
An Initial Study of a Lightweight Process for Change Identification

and Regression Test Selection When Source Code is Not Available

Jiang Zheng
1
, Brian Robinson

2
, Laurie Williams

1
, Karen Smiley

2

1
 Department of Computer Science, North Carolina State University, Raleigh, NC, USA

{jzheng4, lawilli3}@ncsu.edu
2
 ABB Inc., US Corporate Research

{brian.p.robinson, karen.smiley}@us.abb.com

Abstract

Various regression test selection techniques have

been developed and have shown to improve testing cost

effectiveness via improving efficiency. The majority of

these test selection techniques rely on access to source

code for change identification. However, when new

releases of COTS components are made available for

integration and testing, source code is often not

available to guide in regression test selection. In this

paper we describe a lightweight Integrated - Black-box

Approach for Component Change Identification (I-

BACCI) process for selection of regression tests for

user/glue code that uses COTS components. I-BACCI

is applicable when component licensing agreements do

not preclude binary code analysis. A case study of the

process was conducted on an ABB product that uses a

medium-scale internal ABB software component. Six

releases of the component were examined to evaluate

the efficacy of the proposed process. The result of the

case study indicates that this process can reduce the

required regression tests by 40% on average.

1. Introduction

Regression testing involves selective re-testing of a

system or component to verify that modifications have

not caused unintended effects and that the system or

component still complies with its specified

requirements [7]. A variety of regression test selection

techniques [3, 5, 15] have been developed to minimize

the time and resource cost of regression testing.

However, most of these techniques rely on source

code, and therefore are not suitable when source code

is not available for analysis.

COTS software products typically undergo a new

release every eight to nine months, with active vendor

support for only the latest three releases [2]. Users of

COTS components often do not have access to the

source code, only to the binary files and a small set of

reference documents. Upon receiving the COTS files,

users often need to conduct regression testing to

determine if a new component or new version of an

existing component will cause problems with their

existing software and/or hardware system. The lack of

source code presents a challenge for the reduction and

selection of test cases.

Our research objective is to develop a lightweight

process for regression test selection for the user/glue

code that uses software components when source code

of the components is not available. We call our

process the Integrated - Black-box Approach for

Component Change Identification (I-BACCI) process.

The input artifacts are the binary code of the

components (old and new versions), the source code of

user/glue code, and the test suite for the user/glue code.

Generally these artifacts are available to the COTS

user. Once the process is completed, the reduced

regression test suite can be run to determine if any of

the changes in the COTS components affected the

operation of the application.

A case study of the six-step I-BACCI process was

conducted by North Carolina State University and

ABB Inc. The case study involved a large-scale ABB

product that contains a medium-scale internal ABB

software component. In prior research, we applied the

first two steps of I-BACCI on four releases of a

product [25]. In this case study, all six steps of I-

BACCI were applied to six releases of the product.

The remainder of this paper is organized as follows.

Section 2 discusses the background and related work.

The I-BACCI process is described in Section 3.

Section 4 describes a case study of applying this

process on an ABB product that uses a library

component. Finally, Section 5 and Section 6 present

the conclusions and future work, respectively.

2. Background and related work

In this section, we discuss the prior work in

software components testing, regression testing, and

change identification.

2.1. Testing of software components

Generally, testing of COTS software is black-box

because users do not have access to the source code to

analyze the internal implementation. Black-box testing,

also called functional testing or behavioral testing, is

testing that ignores the internal mechanism of a system

or component and focuses solely on the outputs

generated in response to selected inputs and execution

conditions [7]. Black-box test cases of COTS

components can only be derived from the component

specification provided by the vendor, and the behavior

can only be determined by studying the inputs and the

related outputs of the component. Poor testability, due

to the lack of access to the component’s source code

and internal artifacts, is one of the issues and

challenges of component testing [4].

Harrold et al. [6] presented techniques that use

component metadata for regression test selection of

COTS components. They illustrated their technique

with a controlled example of a VendingMachine

program with a Dispenser component. Their code-

based technique resulted in an average savings of 26%

of the testing effort over seven releases of a real

component-based system [6]. Their techniques utilize

three types of metadata to perform the regression test

selection: (1) the branch coverage achieved by the test

suite with respect to the component to associate test

cases with branches; (2) the component version; and

(3) a means to query the component for the branches

affected by changes in the component between two

given versions [6]. However, the component provider

may not provide this information. In our research, we

focus on using only the information that is typically

available. However, Harrold et al.’s process may be

more applicable when component licensing agreements

preclude the binary code analysis needed for I-BACCI.

