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Abstract
Meeting transcription is a very useful and challenging task. The
majority of research to date has focused on individual meeting,
or only a small group of meetings. In many practical deploy-
ments, multiple related meetings will take place over a long pe-
riod of time. This paper describes an initial investigation of
how this long-term data can be used to improve meeting tran-
scription. A corpus of technical meetings, using a single micro-
phone array, was collected over a two year period, yielding a
total of 179 hours of meeting data. Baseline systems using deep
neural network acoustic models, in both Tandem and Hybrid
configurations, and neural network-based language models are
described. The impact of supervised and unsupervised adap-
tation of the acoustic models is then evaluated, as well as the
impact of improved language models.
Index Terms: Meeting Transcription, Unsupervised Adapta-
tion, Confidence Score, MAP, MLLR

1. Introduction
A very useful, and challenging, task is the transcription of meet-
ings. Accurate transcriptions would allow a number of possible
applications such as meeting summarisation and audio index-
ing to be performed. However, it is highly expensive and slow
to transcribe meetings manually. Automatic speech recognition
of meeting data is an efficient and cheap alternative.

Many researchers have examined a range of approaches for
automatically meeting transcription [1, 2, 3, 4, 5, 6, 7]. These
have normally been applied to standard corpora, such as those
used for NIST evaluations [8, 9]. These corpora allow the tran-
scription of individual meetings or small groups of meetings,
to be investigated. For practical deployed meeting transcription
systems, it is expected that a sequence of related meetings will
be recorded and transcribed over a long period of time. In pre-
vious work, this continuity and the existence of related topics
and speakers in a series of meetings is largely ignored.

In order to explore the use of long-term information, the
Speech Group at Toshiba Research Europe Ltd, Cambridge Re-
search Laboratory, undertook the recording of meetings over a
two year period. These meetings cover both speech recogni-
tion and synthesis, and were normally technical in nature. The
data was recorded using a microphone array to minimise any
impact that the data collection would have on the behaviour of
an individual. This limited the nature of the data that could be
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collected: no close-talking microphone data is available; indi-
viduals were able to sit where they wanted, to move during the
meetings to give presentations and to have “side” conversations.
Additionally, it was agreed that this data would never be made
publicly available or used to assess the performance of individ-
uals.

The configuration of the room and some of the typical dis-
tances from the microphone1. are shown in figure 1.
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Figure 1: Toshiba Technical Meeting Recording Configuration

The rest of paper is organized as follows. The next sec-
tion gives a detailed description of the meeting data involved in
this paper, especially the Toshiba Technical Meetings (TTM).
The scheme of unsupervised long-term adaptation is described
in section 3, followed by three practical operating modes for
meeting transcription systems in section 3.3. Experimental re-
sults are given in section 4 and conclusions drawn in section 5.

2. Data Description
Two corpora are used in this paper. The first is from the AMI
project [10]. This data was used for training, and to obtain
recognition results that can be compared to existing systems.
The second is the TTM data, which was used for long-term
adaptation and evaluation. For both corpora only the multiple
distant microphone (MDM) data was used. Beamforming was
performed using the BeamformIt tool [11] to yield a single au-
dio channel2.

1Multiple microphone arrays could address some of the issues ob-
served with distance from the microphone.

2Currently there is no Wiener filtering in the front-end processing,
as used for example in [4], which should yield performance gains.
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2.1. Augmented Multi-party Interaction (AMI) Corpus

The AMI corpus [10] was collected for research and develop-
ment of technology that may help groups interact better. The
corpus consists of meetings with four participants, where each
person acted a role in a product development team. While close-
talking, lapel and distant microphone data was recorded, this
work only makes use of the far-field multiple distant micro-
phone (MDM) channel. Additionally overlapping speech data
was removed. This yielded about 59 hours of data. In addition
to the AMI corpus, 52 hours from the ICSI corpus [12] and 10
hours from the NIST corpus were also used [13]. Four meetings
were held back from the AMI data to give an AMI dev (meet-
ings IS09, ES09) and eval set (meetings IS08,ES08), each with
two sets of meetings and 4 speakers per meeting. As overlap-
ping speech was not evaluated, this yielded a total test set of
5.29 hours. The total available data for training, after removing
the 4 meetings was about 121 hours. This is the same configu-
ration, and held-out test sets, as used in [5].

