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Abstract 
 

Various regression test selection techniques have 

been developed and have shown to improve testing cost 

effectiveness via improving efficiency. The majority of 

these test selection techniques rely on access to source 

code for change identification. However, when new 

releases of COTS components are made available for 

integration and testing, source code is often not 

available to guide in regression test selection. In this 

paper we describe a lightweight Integrated - Black-box 

Approach for Component Change Identification (I-

BACCI) process for selection of regression tests for 

user/glue code that uses COTS components. I-BACCI 

is applicable when component licensing agreements do 

not preclude binary code analysis. A case study of the 

process was conducted on an ABB product that uses a 

medium-scale internal ABB software component. Six 

releases of the component were examined to evaluate 

the efficacy of the proposed process. The result of the 

case study indicates that this process can reduce the 

required regression tests by 40% on average. 

 

1. Introduction 
 

Regression testing involves selective re-testing of a 

system or component to verify that modifications have 

not caused unintended effects and that the system or 

component still complies with its specified 

requirements [7]. A variety of regression test selection 

techniques [3, 5, 15] have been developed to minimize 

the time and resource cost of regression testing.  

However, most of these techniques rely on source 

code, and therefore are not suitable when source code 

is not available for analysis. 

COTS software products typically undergo a new 

release every eight to nine months, with active vendor 

support for only the latest three releases [2]. Users of 

COTS components often do not have access to the 

source code, only to the binary files and a small set of 

reference documents. Upon receiving the COTS files, 

users often need to conduct regression testing to 

determine if a new component or new version of an 

existing component will cause problems with their 

existing software and/or hardware system. The lack of 

source code presents a challenge for the reduction and 

selection of test cases. 

Our research objective is to develop a lightweight 

process for regression test selection for the user/glue 

code that uses software components when source code 

of the components is not available.  We call our 

process the Integrated - Black-box Approach for 

Component Change Identification (I-BACCI) process. 

The input artifacts are the binary code of the 

components (old and new versions), the source code of 

user/glue code, and the test suite for the user/glue code. 

Generally these artifacts are available to the COTS 

user. Once the process is completed, the reduced 

regression test suite can be run to determine if any of 

the changes in the COTS components affected the 

operation of the application. 

A case study of the six-step I-BACCI process was 

conducted by North Carolina State University and 

ABB Inc. The case study involved a large-scale ABB 

product that contains a medium-scale internal ABB 

software component. In prior research, we applied the 

first two steps of I-BACCI on four releases of a 

product [25]. In this case study, all six steps of I-

BACCI were applied to six releases of the product. 

The remainder of this paper is organized as follows. 

Section 2 discusses the background and related work. 

The I-BACCI process is described in Section 3. 

Section 4 describes a case study of applying this 

process on an ABB product that uses a library 

component. Finally, Section 5 and Section 6 present 

the conclusions and future work, respectively. 

 

2. Background and related work 
 

In this section, we discuss the prior work in 

software components testing, regression testing, and 

change identification. 



2.1. Testing of software components 
 

Generally, testing of COTS software is black-box 

because users do not have access to the source code to 

analyze the internal implementation. Black-box testing, 

also called functional testing or behavioral testing, is 

testing that ignores the internal mechanism of a system 

or component and focuses solely on the outputs 

generated in response to selected inputs and execution 

conditions [7]. Black-box test cases of COTS 

components can only be derived from the component 

specification provided by the vendor, and the behavior 

can only be determined by studying the inputs and the 

related outputs of the component. Poor testability, due 

to the lack of access to the component’s source code 

and internal artifacts, is one of the issues and 

challenges of component testing [4]. 