2.2. Regression test selection

The retest-all regression technique, whereby all

regression tests are re-run, is straightforward but can be

prohibitively expensive in both time and resources [5].

Conversely, regression test selection (RTS) techniques

attempt to reduce the cost of regression testing by

selecting a partial set of possible regression test cases

[5]. The selected regression test suite focuses on the

software components/functions that have been changed

or that are most likely to be affected by the change. In

the selection of test cases, an RTS technique might not

be safe. A safe RTS technique guarantees that the

subset of tests selected contains all test cases in the

original test suite that can reveal faults based upon the

modified program [3, 11, 15]. A variety of RTS

techniques [3, 5, 15] have been proposed, such as

methods based upon path analysis techniques or

dataflow techniques. However, these techniques rely

upon having information about the source code.

Srivastava and Thiagarajan at Microsoft, however,

have developed a test prioritization system, Echelon

[17], that prioritizes the application’s given set of tests

based on a binary code comparison of two versions.

Echelon takes as input two versions of the program in

binary form and the test coverage information of the

older version (in the form of a mapping between the

test suite and the lines of code it executes). Echelon

outputs a prioritized list of test sequences (small

groups of tests). The researchers analyzed the efficacy

of Echelon based on two runs of a comparison between

two binaries of a 1.8 million line of code office

productivity application [17]. The objective of the

comparison was to see if Echelon detected defects

earlier. In the first run, Echelon detected 87% of the

defects in the first 2 of 148 test sequences; the

remaining 13% of the defects were not detected by any

tests. In the second run of different binaries, Echelon

detected 98% of the defects in the first 3 of 221 test

sequences; the remaining 2% of the defects were not

detected by any tests.

Srivastava and Thiagarajan discuss the advantages

of comparing at the binary level rather than the code

level: (1) easier to integrate into the build process

because the recompilation step needed to collect

coverage data is eliminated; and (2) all the changes in

header files to constants, macro definitions, etc. have

been propagated to the affected procedures,

simplifying the determination of program changes.

Although they have not published results of applying

Echelon to components, in theory, the tool seems to be

applicable to test selection for COTS components.

However, Echelon is a large Microsoft internal product

with a significant infrastructure and an underlying

bytecode manipulation engine. As will be discussed, I-

BACCI is a lightweight, relatively simple process.

2.3. Change identification

A key step in choosing regression tests is to identify

changes or the change impact via impact analysis [14]

between the new release and the previously-tested

version with the same source code base. Laski and

Szermer [10] proposed a formal method to identify

modifications made in a program. Vokolos and Frankl

[18, 19] utilized a textual differencing technique to

perform regression test selection. However, most

change identification approaches utilize the source

code of the old and modified programs [10, 15, 18, 19].

These approaches are not suitable for component

testing when source code is not available.

Although a comparison between versions of

documentation (such as user manuals, specifications,

and samples) is potentially helpful [11, 13], the

documentation may not reflect all changes. In some

cases, the implementation may change without

necessitating any specification changes, such as for a

code fix. Thus, to identify an efficient set of regression

tests, users of COTS software should perform thorough

change identification which does not rely solely on the

component documentation. I-BACCI addresses this.

For the purpose of evolution of user profile

information, Wang et. al. [20] developed the Binary

Matching Tool (BMAT). BMAT matches two versions

of a binary program without knowledge of the source

code changes. The implementation uses a hashing-

based algorithm and a series of heuristic methods to

find correct matches for as many program blocks as

possible. The algorithm first matches procedures, then

basic blocks within each procedure. The

implementation of BMAT is built on Windows NT®

for the x86 architecture. BMAT uses the Vulcan binary

analysis tool [16] to create an intermediate

representation of x86 binaries, which frees the BMAT

developers from the tasks of separating code from data

and identifying program symbols. The process allows

good matches to be found even with shifted addresses,

different register allocations, and small program

modifications [20]. BMAT was used by Echelon [17],

which is discussed in Section 2.2, to find a matching

block in the old binary for each block in the new

binary. The BMAT algorithm may be incorporated

into our supporting tool for I-BACCI to reduce or

eliminate a current false positive problem.

3. I-BACCI

I-BACCI is an integrated, lightweight regression

test selection process for user/glue code that uses

software components for which source code of the

components is not available. The I-BACCI process is

an integration of our Black-box Approach for

Component Change Identification (BACCI) process for

identifying change with the firewall RTS method. In

this section, we provide information on BACCI,

firewall analysis, and I-BACCI.