2.2. Toshiba Technical Meeting Data

The second corpus was collected at Toshiba Research Europe
Ltd’s Cambridge Lab. The corpus was collected in a meeting
room (shown in figure 1) with between 6 and 9 participating
in each meeting. The Toshiba ASR and TTS technical meet-
ings were recorded, where on-going research projects and future
plans were discussed. Compared to the AMI corpus, the TTM
data has a greater distance from the microphone to the speaker
and a higher level of noise. A subjective estimate of SNR of
the meeting is around 0 to 5dB but it varies by speaker. These
differences will be seen to result in a higher baseline WER than
for a typical meeting from the AMI corpus.

The TTM meeting data were recorded over a two year pe-
riod. A total of 158 meetings were collected, yielding a to-
tal of 179 hours of acoustic data. The approximate breakdown
of the meeting by general topic is: ASR projects 15 meetings
(20 hours) TTS projects 61 meetings (57 hours); acoustic mod-
elling 33 meetings (44 hours); group and general 47 meetings
(58 hours). For the initial release of the data no information
about the participants of the meetings was available.

In order to evaluate performance, seven meetings (8.88
hours) were selected for the TTM evaluation testset. Note over-
lapping speech was again removed. Professional transcriptions
were provided as reference, and this data was transcribed early
in the collection. To assess the quality of the professional tran-
scriptions, the first recorded meeting (denote as A0001) was
also transcribed by people who were present at the meeting and
familiar with the attendees and their accents. This will be re-
ferred to as the “gold-standard”.

Table 1: Microphone distance and WER for meeting A0001
Speaker A B C D E Avg
Dist (m) 2.1 2.1 1.2 1.6 1.2 —
Manual 16.4 15.7 8.2 7.6 2.9 10.6
ASR 68.6 66.4 74.9 70.2 55.4 64.8

Table 1 shows both the microphone distance and word er-
ror rate of the professional (manual) transcriptions, compared to
the “gold-standard”, and performance of an initial ASR system.
Speakers C, D, E are native UK English speakers, while speak-
ers A and B are non-native. The professional transcribers some-
times chose an incorrect word sequence, though the transcrip-
tions were phonetically similar to the correct word sequence.

The overall WER is 10.6%, which indicates TTM data is a
highly challenging task. The transcribers had difficulty with
non-native speakers (A and B), Japanese and Chinese names,
technical jargon and abbreviations. These are not issues for
people familiar with the participants and topics. However, these
gold-standard transcriptions are very difficult to obtain as they
require transcribers with expert in-domain knowledge of both
the meeting topic and participants. For this work the “gold-
standard” was used as the reference for meeting A0001, the
manual transcriptions were used for the other six meetings. The
lowest WER speaker for the ASR system was the same as the
manual transcribers, a speaker close to the microphone. How-
ever, there was no consistent pattern over the other speakers.

3. Unsupervised Task Adaptation
As an initial study for long-term adaptation, unsupervised task
adaptation was investigated. For standard speaker adaptation,
the canonical model obtained from Speaker Adaptive Training
(SAT) [14] on the AMI corpus will be adopted for speaker adap-
tation on TTM evaluation testsets. Here the adaptation will
not only capture the variability of speakers, but also some of
the mismatch between the AMI and TTM corpora background
noise, reverberation and channel distortion. However since the
mismatch between the two corpora should be consistent over
the whole meeting, and some attributes over all the data col-
lected, task adaptation can also be applied. The task adaptation
is followed by speaker adaptation to capture personal characters
such as speaker, seating position.

3.1. Task and Speaker Adaptation

There are a number of existing studies into task adaptation, or
task porting, Maximum a posterior (MAP) [15] was applied on
ML andMMI trained speaker independent models for cross task
adaptation in [16]. In [17], ML-MAP and MMI-MAP were
investigated by porting acoustic models from Switchboard to
voicemail task.