Harrold et al. [6] presented techniques that use 

component metadata for regression test selection of 

COTS components. They illustrated their technique 

with a controlled example of a VendingMachine 

program with a Dispenser component. Their code-

based technique resulted in an average savings of 26% 

of the testing effort over seven releases of a real 

component-based system [6]. Their techniques utilize 

three types of metadata to perform the regression test 

selection: (1) the branch coverage achieved by the test 

suite with respect to the component to associate test 

cases with branches; (2) the component version; and 

(3) a means to query the component for the branches 

affected by changes in the component between two 

given versions [6].  However, the component provider 

may not provide this information.  In our research, we 

focus on using only the information that is typically 

available. However, Harrold et al.’s process may be 

more applicable when component licensing agreements 

preclude the binary code analysis needed for I-BACCI. 

 

2.2. Regression test selection 
 

The retest-all regression technique, whereby all 

regression tests are re-run, is straightforward but can be 

prohibitively expensive in both time and resources [5]. 

Conversely, regression test selection (RTS) techniques 

attempt to reduce the cost of regression testing by 

selecting a partial set of possible regression test cases 

[5]. The selected regression test suite focuses on the 

software components/functions that have been changed 

or that are most likely to be affected by the change.  In 

the selection of test cases, an RTS technique might not 

be safe. A safe RTS technique guarantees that the 

subset of tests selected contains all test cases in the 

original test suite that can reveal faults based upon the 

modified program [3, 11, 15]. A variety of RTS 

techniques [3, 5, 15] have been proposed, such as 

methods based upon path analysis techniques or 

dataflow techniques. However, these techniques rely 

upon having information about the source code. 

Srivastava and Thiagarajan at Microsoft, however, 

have developed a test prioritization system, Echelon 

[17], that prioritizes the application’s given set of tests 

based on a binary code comparison of two versions.  

Echelon takes as input two versions of the program in 

binary form and the test coverage information of the 

older version (in the form of a mapping between the 

test suite and the lines of code it executes).  Echelon 

outputs a prioritized list of test sequences (small 

groups of tests).  The researchers analyzed the efficacy 

of Echelon based on two runs of a comparison between 

two binaries of a 1.8 million line of code office 

productivity application [17].  The objective of the 

comparison was to see if Echelon detected defects 

earlier. In the first run, Echelon detected 87% of the 

defects in the first 2 of 148 test sequences; the 

remaining 13% of the defects were not detected by any 

tests.  In the second run of different binaries, Echelon 

detected 98% of the defects in the first 3 of 221 test 

sequences; the remaining 2% of the defects were not 

detected by any tests. 

Srivastava and Thiagarajan discuss the advantages 

of comparing at the binary level rather than the code 

level: (1) easier to integrate into the build process 

because the recompilation step needed to collect 

coverage data is eliminated; and (2) all the changes in 

header files to constants, macro definitions, etc. have 

been propagated to the affected procedures, 

simplifying the determination of program changes.  

Although they have not published results of applying 

Echelon to components, in theory, the tool seems to be 

applicable to test selection for COTS components.  

However, Echelon is a large Microsoft internal product 

with a significant infrastructure and an underlying 

bytecode manipulation engine.  As will be discussed, I-

BACCI is a lightweight, relatively simple process. 

 

2.3. Change identification 
 

A key step in choosing regression tests is to identify 

changes or the change impact via impact analysis [14] 

between the new release and the previously-tested 

version with the same source code base. Laski and 

Szermer [10] proposed a formal method to identify 

modifications made in a program. Vokolos and Frankl 

[18, 19] utilized a textual differencing technique to 

perform regression test selection. However, most 

change identification approaches utilize the source 

code of the old and modified programs [10, 15, 18, 19]. 

These approaches are not suitable for component 

testing when source code is not available. 



Although a comparison between versions of 

documentation (such as user manuals, specifications, 

and samples) is potentially helpful [11, 13], the 

documentation may not reflect all changes. In some 

cases, the implementation may change without 

necessitating any specification changes, such as for a 

code fix. Thus, to identify an efficient set of regression 

tests, users of COTS software should perform thorough 

change identification which does not rely solely on the 

component documentation. I-BACCI addresses this. 