3.1. BACCI

We have proposed the BACCI process for

identifying changed areas in COTS components [25].

The first step of the BACCI process is to decompose

the binary files of the components into code sections of

exported functions using appropriate binary parsers

and using the open source Decomposer and Trivial

Information Zapper (D-TIZ)
1
 tool. The second step of

the process is to compare the code sections between the

two versions using standard differencing tools. The

goal of BACCI is to feed the change information of

various types of binary code into code-based regression

test selection methods.

In a feasibility study, the proposed BACCI process

was applied three times between successive released

versions of an internal ABB product. The result is

shown in Table 1. For each comparison, the two

numbers in the column of “Numbers of Functions”

represent the numbers of the functions in the two

releases being compared respectively.

Table 1: Feasibility Study Results
Comp.

Releases

Number

of Fcns.

Changed

Functions

Identified

True

Pos.

False

Pos.

False

Neg.

1 and 2 941 / 941 1 100% 0 0%

2 and 3 941 / 941 664 100% 465 0%

3 and 4 941 / 942 2 100% 0 0%

The analysis of Releases 1 and 2 identified a change

in one of 941 functions in the library. Once the

changed function was determined, a source code

difference analysis was performed which showed that

the BACCI analysis was correct and only the one

identified function was changed between Releases 1

and 2. Similarly, the analysis of Releases 3 and 4

showed that two functions were changed out of the 941

functions in Release 3, and one function was added.

The source code difference analysis of the two versions

verified that two functions changed and one new

function was added. These functions were the same

functions identified by the BACCI analysis.

The BACCI analysis of Releases 2 and 3 identified

that 664 out of 941 functions in the library were

changed. The source code difference analysis was

performed, and it was determined that only 199 out of

the identified 664 function differences were really due

to changes in the code. After further investigation, it

was determined that the product had changes to global

structures and definition statements. These changes

affected the product’s uses of void function pointers to

allow function callbacks. All addresses of these

functions changed, which led to changes in the library

for 450+ functions. Other than these changes, the other

199 functions were identified correctly. The false

positives lead to a larger bound on the testing needed,

but this is still safe, as no areas are missed. Future

work has been planned to reduce or even eliminate

false positives by improving the D-TIZ tool,

potentially using the BMAT [20] algorithm.

1
 http://www4.ncsu.edu/~jzheng4/D-TIZ/index.htm

The above case study indicates the potential of

BACCI for determining change in COTS components

when no void function pointers or other static

addresses are used. These pointers lead to false

positives. No false negatives were identified.

3.2. Firewall analysis

Leung and White [1, 11, 12, 23] developed the

testing firewall method for regression testing with

integration test cases (where integration tests are those

that evaluate the interaction between components [7])

in the presence of small changes in functionally-

designed software. The testing firewall is intended to

limit the regression testing to those potentially-affected

system elements directly dependent upon changed

system elements [23, 24].

The firewall method considers module

dependencies, control-flow dependencies, and data

dependencies [23]. Affected areas, including modified

functions, structures, and functions that use them, are

identified. Dependencies are modeled as call graphs

and a “firewall” is drawn around the changed functions

on the call graph. All modules inside the firewall are

unit and integration tested, and are integration tested

with all modules not in the firewall [23]. Test cases

that need to be re-run over these modules are identified

and/or new test cases to exercise new code or

functionality are generated. Kung, Gao, et. al. [8, 9]

utilized the firewall concept on an object-oriented

system, and White and Abdullah [21] expanded the

firewall to address more features of an object-oriented

system. Firewall was also utilized in the regression

testing of graphical user interfaces by White et al. [22].

The firewall method can only be guaranteed to

select all modification-revealing [15] tests and to be

safe if all unit and integration tests initially used to test

system components are “reliable” and observability

can be assured. Tests are reliable if the correctness of

modules exercised by those tests for the tested inputs

implies correctness of those modules for all inputs.

However, test suites are typically not reliable in

practice [24], so the firewall technique may omit

modification-revealing tests and may also admit some

non-modification-traversing tests. White and Robinson

[24] have shown firewall to be effective via empirical

studies of industrial real-time systems despite these

theoretical limitations.

3.3. I-BACCI

The I-BACCI process involves six steps as shown

in Figure 1. The first two of these steps are done via

the BACCI process (in dash-dotted line frame), and the

remaining four steps are done via the firewall analysis

process (in dashed line frame). Steps 2, 3, and 4 can be

performed concurrently. The goal of the BACCI

process is to prepare a report on changed functions and

the calling relationships among the functions in the

components. The input artifacts to the I-BACCI

process are shown in the gray blocks of Figure 1. They

are fed into different steps of the process.