In this work, task adaptation in combination with speaker
adaptation is used. MLLR and MAP (MLLR+MAP) are
adopted for task adaptation, and CMLLR and MLLR (CM-
LLR+MLLR) for speaker adaptation. The acoustic model score
for a specific speaker s can be expressed by

p(oτ |s, t,m) = |A(s)|N
(
A

(s)
oτ + b

(s);μ(stm)
,Σ

(stm)
)

where μ(stm) and Σ(stm) are the mean and covariance matrix
for Gaussian componentm after MLLR+MAP adaptation to the
meeting(s) t and MLLR adaptation to speaker s, and A(s) and
b
(s) are the global CMLLR transforms for speaker s.

3.2. Confidence score based data selection

For distant microphone meeting transcription, the error rate may
be quite high. For task adaptation, where there is more adap-
tation data available than in the speaker adaptation case, it is
not necessary to use all available data for adaptation, as adapt-
ing to high error rate transcriptions may degrade performance.
Confidence score based adaptation [18, 19] is one approach to
improve unsupervised adaptation. In this work, segment-level
confidence scores are used for data selection. Segments with
high confidence score are kept, while the other segments are
discarded. The confidence of each segment takes the arithmetic
mean of word confidence score, which is obtained from word
posterior probabilities in confusion network [20].
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3.3. Task Adaptation Mode

In deployed meeting transcription systems, it is possible to run
task adaptation in a number of different modes, depending on
the requirements of the system. For example, if the room in
which the meetings will take place changes, then the task adap-
tation should be on individual meetings. This is referred to as
independent mode in this paper. Alternatively in incremental
mode it is assumed that the meeting environment is consistent,
but the transcriptions need to be generated in a causal fashion at
the meeting level. The final model batchmode, again assumes a
consistent meeting environment, but it is possible to transcribe
all meetings in a single batch, for example if archived meetings
are being transcribed. These modes are illustrated in Figure 2.

Show 1 Show 2 Show 3 Show 4 Show N.....

Independent
 Mode

Incremental
 Mode

Batch Mode

.....

Task
 Adaptation

Task
 Adaptation

Task
Adaptation

t

Show 1 Show 2 Show 3 Show 4 Show N.....

t

.....

Figure 2: Operating modes for meeting transcription

4. Results
For these experiments, the AMI corpus was used for training the
baseline acoustic models and to provide publicly available base-
line recognition numbers. Task adaptation was only performed
on the TTM data. For all test data, the automatic segmentation
and speaker clustering described in [5] was used at a meeting
level. A 3-gram language model (LM) trained on 2.5G words
was used as the baseline language model, additional details of
the training data for this LM are given in [5]. The Out of Vo-
cabulary (OOV) rate for the AMI dev data was 2.23%, eval data
2.17% and the TTM data 1.24%.

Three forms of acoustic model were initially examined for
meeting transcription. The baseline models are Gaussian mix-
ture model (GMM) based systems using PLP features (PLP sys-
tem). Additionally, two forms of acoustic model based on deep
neural networks were trained. A GMM-based system using PLP
and bottleneck (BN) features [21] (Tandem system) and Hybrid
system [22] combining HMMs and neural network posteriors.
All systems were based on state-clustered decision-tree triphone
models.

The baseline PLP system was built in a similar fashion to
that described in [5]; 13-dimensional PLP features with delta,
delta-delta and triples appended. CMN, CVN and HLDA were
then applied for feature normalisation and projection. The min-
imum phone error (MPE) [23] criterion was used to train the
acoustic models. SAT [14] based on CMLLR [24] was also
used. MLLR was then used to adapt to the target speaker for
GMM-based systems. A tandem system appending bottleneck
features [21] was also built. A “deep” MLP is constructed with
four hidden layers, with 1000 nodes per layer. Nine-frames
were spliced to form the input layer. The dimension of bot-
tleneck feature is set to be 26. The target is 6000 context depen-
dent states obtained from the decision tree generated for GMM-
HMM system. Discriminative pretraining as in [25] was used.