For the purpose of evolution of user profile 

information, Wang et. al. [20] developed the Binary 

Matching Tool (BMAT). BMAT matches two versions 

of a binary program without knowledge of the source 

code changes. The implementation uses a hashing-

based algorithm and a series of heuristic methods to 

find correct matches for as many program blocks as 

possible. The algorithm first matches procedures, then 

basic blocks within each procedure. The 

implementation of BMAT is built on Windows NT® 

for the x86 architecture. BMAT uses the Vulcan binary 

analysis tool [16] to create an intermediate 

representation of x86 binaries, which frees the BMAT 

developers from the tasks of separating code from data 

and identifying program symbols. The process allows 

good matches to be found even with shifted addresses, 

different register allocations, and small program 

modifications [20]. BMAT was used by Echelon [17], 

which is discussed in Section 2.2, to find a matching 

block in the old binary for each block in the new 

binary.  The BMAT algorithm may be incorporated 

into our supporting tool for I-BACCI to reduce or 

eliminate a current false positive problem. 

 

3. I-BACCI  
 

I-BACCI is an integrated, lightweight regression 

test selection process for user/glue code that uses 

software components for which source code of the 

components is not available.  The I-BACCI process is 

an integration of our Black-box Approach for 

Component Change Identification (BACCI) process for 

identifying change with the firewall RTS method.  In 

this section, we provide information on BACCI, 

firewall analysis, and I-BACCI. 

 

3.1. BACCI 
 

We have proposed the BACCI process for 

identifying changed areas in COTS components [25].  

The first step of the BACCI process is to decompose 

the binary files of the components into code sections of 

exported functions using appropriate binary parsers 

and using the open source Decomposer and Trivial 

Information Zapper (D-TIZ)
1
 tool.  The second step of 

the process is to compare the code sections between the 

two versions using standard differencing tools. The 

goal of BACCI is to feed the change information of 

various types of binary code into code-based regression 

test selection methods. 

In a feasibility study, the proposed BACCI process 

was applied three times between successive released 

versions of an internal ABB product. The result is 

shown in Table 1. For each comparison, the two 

numbers in the column of “Numbers of Functions” 

represent the numbers of the functions in the two 

releases being compared respectively. 

 

Table 1: Feasibility Study Results 
Comp. 

Releases 

Number 

of Fcns. 

Changed 

Functions 

Identified 

True  

Pos. 

False 

Pos. 

False 

Neg. 

1 and 2 941 / 941 1 100% 0 0% 

2 and 3 941 / 941 664 100% 465 0% 

3 and 4 941 / 942 2 100% 0 0% 

 

The analysis of Releases 1 and 2 identified a change 

in one of 941 functions in the library. Once the 

changed function was determined, a source code 

difference analysis was performed which showed that 

the BACCI analysis was correct and only the one 

identified function was changed between Releases 1 

and 2. Similarly, the analysis of Releases 3 and 4 

showed that two functions were changed out of the 941 

functions in Release 3, and one function was added. 

The source code difference analysis of the two versions 

verified that two functions changed and one new 

function was added. These functions were the same 

functions identified by the BACCI analysis. 

The BACCI analysis of Releases 2 and 3 identified 

that 664 out of 941 functions in the library were 

changed. The source code difference analysis was 

performed, and it was determined that only 199 out of 

the identified 664 function differences were really due 

to changes in the code. After further investigation, it 

was determined that the product had changes to global 

structures and definition statements. These changes 

affected the product’s uses of void function pointers to 

allow function callbacks. All addresses of these 

functions changed, which led to changes in the library 

for 450+ functions. Other than these changes, the other 

199 functions were identified correctly. The false 

positives lead to a larger bound on the testing needed, 

but this is still safe, as no areas are missed. Future 

work has been planned to reduce or even eliminate 

false positives by improving the D-TIZ tool, 

potentially using the BMAT [20] algorithm. 

                                                 
1
 http://www4.ncsu.edu/~jzheng4/D-TIZ/index.htm 



The above case study indicates the potential of 

BACCI for determining change in COTS components 

when no void function pointers or other static 

addresses are used. These pointers lead to false 

positives.  No false negatives were identified. 