Applying the firewall analysis process for

regression test selection within I-BACCI requires the

user/glue code, its full test suite, and the output of

BACCI. Similar to traditional firewall analysis, the

changes determined by the BACCI process are

identified and traced one level up (or more than one,

depending on data-flow paths). Since we do not have

the test cases for any internal functions of the

component itself, each identified change is propagated

to the roots of the call graph for the component, and all

of the functions in the user/glue code that directly or

indirectly call this function are identified for retesting.

Prior to being distributed, component source code is

compiled into files in binary code formats, such as .lib,

.dll, .ocx, or .class files. Information on the data

structure, functions, and function call relationship of

the source code is stored in some areas of the binary

files according to pre-defined formats, so that an

external system is able to find and call the functions in

the corresponding code sections. For example,

Windows NT® uses a special format for the executable

(image) files and object files. The format used in these

files is referred to as Portable Executable (PE) or

Common Object File Format (COFF)
2
. Object files

created from C or C++ programs using many compilers

conform to COFF, including Microsoft® Visual

C++
TM

, GNU® Compiler Collection (GCC
TM

), and

Intel® C/C++ Compiler (ICL
TM

). The overall structure

of COFF is shown in Table 2.

Table 2: Overall Structure of COFF

Segment Description
File Header Stores basic information of the

COFF file.

Optional Header Optional file header; generally

does not exist in object files.

Section Header 1 ~ n Describes section information.

Section Data Raw data.

Relocation Directives Describes relocation information

for symbols in the COFF file;

exists in object files only.

Line Numbers Maps binary code with line nos. of

source code for debugging.

Symbol Table Describes information for all

symbols used in the COFF file.

String Table Stores long symbol names

2
 MSDN Library - Visual Studio .NET 2003

Figure 1: Proposed I-BACCI Regression Test Selection Process

The compiled functions and data structures are stored in

sections in the “Section Data” segment in binary form. In

addition, the “Relocation Directives” segment saves the

information for the symbol indices which point to

corresponding records in the symbol table, and the offsets

of the symbols in code sections. Therefore, the calling

relationships of the functions can be derived from the

“Relocation Directives” segment. We can utilize the

information stored in the section headers (such as data

offset, real size of section data, the offset of relocation

information, and the data in Relocation Directives,

Symbol Table, and String Table) to deduce information

about the source code of the functions.
There are two sub-steps for the first step of the

BACCI process: (1a) decomposing the binary file of the

component; and (1b) filtering trivial information to

Component binary

code (old version)

Component binary

code (new version)

User code

or glue code

Step 1: Decompose both old and new version of binary

code using appropriate parsing and filtering tools

Code sections of

functions for both

versions

Calling relationships

among functions for

the new version

Step 2: Compare code

sections of the two versions

using differencing tool

Step 3: Draw function call graphs

for the new version of the

component

Differencing reports with

changed functions

Call graphs for the new

version

Step 5: Identify affected functions in the

user/glue code by tracing the affected

component functions along the call graphs

Step 4: Draw function call graphs

for the user/glue code which calls

the component functions

Call graphs for the

user/glue code

List of all the affected functions

in the user/glue code

All test cases for the

user/glue code

Step 6: Select test cases that cover the affected

functions in the user/glue code

Reduced set of test cases

I-BACCI

Process

BACCI

Process

Firewall

Analysis

facilitate comparisons by differencing tools. Often the

first sub-step can be accomplished by parsing tools

available for the language/architecture. The second sub-

step is frequently necessary because the output may

contain trivial information such as timestamps and file

pointers, which are “noise” for the change identification.

The first output should be formatted conveniently for

differencing tools to identify changes in functions

between releases, and the second output should be

formatted conveniently for a graph generation tool to

build call graphs. For example, the 32-bit COFF binary

files, such as COFF object files, standard libraries of

COFF objects, executable files, and dynamic-link

libraries (DLLs), can be examined by the Microsoft

COFF Binary File Dumper (DUMPBIN). The output

generated by DUMPBIN presents all the information

about the 32-bit COFF binary files in a comprehensible

manner suitable for use as input to differencing tools.

Generally, the second sub-step cannot be done via

existing tools. Therefore, we have created the D-TIZ to

perform the decomposition and remove trivial

information. Currently D-TIZ can only be used with

library files, but it will be extended to handle all the

component types, as will be discussed in future work.