A semi-tied covariance (STC) [26] transform was applied to the
bottleneck features prior to concatenation with the PLP features.
Thus, the dimensionality of the Tandem feature in this paper is
65. The Tandem acoustic models were built using the rapid con-
struction approach described in [27]. The final acoustic models
constructed were based on hybrid systems, also known as DNN-
HMM systems [22]. The training of neural network in hybrid
system is similar to the training of the BN features in Tandem
system. A speaker adapted hybrid system was also constructed,
by applying CMLLR transforms obtained from the GMM sys-
tem on PLP feature, before it is fed into DNNs. The alignment
for the targets was obtained from a Tandem SAT system.

In addition to the baseline N-gram language model, feed-
forward MLP (MLP) [28] and recurrent neural network (RNN)
[29] language models were built. Both these neural network
based language models (NNLMs) were trained on the transcrip-
tions of acoustic training data, about 2 million words. The
MLP-based NNLM used the shortlist with 6.3K words to reduce
the size of LM and increase the generalization ability. An out of
shortlist (OOS) symbol was also used on the output layer [30].
TheMLP NNLM has two hidden layers with 600 and 400 nodes
respectively. A fully connected recurrent NNLM described in
[31] was adopted. The size of hidden layer was 500. Efficient
lattices rescoring proposed in [32] was used to generate lattices
for CN decoding. All the neural network based language model
are interpolated with the standard N-Gram language model and
the weight is fixed to be 0.5.

4.1. WERs for the Baseline Acoustic Systems

Initially speaker independent (SI) and speaker adapted (SA)
meeting transcription was investigated. Thus only global CM-
LLR+MLLR adaptation at the speaker level was used. Table 2
gives WER results on the three types of acoustic models with
the baseline LM. As expected, the TTM WER is significantly
higher than that of the AMI testsets. Both the DNN based sys-
tems out-perform the baseline acoustic models, the Hybrid sys-
tem gives comparable performance to the Tandem system in SI
and SA modes. Confusion network combination (CNC) [33] of
Tandem and Hybrid system provides further improvement.

Table 2: Baseline WER results on AMI and TTM testset
System AMI TTM

dev eval

SI

PLP 44.7 43.5 67.9
Tandem (T1) 36.4 36.5 60.4
Hybrid (H1) 35.9 35.6 59.8
CNC T1⊕H1 34.1 33.9 57.9

SA

PLP 38.2 39.2 61.7
Tandem (T2) 33.4 34.5 57.5
Hybrid (H2) 33.2 33.0 58.4
CNC T2⊕H2 31.8 31.6 55.7

In the following experiments, the Tandem system is used to
investigate the performance for long-term adaptation as it gives
slightly better performance than hybrid system in the SA mode,
and Tandem system acoustic model adaptation is easier to im-
plement.

4.2. Unsupervised Task Adaptation for TTM corpus

In this section, task adaptation in batch mode is applied with the
Tandem SAT system using all TTM data. The supervision for
task adaptation was generated from the baseline Tandem SAT
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system. The confidence score from CN decoding [20] was used
for data selection. As stated in section 3, MLLR+MAP was
adopted for unsupervised task adaptation. A regression tree is
used for MLLR and the maximum number of MLLR transform
is set to be 128. In initial experiments, it was found that discrim-
inative MAP [34] didn’t outperform ML-MAP for unsupervised
task adaptation due to the high WER of the supervision. Hence,
ML-MAP is used for unsupervised task adaptation by default.

The WER results for batch-mode task adaptation are given
in table 3. Task Adaptation using MLLR and MAP could re-
duce WER by 0.8% and 1.6% respectively with data selection.
Furthermore, a combination of them gives 2.0% absolute im-
provement in WERwhen the confidence threshold is 0.8, giving
a good balance between the quantity and quality of adaptation
data.

