂x

)2

dx = 0. (4.9)
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Now multiplying (4.4) by ∂2u
∂x2 and x∂2u

∂x2 yields

d

dt

∫ L

0

(
∂u

∂x

)2

+
(

∂2u

∂x2

)2

(0, t) = 0, (4.10)

d

dt

∫ L

0
x

(
∂u

∂x

)2

+ 3
∫ L

0

(
∂2u

∂x2

)2

+ 2
∂2u

∂x2
(0, t)

∂u

∂x
(0, t) = 0. (4.11)

Equations (4.8) and (4.9) give readily that

|S(t)u0|L∞(R+;L2) +
∣∣∣ ∂

∂x
S(t)u0

∣∣∣
L2(R+;L2)

� C(L)|u0|L2 .

Note that (4.8) implies∣∣∣∂u

∂x
(0, t)

∣∣∣
L2(R+)

� C(L)|u0|L2 . (4.12)

Let us multiply (4.10) by t and integrate the result with respect to t; one
gets

t

∫ L

0

(∂u

∂x

)2
(x, t) dx +

∫ t

0
s
(∂2u

∂x2

)2
(0, s) ds =

∫ t

0

∫ L

0

(∂u

∂x

)2
dx ds. (4.13)

Multiplying (4.11) by t and integrating in time leads to

−
∫ t

0

∫ L

0
x

(
∂u

∂x

)2

dx ds + t

∫ L

0
x

(
∂u

∂x

)2

dx

+ 3
∫ t

0
s

∫ L

0

(
∂2u

∂x2

)2

dx ds + 2
∫ t

0
suxx(0, s)ux(0, s) ds = 0,

so that thanks to (4.13)∣∣∣√t
∂2u

∂x2

∣∣∣
L2(0,T ;L2)

�C(L)
[∣∣∂u

∂x

∣∣
L2(R+;L2)

+
∣∣∂u

∂x

∣∣ 1
2

L2(R+;L2)
2
( ∫ T

0
su2

x(0, s) ds
) 1

2
]

� C(L)[1 + T 1/2]|u0|L2 ,

thereby proving ii) of Theorem 4.1. �

Definition 4.3. A weak solution to (4.1)–(4.3) is a function u ∈ C([0, T );L2)
∩L2

loc([0, T );H1) satisfying

u = S(t)u0 −
∫ t

0
S(t − s)[

∂u

∂x
+ u

∂u

∂x
](s) ds.
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4.2. Existence and uniqueness of weak solutions. We will prove

Theorem 4.4. Let u0 ∈ L2(0, L). There exists a unique maximal weak solu-
tion to (4.1)–(4.3) u ∈ C([0, Tmax), L2)∩L2

loc([0, Tmax), H1(0, L)). Moreover,√
t∂2u
∂x2 ∈ L2

loc([0, Tmax), L2), and if Tmax < +∞, then

lim
t→Tmax

|u(t)|L2 = +∞.

Proof. We first introduce for any f ∈ L1(0, T ;L2)

Λf(t) =
∫ t

0
S(t − s)f(s) ds.

One has the following dual estimates on Λ :

Proposition 4.5. There exists C > 0 such that for any f ∈ L1(0, T ;L2)

|Λf(t)|L∞(0,T ;L2) � C|f |L1(0,T ;L2), (4.14)

∣∣∣ ∂

∂x
Λf(t)

∣∣∣
L2(0,T ;L2)

� C|f |L1(0,T ;L2). (4.15)

Proof of the proposition. One has |Λf(t)|L2(0,L) �
∫ t
0 |f |L2(s) ds and

(4.14) follows. On the other hand
∣∣ ∂
∂xΛf(t)

∣∣
L2 �

∫ t
0

∣∣ ∂
∂xS(t − s)f(s)

∣∣
L2 ds,

so that for all ϕ � 0∫ T

0

∣∣∣∂Λ
∂x

f(t)
∣∣∣ϕ(t) dt �

∫ T

0

∫ t

0

∣∣∣ ∂

∂x
S(t − s)f(s)

∣∣∣
L2

dsϕ(t) dt

=
∫ T

0

∫ T

s

∣∣∣ ∂

∂x
S(t − s)f(s)

∣∣∣
L2

ϕ(t) dt ds

�
∫ T

0

∫ T

s

∣∣∣ ∂

∂x
S(t − s)f(s)

∣∣∣2
L2

dt
)1/2( ∫ T

s
ϕ(t)2dt

)1/2
ds.