 

3.2. Firewall analysis 
 

Leung and White [1, 11, 12, 23] developed the 

testing firewall method for regression testing with 

integration test cases (where integration tests are those 

that evaluate the interaction between components [7]) 

in the presence of small changes in functionally-

designed software. The testing firewall is intended to 

limit the regression testing to those potentially-affected 

system elements directly dependent upon changed 

system elements [23, 24]. 

The firewall method considers module 

dependencies, control-flow dependencies, and data 

dependencies [23]. Affected areas, including modified 

functions, structures, and functions that use them, are 

identified. Dependencies are modeled as call graphs 

and a “firewall” is drawn around the changed functions 

on the call graph. All modules inside the firewall are 

unit and integration tested, and are integration tested 

with all modules not in the firewall [23]. Test cases 

that need to be re-run over these modules are identified 

and/or new test cases to exercise new code or 

functionality are generated.  Kung, Gao, et. al. [8, 9] 

utilized the firewall concept on an object-oriented 

system, and White and Abdullah [21] expanded the 

firewall to address more features of an object-oriented 

system. Firewall was also utilized in the regression 

testing of graphical user interfaces by White et al. [22]. 

The firewall method can only be guaranteed to 

select all modification-revealing [15] tests and to be 

safe if all unit and integration tests initially used to test 

system components are “reliable” and observability 

can be assured. Tests are reliable if the correctness of 

modules exercised by those tests for the tested inputs 

implies correctness of those modules for all inputs. 

However, test suites are typically not reliable in 

practice [24], so the firewall technique may omit 

modification-revealing tests and may also admit some 

non-modification-traversing tests. White and Robinson 

[24] have shown firewall to be effective via empirical 

studies of industrial real-time systems despite these 

theoretical limitations. 

 

3.3. I-BACCI 

 

The I-BACCI process involves six steps as shown 

in Figure 1. The first two of these steps are done via 

the BACCI process (in dash-dotted line frame), and the 

remaining four steps are done via the firewall analysis 

process (in dashed line frame). Steps 2, 3, and 4 can be 

performed concurrently. The goal of the BACCI 

process is to prepare a report on changed functions and 

the calling relationships among the functions in the 

components. The input artifacts to the I-BACCI 

process are shown in the gray blocks of Figure 1. They 

are fed into different steps of the process. 

Applying the firewall analysis process for 

regression test selection within I-BACCI requires the 

user/glue code, its full test suite, and the output of 

BACCI. Similar to traditional firewall analysis, the 

changes determined by the BACCI process are 

identified and traced one level up (or more than one, 

depending on data-flow paths). Since we do not have 

the test cases for any internal functions of the 

component itself, each identified change is propagated 

to the roots of the call graph for the component, and all 

of the functions in the user/glue code that directly or 

indirectly call this function are identified for retesting. 

Prior to being distributed, component source code is 

compiled into files in binary code formats, such as .lib, 

.dll, .ocx, or .class files. Information on the data 

structure, functions, and function call relationship of 

the source code is stored in some areas of the binary 

files according to pre-defined formats, so that an 

external system is able to find and call the functions in 

the corresponding code sections. For example, 

Windows NT® uses a special format for the executable 

(image) files and object files.  The format used in these 

files is referred to as Portable Executable (PE) or 

Common Object File Format (COFF)
2
. Object files 

created from C or C++ programs using many compilers 

conform to COFF, including Microsoft® Visual 

C++
TM

, GNU® Compiler Collection (GCC
TM

), and 

Intel® C/C++ Compiler (ICL
TM

). The overall structure 

of COFF is shown in Table 2. 

Table 2: Overall Structure of COFF 

Segment Description 
File Header Stores basic information of the 

COFF file. 

Optional Header Optional file header; generally 

does not exist in object files. 

Section Header 1 ~ n Describes section information. 

Section Data Raw data. 

Relocation Directives Describes relocation information 

for symbols in the COFF file; 

exists in object files only. 