The second step of the I-BACCI process is to

compare the code sections between the two versions.

Commercial or open source differencing and merge tools

(such as Araxis Merge
3

, FolderMatch
4

, Beyond

Compare
5

, and WinMerge
6

), which allow for the

comparison of not only plain text files but also binary

files, are able to accomplish this step and generate

differencing reports showing the changed functions.

The third and fourth steps of the I-BACCI process

are necessary to produce function call graphs. The main

difference between the two steps is that the input for Step

3 is the calling relationships among functions in a

component, and the input for Step 4 is the user/glue

source code. Generally, the call graphs generated from

Step 3 are more complex than those from Step 4, because

in Step 4 only the user functions that directly call the

component functions and the component functions being

called need to be included in the call graphs. The call

graph can be either represented by a data structure or

drawn using graph generation tools such as GraphViz
7

(an open source tool). For convenience in identifying

affected functions in the user/glue code, the call graphs

generated from the two steps can be integrated.

In the fifth step, the affected functions in the

user/glue code are identified. This step can be

implemented by algorithms in directed graph theory. If a

3
 http://www.araxis.com

4
 http://www.foldermatch.com

5
 http://www.scootersoftware.com

6
 http://winmerge.sourceforge.net

7
 http://www.graphviz.org

component function changes, then all its direct callers are

considered as affected functions. The direct callers that

call these affected functions are also potentially affected

by the initial function change. Therefore, we can start

from each component function identified as changed and

propagate that change along the call graphs until we reach

the functions called directly by the user/glue code (which

we call the “user” functions). These are the user functions

which are affected by the initial changed function in the

component, and therefore need to be re-tested.

This method is especially suitable when there are only

a few function changes in the new version of the

component, but many user functions that directly call

these functions. An alternative method can be used when

there are only a few user functions that directly call

component functions, but many component function

changes. We may start from the user functions and

examine the component functions being called by them

along the call graphs, until we find a changed component

function or we have reached all of the leaves without

finding a changed component function. In the former

situation, the initial user function is affected by the

change in the component, so that it needs to be re-tested,

while the latter situation indicates the initial user function

does not need to be tested. The output of Step 5 is a list of

all the affected functions in the user/glue code.

Generally, there is a set of test cases for each function

in the user/glue code. More generically, I-BACCI

requires as input a set of test cases which are mapped to

the user/glue code functions they cover. In the sixth step,

we use this information to select test cases that cover only

the affected functions in the user/glue code, as identified

by the steps above. The I-BACCI process has the

potential to reduce the set of regression test cases because

it focuses on the affected user functions and ignores the

unaffected area in the user/glue code.

3.4. Limitations of I-BACCI

I-BACCI has a legal limitation: the licensing

agreement of the COTS component must not preclude the

analysis of the binary files. Although licensing

agreements are generally intended to prevent someone

from creating viruses or competing products or

circumventing copy protection, we should avoid violation

of any license agreements for each product we are

analyzing, including the internal ABB products.

I-BACCI shares an acknowledged technical limitation

with all existing source-based firewall methods: it has the

potential for reporting false negatives in situations where

binary differences are caused by factors other than

changes in source code (e.g. changes in the build tools,

environment or target platform). Although I-BACCI does

work with the binary files for the component, and such

differences are potentially detectable from binary file

comparisons, the current focus of the method on

decompilation to source for differential analysis

precludes identification of such differences.

A third limitation of I-BACCI is its potential for

identification of false positives. In tracing the call graphs,

we are consciously and conservatively assuming for test

selection purposes that any use of a binarily-changed

called function will be affected by the change, even

though that particular use of a changed function might

never exercise the changed logic or data. It might be

possible, with further work, to prove this and thus

eliminate unneeded tests from the regression suite.

However, this limitation does not degrade the level of

safeness of the I-BACCI method below that of its

underlying firewall RTS technique.

4. Case study

An I-BACCI case study was conducted on a 757

thousand lines of code (KLOC) ABB application written

in C/C++. This product contains a 67 KLOC internal

ABB software component in library (.lib) files written in

C. Six incremental releases of the component were

analyzed and compared to study the effectiveness of the

I-BACCI process at reducing regression test cases.

Henceforth, these releases will be referred to as Release 1

through Release 6, respectively. The releases identified as

1 though 4 in our previous BACCI work correspond to

Releases 3 through 6 in this study. This software

combination was chosen because (1) the numbers of test

cases for each function of the application are available;

and (2) multiple releases of the component are available.