Now, thanks to Theorem 4.1,( ∫ T

0

∣∣∣ ∂

∂x
S(t − s)f(s)

∣∣∣2
L2

dt
)1/2

� C|f(s)|L2(0,L)

so that∫ T

0

∣∣∣ ∂

∂x
Λf(t)

∣∣∣ϕ(t) dt � C

∫ T

0
|f(s)|L2(0,L) ds

( ∫ T

0
ϕ(t)2 dt

)1/2

from which (4.15) follows. �
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In order to prove Theorem 4.4, we introduce the following functional T ,
defined on L∞(0, T ;L2) ∩ L2(0, T ;H1) by

T (u) = S(t)u0 −
∫ t

0
S(t − s)[

∂u

∂x
+ u

∂u

∂x
](s) ds.

One has ∣∣∣∂u

∂x
+ u

∂u

∂x

∣∣∣
L1(0,T ;L2)

� |u|L1(0,T ;H1) +
∣∣∣u∂u

∂x

∣∣∣
L1(0,T ;L2)

.

Now ∣∣∣u∂u

∂x

∣∣∣
L2(0,L)

� |u|L∞

∣∣∣∂u

∂x

∣∣∣
L2

� C|u|1/2
L2

∣∣∣∂u

∂x

∣∣∣3/2

L2
,

so that ∣∣∣u∂u

∂x

∣∣∣
L1(0,T ;L2)

� C|u|1/2
L∞(0,T ;L2)

∣∣∣∂u

∂x

∣∣∣3/2

L3/2(0,T ;L2)
.

It follows that∣∣∣∂u

∂x
+ u

∂u

∂x

∣∣∣
L1(0,T ;L2)

� T 1/2|u|L2(0,T ;H1) + C|u|1/2
L∞(0,T ;L2)

T 1/4
∣∣∣∂u

∂x

∣∣∣3/2

L2(0,T,H1)
.

Applying Proposition 4.5 and Theorem 4.1, one gets

|T (u)|L∞(0,T ;L2)∩L2(0,T ;H1) � C1|u0|L2

+C2

(
T 1/2|u|L2(0,T ;H1) + T 1/4|u|1/2

L∞(0,T ;L2)

∣∣∂u
∂x

∣∣3/2

L2(0,T ;H1)

)
.

(4.16)

Let R = 2C1|u0|L2 and BR denote the ball of radius R in L∞(0, T ;L2) ∩
L2(0, T ;H1); we have proved thanks to (4.16) the following.

Lemma 4.6. If T is sufficiently small, T maps BR into itself.

In the same way, one can show

Lemma 4.7. If T is small enough, T is a contraction on BR.

Applying Banach’s fixed-point theorem for T on BR (which is a complete
metric space) yields Theorem 4.4.

5. Open questions and further investigations

5.1. In view of Theorems 1.1 and 1.2 a natural question arises: is it
possible to prove global existence of solutions for (1.7)–(1.11) for e.g. smooth
solutions (as is the case for both the quarter plane and the whole line cases)?
For these problems, uniqueness relies on a priori estimates in H2 that we are
not able to extend here and therefore establish the existence of more regular
solutions.



an initial–boundary value problem 1491

R. Temam [21] (see also Bubnov [6]) has proposed a different set of bound-
ary conditions at x = L which leads to global estimates with respect to time
in H1(0, L). These conditions are nonlinear and read

ux(L, t) = 0, uxx(L, t) +
u2

2
(L, t) = 0. (5.1)

A natural question which arises then is the study of the long-time behavior
of solutions to this problem. One could also consider the dissipative case
(KdV–Burgers)

ut + ux + uux + uxxx − γuxx = 0 (5.2)

with time-periodic forcing of the form u(0, t) = g(t) and (4.1). In this case
it would be interesting to obtain the existence of global attractors as in the
space-periodic case (see also Ghidaglia [15] and [16]).

5.2. Another question is the study of the solutions constructed in Theo-
rem 1.1 and 1.2 when L → ∞; see [14].

5.3. We have not addressed the study of the mapping (g, h, k) → u(L, ·).
This question is inspired from scattering theory.

5.4. Since the linear equation

ut + uxxx = 0,

u(0, t) = 0, ux(L, t) = 0, uxx(L, t) = 0
has regularizing effects, one can expect, as in the case of the whole line,
existence results to the IBVP (1.7)–(1.11) for initial values in Hs(0, L), s < 0.
Let us also mention the paper of Cattabriga [8] for a complete study of Airy’s
equation ut + uxxx = 0 on a finite interval.

5.5. Finally we refer to Bubnov [6] and [7] for various a priori estimates
on a similar equation.
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