Table 3: WER results for unsupervised task adaptation on Tan-
dem SAT system in batch mode on TTM corpus

Task Conf Adapt WERAdaptation Thresh Data (hrs)
- - - 57.5

MLLR 0.8 68.0 56.7
MAP 0.8 68.0 55.9

MLLR+MAP

0.0 179.0 56.3
0.7 128.6 56.0
0.8 68.0 55.5
0.9 19.7 55.7

4.3. Independent, Incremental and Batch Modes

It is interesting to investigate the relative performance of each
of the task adaptation models shown in Figure 2. Results are
shown in table 4. For all these experiments the confidence
threshold of 0.8 found in the batch-mode experiments was used.
For the independent mode, WER is reduced by 0.8% using only
an individual meeting, here the average amount of data selected
per meeting was 0.5 hours. For the incremental mode work,
only the data up to the final test meetings were used. Thus,
the amount of adaptation data for these seven meetings varied
from 0.5 to 8.7 hours and WER is reduced by 0.9%. Lastly,
for batch mode, two configurations were run. The first experi-
ment used the same seven meetings as the incremental system.
The amount of adaptation data is 8.7 hours after data selection,
giving WER of 56.3%, 0.3% absolute better than the incremen-
tal performance. The second experiment used all TTM data,
68.0 hours, and gave a WER of 55.5%. Though increasing the
quantity of unsupervised data yielded improved performance,
the error rate is still very high.

Table 4: WER results for unsupervised task adaptation in dif-
ferent operating modes

Mode Adapt Data (hrs) WER
— — 57.5

Independent 0.5 56.7
Increment 0.5—8.7 56.6

Batch 8.7 56.3
68.0 55.5

4.4. Supervised Acoustic and Language Model Adaptation

The reduction of WER with all the TTM data is only 2.0% ab-
solute over unsupervised adaptation. For practical systems a
limited amount of data may be transcribed early in the deploy-
ment to try and improve performance. To examine the impact

of this supervised data, the seven meetings for which transcrip-
tions were available were used in a cross validation fashion to
adapt the acoustic and language models. This yielded an aver-
age of 7.5 hours of data, 92K words for each test meeting.

Table 5 shows the comparison of WERs for the unsuper-
vised and supervised task adaptation. Supervised adaptation
using MLLR+MAP yielded greater performance gains than us-
ing all the meetings in an unsupervised fashion. Additionally
MPE-MAP gave performance gains over ML-MAP adaptation
for supervised adaptation, as expected with reference transcrip-
tions available.

Table 5: WER results for supervised task adaptation
Adaptation MAP form Adapt WER
Reference (MLLR+) Data (hrs)
— — — 57.5

Unsupervised ML-MAP 68.0 55.5

Supervised ML-MAP 7.5 54.8
MPE-MAP 54.0

The previous results have not updated the language model.
For each meeting, in a cross-validation fashion, N-Gram LMs
were trained from the manual references and interpolated with
the baseline N-Gram LM with an interpolation weight 0.2. Ta-
ble 6 shows the WER performance of using this adapted lan-
guage model, as well as the interpolation of N-grams (both
adapted and baseline) with feed-forward (MLP) and recurrent
(RNN) neural network language models. As expected, the use
of the adaption data for both the language and acoustic models,
and the use of neural network language models, yields perfor-
mance gains. However the overall performance is still over 50%
WER.

Table 6: WER results for supervised language model adaptation
NNLM Adapt. PPL WER

— 128.8 57.5
— LM 108.3 56.4

LM+AM 53.5

MLP
- 124.5 56.4
LM 111.9 56.2

LM+AM 53.2

RNN
- 112.9 56.1
LM 102.0 55.7

LM+AM 53.0

5. Conclusion
This paper has described an initial investigation on long-term
adaptation for meeting transcription. The meeting task selected
is highly challenging, using a single microphone array in a large
meeting room with participants interacting in a natural fashion.
Using deep neural network based acoustic models and speaker
adaptation yielded an error rate of 57.5%. Incorporating long-
term unsupervised adaptation reduced this by 2.0% absolute.
The limited amount of supervised data and advanced language
models further reduced this by 7.8% relative, to 53.0% WER.

These initial WER improvements on long-term adaptation
using standard adaptation approaches are relatively small. How-
ever in the current configurations no use has been made of addi-
tional meta-data from the meetings, such as the agenda, presen-
tation slides, and technical documents. Furthermore there has
been no explicit tracking of individuals over the meetings. Both
of these approaches will be examined in future work.
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