Source code for the component was available and was

used to verify the accuracy of the analysis post hoc. In

this case study, the only artifact in each release of the

component which was used by the analyzer (the first

author of this paper) is a library file in the delivery

package; neither the header files nor the documentation

were analyzed. The analyzer did not have access to the

source code of the component and did not know the

changes in source code of the component. The analyzer

had access to the source code of the application to

analyze the use of the component functions and to draw

call graphs for the interface between the user software

and the component. The results of the identified changes

and call graphs were verified by the second author, who

was not involved in the detailed change identification

analysis and firewall analysis. The reduction of test cases

for each comparison was provided by the second author.

The rest of this section is organized as follows.

Section 4.1 describes the process for analyzing library

files; Section 4.2 presents the results of the case study.

4.1. I-BACCI processing of library files

The case study involved the analysis of library files. A

library file contains the raw binary code of many object

files. When we call a function implemented in an object

file congregated in a library, a linker program is able to

seek the corresponding object file in the library and

invoke the function. A library file is organized in

segments similar to the COFF file format. Each segment

consists of two parts - header and data. The number of

Object Sections and offset of each Object Section can be

found in the Second Section. The data part of each Object

Section is a complete unchanged object file in COFF

format, as discussed in Section 3. The names of the object

files can be obtained either in the corresponding header or

in the Longname Section, according to the offset stored in

the header. Also, the relocation table (Relocation

Directives segment in Table 2) of a function in the object

file stores the names of the functions that are called by

that function. The calling relationship among functions in

the whole component can be ascertained by tracing the

calls in the relocation tables throughout the library file.

During the first step of the I-BACCI process, the

binary files of components were decomposed into code

sections of functions. Each library file in each of the six

releases was translated into plain text using DUMPBIN.

Afterwards, D-TIZ was used to scan the output of

DUMPBIN to pick out the code sections of the exported

functions, and save them into separate files. The

relocation table of each function was obtained by D-TIZ.

The second step was to compare the functions among

the six releases and generate differencing reports. The

differencing tool selected was Araxis Merge. In the

differencing report, every function contained in the two

library versions being compared is listed and can be

drilled down to see detailed differences between the two

releases. The report can be configured to list only those

functions with changes.

The change identification part of the case study was

conducted on an IBM T42 laptop with one Intel®

Pentium® M 1.8GHz processor and one gigabyte RAM.

It took nine seconds in total for DUMPBIN and D-TIZ to

complete the first step of the process. Araxis Merge spent

about five seconds on each comparison and about one

minute generating the full differencing report.

In the third, fourth, and fifth steps, call graphs were

drawn for changed functions to identify the affected

functions in the source code of the application by tracing

the affected component functions along the call graphs.

Currently we have to conduct the firewall analysis steps

manually due to the lack of existing tool support. A

typical call graph is shown in Appendix A. It took

approximately 24 hours for the analyzer to complete the

three steps for the six versions compared. In the future, a

tool will be developed to generate call graphs and

automate the identification of affected functions. Then,

the second author received the list of all the affected

functions in the application, verified the correctness of

the change identification, and produced the numbers and

percent reduction of the regression test cases needed,

based on the original test suite.

4.2. Results

In this case study, the proposed I-BACCI process was

applied five times between six successively-released

versions of the internal ABB component. The result is

shown in Table 3.

Table 3: Case Study Results

Comparisons Metrics

1 vs. 2 2 vs. 3 3 vs. 4 4 vs. 5 5 vs. 6

Changed

component

functions

164 668 1 664 2

Added

component

functions

3 2 0 0 1

Deleted

component

functions

4 2 0 0 0

Affected

exported

component

functions

331 331 2 331 39

Affected

functions in

the application

60 60 0 60 0

Total test cases

needed

592 592 0 592 0

% of reduced

test cases

0 % 0 % 100 % 0 % 100 %

The interface between the application and the internal

component was examined to establish a baseline of

affected functions in the application. In total, 60 functions

(in 50 C++ files) in the application call 89 functions of

the component. In the worst case, all of the 60 functions

would be affected by the changes in the component and

would need to be re-tested.

The first analysis was conducted between Release 1

and Release 2 of the component. The BACCI analysis

showed that 164 functions were changed out of the 941

functions in Release 2, and three functions were added.