Line Numbers Maps binary code with line nos. of 

source code for debugging. 

Symbol Table Describes information for all 

symbols used in the COFF file. 

String Table Stores long symbol names 

                                                 
2
 MSDN Library - Visual Studio .NET 2003 



 
Figure 1:  Proposed I-BACCI Regression Test Selection Process 

 

The compiled functions and data structures are stored in 

sections in the “Section Data” segment in binary form. In 

addition, the “Relocation Directives” segment saves the 

information for the symbol indices which point to 

corresponding records in the symbol table, and the offsets 

of the symbols in code sections. Therefore, the calling 

relationships of the functions can be derived from the 

“Relocation Directives” segment. We can utilize the 

information stored in the section headers (such as data 

offset, real size of section data, the offset of relocation 

information, and the data in Relocation Directives, 

Symbol Table, and String Table) to deduce information 

about the source code of the functions. 
There are two sub-steps for the first step of the 

BACCI process: (1a) decomposing the binary file of the 

component; and (1b) filtering trivial information to 

Component binary 

code (old version) 

Component binary 

code (new version) 

User code 

or glue code 

Step 1: Decompose both old and new version of binary 

code using appropriate parsing and filtering tools 

Code sections of 

functions for both 

versions 

Calling relationships 

among functions for 

the new version 

Step 2: Compare code 

sections of the two versions 

using differencing tool 

Step 3: Draw function call graphs 

for the new version of the 

component 

Differencing reports with 

changed functions 

Call graphs for the new 

version 

Step 5: Identify affected functions in the 

user/glue code by tracing the affected 

component functions along the call graphs 

Step 4: Draw function call graphs 

for the user/glue code which calls 

the component functions 

Call graphs for the 

user/glue code 

List of all the affected functions 

in the user/glue code 

All test cases for the 

user/glue code  

Step 6: Select test cases that cover the affected 

functions in the user/glue code 

Reduced set of test cases 

I-BACCI 

Process 

BACCI 

Process 

Firewall 

Analysis 



facilitate comparisons by differencing tools. Often the 

first sub-step can be accomplished by parsing tools 

available for the language/architecture. The second sub-

step is frequently necessary because the output may 

contain trivial information such as timestamps and file 

pointers, which are “noise” for the change identification.  

The first output should be formatted conveniently for 

differencing tools to identify changes in functions 

between releases, and the second output should be 

formatted conveniently for a graph generation tool to 

build call graphs.  For example, the 32-bit COFF binary 

files, such as COFF object files, standard libraries of 

COFF objects, executable files, and dynamic-link 

libraries (DLLs), can be examined by the Microsoft 

COFF Binary File Dumper (DUMPBIN). The output 

generated by DUMPBIN presents all the information 

about the 32-bit COFF binary files in a comprehensible 

manner suitable for use as input to differencing tools. 

Generally, the second sub-step cannot be done via 

existing tools.  Therefore, we have created the D-TIZ to 

perform the decomposition and remove trivial 

information. Currently D-TIZ can only be used with 

library files, but it will be extended to handle all the 

component types, as will be discussed in future work. 

The second step of the I-BACCI process is to 

compare the code sections between the two versions.  

Commercial or open source differencing and merge tools 

(such as Araxis Merge
3

, FolderMatch
4

, Beyond 

Compare
5

, and WinMerge
6

), which allow for the 

comparison of not only plain text files but also binary 

files, are able to accomplish this step and generate 

differencing reports showing the changed functions. 

The third and fourth steps of the I-BACCI process 

are necessary to produce function call graphs. The main 

difference between the two steps is that the input for Step 

3 is the calling relationships among functions in a 

component, and the input for Step 4 is the user/glue 

source code. Generally, the call graphs generated from 

Step 3 are more complex than those from Step 4, because 

in Step 4 only the user functions that directly call the 

component functions and the component functions being 

called need to be included in the call graphs. The call 

graph can be either represented by a data structure or 

drawn using graph generation tools such as GraphViz
7
 

(an open source tool). For convenience in identifying 

affected functions in the user/glue code, the call graphs 

generated from the two steps can be integrated. 

In the fifth step, the affected functions in the 

user/glue code are identified. This step can be 

implemented by algorithms in directed graph theory. If a 

                                                 
3
 http://www.araxis.com 

4
 http://www.foldermatch.com 

5
 http://www.scootersoftware.com 

6
 http://winmerge.sourceforge.net 

7
 http://www.graphviz.org 

component function changes, then all its direct callers are 

considered as affected functions. The direct callers that 

call these affected functions are also potentially affected 

by the initial function change. Therefore, we can start 

from each component function identified as changed and 

propagate that change along the call graphs until we reach 

the functions called directly by the user/glue code (which 

we call the “user” functions). These are the user functions 

which are affected by the initial changed function in the 

component, and therefore need to be re-tested. 

This method is especially suitable when there are only 

a few function changes in the new version of the 

component, but many user functions that directly call 

these functions. An alternative method can be used when 

there are only a few user functions that directly call 

component functions, but many component function 

changes. We may start from the user functions and 

examine the component functions being called by them 

along the call graphs, until we find a changed component 

function or we have reached all of the leaves without 

finding a changed component function. In the former 

situation, the initial user function is affected by the 

change in the component, so that it needs to be re-tested, 

while the latter situation indicates the initial user function 

does not need to be tested. The output of Step 5 is a list of 

all the affected functions in the user/glue code. 

Generally, there is a set of test cases for each function 

in the user/glue code. More generically, I-BACCI 

requires as input a set of test cases which are mapped to 

the user/glue code functions they cover. In the sixth step, 

we use this information to select test cases that cover only 

the affected functions in the user/glue code, as identified 

by the steps above. The I-BACCI process has the 

potential to reduce the set of regression test cases because 

it focuses on the affected user functions and ignores the 

unaffected area in the user/glue code. 

 

3.4. Limitations of I-BACCI 
 

I-BACCI has a legal limitation: the licensing 

agreement of the COTS component must not preclude the 

analysis of the binary files. Although licensing 

agreements are generally intended to prevent someone 

from creating viruses or competing products or 

circumventing copy protection, we should avoid violation 

of any license agreements for each product we are 

analyzing, including the internal ABB products. 

I-BACCI shares an acknowledged technical limitation 

with all existing source-based firewall methods: it has the 

potential for reporting false negatives in situations where 

binary differences are caused by factors other than 

changes in source code (e.g. changes in the build tools, 

environment or target platform). Although I-BACCI does 

work with the binary files for the component, and such 

differences are potentially detectable from binary file 

comparisons, the current focus of the method on 



decompilation to source for differential analysis 

precludes identification of such differences. 

A third limitation of I-BACCI is its potential for 

identification of false positives. In tracing the call graphs, 

we are consciously and conservatively assuming for test 

selection purposes that any use of a binarily-changed 

called function will be affected by the change, even 

though that particular use of a changed function might 

never exercise the changed logic or data. It might be 

possible, with further work, to prove this and thus 

eliminate unneeded tests from the regression suite. 

However, this limitation does not degrade the level of 

safeness of the I-BACCI method below that of its 

underlying firewall RTS technique. 

 

4. Case study 
 

An I-BACCI case study was conducted on a 757 

thousand lines of code (KLOC) ABB application written 

in C/C++. This product contains a 67 KLOC internal 

ABB software component in library (.lib) files written in 

C. Six incremental releases of the component were 

analyzed and compared to study the effectiveness of the 

I-BACCI process at reducing regression test cases.  

Henceforth, these releases will be referred to as Release 1 

through Release 6, respectively. The releases identified as 

1 though 4 in our previous BACCI work correspond to 

Releases 3 through 6 in this study. This software 

combination was chosen because (1) the numbers of test 

cases for each function of the application are available; 

and (2) multiple releases of the component are available. 