Once the changed functions were determined, a source

code difference analysis was performed which showed

that only 70 out of the identified 164 function differences

were really due to changes in the source code from

Release 1 to Release 2. The remaining changes are due to

the false positives discussed in Section 3.1. Firewall

analysis showed that 331 exported functions in the

component were affected by the identified changes and

all 60 functions in the application were affected. As a

result, there was no regression test case reduction.

The second and fourth analyses determined that more

than 660 out of 941 functions in the library were changed.

The large number of changed functions would lead to a

large amount of affected exported functions in the

component. Therefore, the analyzer checked the

application functions that call component functions.

Unfortunately, all of these component function calls were

affected. Similar to the first analysis, approximately 70%

of the component functions that were marked as

“changed” by D-TIZ were false positives.

The third analysis was conducted between Release 3

and Release 4 of the component. This analysis identified

a change in one of 941 functions in the library. The

source code difference analysis showed that the BACCI

analysis was correct and only the identified function was

changed between Releases 3 and 4. Two exported

functions in the component were affected by the

identified change. However, no function in the

application calls the two affected functions in the

component. Therefore, we achieved a 100% regression

test case reduction.

The final analysis was conducted between Release 5

and Release 6. This analysis showed that two functions

were changed out of the 941 functions in Release 6, and

one function was added. The source code difference

analysis of the two versions verified that two functions

changed and one new function was added. These

functions were the same functions identified by the

BACCI analysis. These changes affect 39 exported

functions in the component. The call graph of this case is

shown in Appendix A. However, similar to the third

case, no functions in the application call the 39 affected

functions in the component, and therefore none of the

functions in the application need to be retested.

5. Conclusions

In this paper, we proposed the I-BACCI process for

regression test selection for user/glue code that uses

software components when source code of the

components is not available. A large-scale product and

several versions of a library component used in that

product were examined as a case study to verify the

potential efficacy of this process. The results showed that

a reduction in test cases can be determined from a

component without any source code available for

analysis. In the above case study, there were times when

releases required no retesting, as no changes in the

component affected the product using the component.

6. Future work

Accuracy, generalization, and automation are three

main goals of work in the future. First, in depth, we need

to reduce or even eliminate the false positives identified

by the current I-BACCI process and tools. Second,

additional breadth is required to expand this process to

adapt to all of the COTS file types. We plan to analyze

more components in the various formats which can be

examined by DUMPBIN, such as dynamic link libraries

and executable files, as well as different component types

such as the container/control model, in which user

programs act as containers for third party controls.

Finally, the whole process should be automated into one

tool to save both time and resources.

Acknowledgements

This research was supported by a research grant from

ABB Corporate Research. Additionally, we would like to

thank Tao Xie for his helpful suggestions.

References

[1] Abdullah, K., Kimble, J., and White, L., "Correcting for

Unreliable Regression Integration Testing," International

Conference on Software Maintenance, Nice, France, 1995,

pp. 232-241.

[2] Basili, V. R. and Boehm, B., "COTS-Based systems Top

10 List," IEEE Computer, Vol. 24, No. 5, May 2001, pp.

91-93.

[3] Bible, J., Rothermel, G., and Rosenblum, D., "A

Comparative Study of Course- and Fine-Grained Safe

Regression Test-Selection Techniques," ACM Transactions

on Software Engineering and Methodology, Vol. 10, No. 2,

Apr. 2001, pp. 149-183.

[4] Gao, J. and Wu, Y., "Testing Component-Based Software -

Issues, Challenges, and Solutions," in 3rd International

Conference on COTS-Based Software Systems. Redondo

Beach, Jan. 2004.

[5] Graves, T. L., Harrold, M. J., Kim, Y. M., Porter, A., and

Rothermel, G., "An Empirical Study of Regression Test

Selection Techniques," ACM Transactions on Software

Engineering and Methodology, Vol. 10, No. 2, Apr. 2001,

pp. 184-208.

[6] Harrold, M. J., Orso, A., Rosenblum, D., Rothermel, G.,

Soffa, M. L., and Do, H., "Using Component Metacontents

to Support the Regression Testing of Component-Based

Software," IEEE International Conference on Software

Maintenance (ICSM 2001), Florence, Italy, Nov. 2001, pp.

716-725.

[7] IEEE, "IEEE Standard Glossary of Software Engineering

Terminology," IEEE Standard 610.12, 1990.

[8] Kung, D., Gao, J., Hsia, P., Wen, F., Toyoshima, Y., and

Chen, C., "Change Impact Identification in Object-

Oriented Software Maintenance," International Conference

on Software Maintenance, Victoria, B.C., Canada, 1994,

pp. 202-211.