Source code for the component was available and was 

used to verify the accuracy of the analysis post hoc. In 

this case study, the only artifact in each release of the 

component which was used by the analyzer (the first 

author of this paper) is a library file in the delivery 

package; neither the header files nor the documentation 

were analyzed. The analyzer did not have access to the 

source code of the component and did not know the 

changes in source code of the component. The analyzer 

had access to the source code of the application to 

analyze the use of the component functions and to draw 

call graphs for the interface between the user software 

and the component. The results of the identified changes 

and call graphs were verified by the second author, who 

was not involved in the detailed change identification 

analysis and firewall analysis. The reduction of test cases 

for each comparison was provided by the second author. 

The rest of this section is organized as follows. 

Section 4.1 describes the process for analyzing library 

files; Section 4.2 presents the results of the case study. 

 

4.1. I-BACCI processing of library files 
 

The case study involved the analysis of library files. A 

library file contains the raw binary code of many object 

files. When we call a function implemented in an object 

file congregated in a library, a linker program is able to 

seek the corresponding object file in the library and 

invoke the function. A library file is organized in 

segments similar to the COFF file format. Each segment 

consists of two parts - header and data. The number of 

Object Sections and offset of each Object Section can be 

found in the Second Section. The data part of each Object 

Section is a complete unchanged object file in COFF 

format, as discussed in Section 3. The names of the object 

files can be obtained either in the corresponding header or 

in the Longname Section, according to the offset stored in 

the header. Also, the relocation table (Relocation 

Directives segment in Table 2) of a function in the object 

file stores the names of the functions that are called by 

that function. The calling relationship among functions in 

the whole component can be ascertained by tracing the 

calls in the relocation tables throughout the library file. 

During the first step of the I-BACCI process, the 

binary files of components were decomposed into code 

sections of functions.  Each library file in each of the six 

releases was translated into plain text using DUMPBIN.  

Afterwards, D-TIZ was used to scan the output of 

DUMPBIN to pick out the code sections of the exported 

functions, and save them into separate files. The 

relocation table of each function was obtained by D-TIZ. 

The second step was to compare the functions among 

the six releases and generate differencing reports. The 

differencing tool selected was Araxis Merge. In the 

differencing report, every function contained in the two 

library versions being compared is listed and can be 

drilled down to see detailed differences between the two 

releases. The report can be configured to list only those 

functions with changes. 

The change identification part of the case study was 

conducted on an IBM T42 laptop with one Intel® 

Pentium® M 1.8GHz processor and one gigabyte RAM.  

It took nine seconds in total for DUMPBIN and D-TIZ to 

complete the first step of the process. Araxis Merge spent 

about five seconds on each comparison and about one 

minute generating the full differencing report. 

In the third, fourth, and fifth steps, call graphs were 

drawn for changed functions to identify the affected 

functions in the source code of the application by tracing 

the affected component functions along the call graphs. 

Currently we have to conduct the firewall analysis steps 

manually due to the lack of existing tool support. A 

typical call graph is shown in Appendix A. It took 

approximately 24 hours for the analyzer to complete the 

three steps for the six versions compared. In the future, a 

tool will be developed to generate call graphs and 

automate the identification of affected functions. Then, 

the second author received the list of all the affected 

functions in the application, verified the correctness of 

the change identification, and produced the numbers and 



percent reduction of the regression test cases needed, 

based on the original test suite. 

 

4.2. Results 

 
In this case study, the proposed I-BACCI process was 

applied five times between six successively-released 

versions of the internal ABB component. The result is 

shown in Table 3. 