[9] Kung, D., Gao, J., Hsia, P., Wen, F., Toyoshima, Y., and

Chen, C., "Class Firewall, Test Order and Regression

Testing of Object-Oriented Programs," Journal of Object-

Oriented Programming, Vol. 8, No. 2, May 1995, pp. 51-

65.

[10] Laski, J. and Szermer, W., "Identification of program

modifications and its applications in software

maintenance," International Conference on Software

Maintenance, Nov. 1992, pp. 282-290.

[11] Leung, H. and White, L., "A Study of Integration Testing

and Software Regression at the Integration Level,"

International Conference on Software Maintenance, San

Diego, 1990, pp. 290-301.

[12] Leung, H. and White, L., "Insights into Testing and

Regression Testing Global Variables," Journal of Software

Maintenance, Vol. 2, No. 4, Dec. 1991, pp. 209-222.

[13] Mayrhauser, A. v., Mraz, R. T., and Walls, J., "Domain

Based Regression Testing," International Conference on

Software Maintenance, Sept. 1994, pp. 26-35.

[14] Orso, A., Apiwattanapong, R., Law, J., Rothermel, G., and

Harrold, M. J., "An empirical comparison of dynamic

impact analysis algorithms," International Conference on

Software Engineering (ICSE), Edinburgh, Scotland, 2004,

pp. 491-500.

[15] Rothermel, G. and Harrold, M., "Analyzing regression test

selection techniques," IEEE Trans. on Software

Engineering, 22(8), Aug. 1996, pp. 529-551.

[16] Srivastava, A., "Vulcan," TR-99-76, Microsoft Research

Sept. 1999.

[17] Srivastava, A. and Thiagarajan, J., "Effectively prioritizing

tests in development environment," ACM SIGSOFT

International Symposium on Software Testing and

Analysis, Roma, Italy, 2002, pp. 97-106.

[18] Vokolos, F. and Frankl, P., "Pythia: A regression test

selection tool based on textual differencing," 3rd

International Conference on Reliability, Quality and Safety

of Software-intensive System, Athens, Greece, Jan. 1997,

pp. 3-21.

[19] Vokolos, F. and Frankl, P., "Empirical evaluation of the

textual differencing regression testing technique,"

International Conference on Software Maintenance, Nov.

1998, pp. 44-53.

[20] Wang, Z., Pierce, K., and McFarling, S., "BMAT: A

Binary Matching Tool for Stale Profile Propagation," The

Journal of Instruction-Level Parallelism, Vol. 2, May

2000.

[21] White, L. and Abdullah, K., "A Firewall Approach for the

Regression Testing of Object-Oriented Software," in

Software Quality Week. San Francisco, May 1997.

[22] White, L., Almezen, H., and Sastry, S., "Firewall

Regression Testing of GUI Sequences and Their

Interactions," International Conference on Software

Maintenance, Amsterdam, The Netherlands, Sept. 2003,

pp. 398-409.

[23] White, L. and Leung, H., "A Firewall Concept for both

Control-Flow and Data Flow in Regression Integration

Testing," International Conference on Software

Maintenance, Orlando, 1992, pp. 262-271.

[24] White, L. and Robinson, B., "Industrial Real-Time

Regression Testing and Analysis Using Firewall,"

International Conference on Software Maintenance,

Chicago, Sept. 2004, pp. 18-27.

[25] Zheng, J., Robinson, B., Williams, L., and Smiley, K., "A

Process for Identifying Changes When Source Code is Not

Available," the 2nd International Workshop on Models and

Processes for the Evaluation of off-the-shelf Components

(MPEC '05), St. Louis, MO, May, 2005.

Appendix A. Changed and affected functions in Release 6

E25

E31
E36

E35

E39

E37

2

1

13

4 5 6 7 8 9

11

3

10
E1

E2

E3
E4

E5 E6

E7 E8

E9 E10

E12

E11

E14
E15

12 14

15

16

17

18
19 21 20

E17

E21 E22

E26 E27

E19 E20
E23 E24

E28 E29

E30 E32

E34
E33

E16

E38

E18

E13

Each circle stands for a function. Each arrow

connector stands for a call. The numbers in

circles are just sequence numbers but do not

imply anything about order.

Legend

Gray circles stand for the three changed or

added functions.

White circle stands for function affected by

the changed functions.

Circle with solid edge stands for exported

functions. The prefix “E” before the

numbers in such circle stands for

“Exported”. 39 exported functions are

affected in this case.

Circle with dotted edge stands for non-

exported functions.