 

Table 3: Case Study Results 

Comparisons Metrics 

1 vs. 2 2 vs. 3 3 vs. 4 4 vs. 5 5 vs. 6 

Changed 

component 

functions  

164 668 1 664 2 

Added 

component 

functions 

3 2 0 0 1 

Deleted 

component 

functions 

4 2 0 0 0 

Affected 

exported 

component 

functions 

331 331 2 331 39 

Affected 

functions in 

the application  

60 60 0 60 0 

Total test cases 

needed 

592 592 0 592 0 

% of reduced 

test cases 

0 % 0 % 100 % 0 % 100 % 

 

The interface between the application and the internal 

component was examined to establish a baseline of 

affected functions in the application. In total, 60 functions 

(in 50 C++ files) in the application call 89 functions of 

the component. In the worst case, all of the 60 functions 

would be affected by the changes in the component and 

would need to be re-tested. 

The first analysis was conducted between Release 1 

and Release 2 of the component. The BACCI analysis 

showed that 164 functions were changed out of the 941 

functions in Release 2, and three functions were added. 

Once the changed functions were determined, a source 

code difference analysis was performed which showed 

that only 70 out of the identified 164 function differences 

were really due to changes in the source code from 

Release 1 to Release 2. The remaining changes are due to 

the false positives discussed in Section 3.1. Firewall 

analysis showed that 331 exported functions in the 

component were affected by the identified changes and 

all 60 functions in the application were affected. As a 

result, there was no regression test case reduction. 

The second and fourth analyses determined that more 

than 660 out of 941 functions in the library were changed.  

The large number of changed functions would lead to a 

large amount of affected exported functions in the 

component. Therefore, the analyzer checked the 

application functions that call component functions.  

Unfortunately, all of these component function calls were 

affected. Similar to the first analysis, approximately 70% 

of the component functions that were marked as 

“changed” by D-TIZ were false positives. 

The third analysis was conducted between Release 3 

and Release 4 of the component. This analysis identified 

a change in one of 941 functions in the library. The 

source code difference analysis showed that the BACCI 

analysis was correct and only the identified function was 

changed between Releases 3 and 4. Two exported 

functions in the component were affected by the 

identified change. However, no function in the 

application calls the two affected functions in the 

component.  Therefore, we achieved a 100% regression 

test case reduction. 

The final analysis was conducted between Release 5 

and Release 6. This analysis showed that two functions 

were changed out of the 941 functions in Release 6, and 

one function was added. The source code difference 

analysis of the two versions verified that two functions 

changed and one new function was added. These 

functions were the same functions identified by the 

BACCI analysis. These changes affect 39 exported 

functions in the component. The call graph of this case is 

shown in Appendix A.  However, similar to the third 

case, no functions in the application call the 39 affected 

functions in the component, and therefore none of the 

functions in the application need to be retested. 

 

5. Conclusions 
 

In this paper, we proposed the I-BACCI process for 

regression test selection for user/glue code that uses 

software components when source code of the 

components is not available. A large-scale product and 

several versions of a library component used in that 

product were examined as a case study to verify the 

potential efficacy of this process.  The results showed that 

a reduction in test cases can be determined from a 

component without any source code available for 

analysis. In the above case study, there were times when 

releases required no retesting, as no changes in the 

component affected the product using the component. 

 

6. Future work 
 

Accuracy, generalization, and automation are three 

main goals of work in the future.  First, in depth, we need 

to reduce or even eliminate the false positives identified 



by the current I-BACCI process and tools. Second, 

additional breadth is required to expand this process to 

adapt to all of the COTS file types. We plan to analyze 

more components in the various formats which can be 

examined by DUMPBIN, such as dynamic link libraries 

and executable files, as well as different component types 

such as the container/control model, in which user 

programs act as containers for third party controls. 

Finally, the whole process should be automated into one 

tool to save both time and resources. 
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Appendix A.  Changed and affected functions in Release 6 
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Each circle stands for a function. Each arrow 

connector stands for a call. The numbers in 

circles are just sequence numbers but do not 

imply anything about order. 

Legend 

Gray circles stand for the three changed or 

added functions. 

White circle stands for function affected by 

the changed functions. 

 
Circle with solid edge stands for exported 

functions. The prefix “E” before the 

numbers in such circle stands for 

“Exported”. 39 exported functions are 

affected in this case. 

 
Circle with dotted edge stands for non-

exported functions. 


