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ABSTRACT 

The steady-state one-dimensional diffusion equation with a nonlinear source term 

is a class of differential equations governing the behavior of many biological systems. 
As with other types of nonlinear differential equations, exact analytical solutions exist 
only in some very special cases. Previously, analytical solutions could be obtained only 
by a linearization process; moreover, the analytical solutions thus obtained approach 
the exact solution in a very limited range of some physical parameters. On the other 
hand, numerical solutions obtained by using digital computers, although exact, usually 
require an iteration process due to the two-point nature of the boundary conditions in 
such problems. 

In this article a method of transformation is introduced that makes it possible to 

transform the governing differential equation from a boundary-value to an initial-value 
problem. As a result, exact numerical solutions to this class of equations can be ob- 
tained in a single step. Numerical solutions of the concentration profiles in an enzyme 
system are presented as an illustration of the method. 

INTRODUCTION 

The behavior of many biological systems can be described by the 

steady-state one-dimensional diffusion equation with a source term: 

d2C 

drz+ 

p + 1 dC 
- x =f(C> 

r 
(1) 
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whereS(C) is the source term, usually nonlinear, for biological systems 
and p equals - 1, 0, or 1, depending on whether a plane, cylindrical, or 
spherical system is considered. The following examples of known forms 
off(C) can be cited. 

1. f(C) = exp(BC> 
If C is interpreted as temperature, then this form of f(C) 

represents the heat generation in the body of the lizard [3]. 

2. f(C) = (k/D)C(C, - C) 

This form was used by Ames et al. [I] to characterize the 

biochemical reactions in the analysis of the steady-state operation 

of the trickling filter in sewage treatment. 

3. j”(C) = (R,E,KC)/(l + KC) 

This form is the familar Michaelis-Menten equation represent- 

ing the consumption of substrate as a result of an enzyme-sub- 

strate reaction [2]. 

4. f(C) = KC/(1 + KC”) 

This is a generalization to the form of case 3 if more than one 

substrate molecule, n say, combine with one enzyme molecule [8]. 

As with other nonlinear equations, exact analytical solutions to these 

equations usually do not exist; the exceptions are very special cases. 

Until now, analytical solutions could only be obtained by a linearization 

process. The results approach the exact solutions only in a very limited 

range of some physical parameters. In order to get exact numerical 

solutions without such limitations, digital computers must be used. One 

of the difficulties usually encountered in the integration process comes from 

the fact that the boundary conditions are usually given at two points. 

Thus, the numerical integration has to be started by assuming the missing 

boundary condition at the initial point, and the equation must be inte- 

grated as an initial-value problem. If the assumed initial condition is 

correct, the solution will satisfy the boundary condition at the second point 

Otherwise, another value has to be chosen and the process repeated. 

This trial-and-error process usually takes a great deal of computing 

time and the solution is frequently very sensitive to even a very small 

change in the assumed initial condition. Therefore, the introduction of a 

transformation by which the boundary-value problem could be changed to 

an initial-value problem would be of great importance. 

To date, two entirely different approaches have been developed for 

transforming a boundary-value problem to an initial-value problem. 
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One is by the concept of transformation groups; the other is the invariant 
imbedding method. The former was first given by Tiipfer (see [4]) in 

1912, but only recently has considerable progress been made [6,7]. The 

latter method was developed mainly by Bellman and Kalaba (see, for 

example, [5] for the basic concept). The method presented in this article 

is an extension of the transformation group method given in [7]. The 

extended method is shown to be especially suitable for problems where 

certain physical parameters appear in the differential equation or boundary 

conditions, or in both, and solutions for a range of these parameters are 

sought. The method is illustrated by numerically solving case 3 where the 

source term is the Michaelis-Menten equation [2]. 

GOVERNING DIFFERENTIAL EQUATION 

As was stated, we illustrate the method by numerically solving case 3, 

in which the source term of the diffusion equation is given by the 

Michaelis-Menten equation [2]. The enzyme E with concentration E,, 

interacts with the substrate S with concentration C to form a complex 

E * S which may either dissociate into its components or decompose to 

regenerate E and liberate product P [2] : 

E+S+ E*SaE + P. 
1 

The local rate of consumption of substrate can be expressed in terms 

of the local concentration of substrate by the Michaelis-Menten equation 

K,E, l?C 

v=GX 

where R = K,/(K, + &). The steady-state one-dimensional diffusion 

equation for the concentration of substrate can be written as [2] 

d2C p + 1 dC 
z+--= 

K2E, KC 

r dr D(1 + RC) 

subject to the boundary conditions 

r=O: K=O; 
dr 

(2) 

r = rO: = H(C, - CJ. 
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Introducing the following dimensionless radius and concentration 

i2, 
I'0 

we get for Eq. (2) 

p+ldC ZZ+--= PC 

r2 r du 1 + k*C 

subject to the boundary conditions 

df 
f=O: -_=o; 

d? 

where 

2 0” 8+_z, 
k” = KC,, N=HrO 

D ’ 

(4) 

(5) 

Equation (4) is seen to be a boundary-value problem since its boundary 

conditions are specified at two points. 

TRANSFORMATION TO AN INITIAL-VALUE PROBLEM 

To transform Eq. (4) to an initial-value problem, a linear group of 

transformation is introduced : 

where A is the parameter of transformation and a, and x2 are constants to 

be determined. Under this group of transformation, Eq. (4) becomes 

_ y+lclC*=A d3C” 

dr*’ ’ r* dr* 
a1 PC* 

1 + k*Aa2C* * 
(7) 

In the original method developed in [7], the first condition to be 

satisfied is that the differential equation be invariant under this group of 

transformations. However, this condition can be satisfied only when cxr 

and Q are both zero (i.e., identical transformation). Thus, the original 

method cannot be applied to this problem. 

The difficulty can be overcome by modifying the original method if 

solutions to Eq. (4) for a range of values of k* are sought. The key to 
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this method lies in the introduction of one constant, namely, 

k’ = k*A”2. (8) 

With the constant k’ thus defined, Eq. (7) is seen to be independent of A 

if Q takes the value of zero; that is, 

CL1 = 0. (9) 
Equation (7) now becomes 

d2C* pf ldC* /W* --= -yjjr+ F dr 1 + k’C* 
(10) 

with its boundary condition at the initial point as 

r=o: -= dC* o 

di . 
(11) 

It should be emphasized that although k’ is still a function of A, we 

will reverse the process by assigning values of k’, instead of k*, and the 

solution to Eq. (10) sought. After the solution based on the assigned 

value of k’ is obtained, the value of k* corresponding to this particular 

solution is determined. Other values of k’ can be assigned and the process 

repeated until the required range of k* is covered. This is an important 

step in the extended method and can be applied to a wide class of equa- 

tions where certain physical parameters appear in either the differential 

equation or the boundary conditions and solutions are needed for a range 

of values of these parameters. 

To get the missing boundary condition at f = 0, we put 

?=O: C=A, 

which, upon transformation, becomes 

r=O: A=‘C*=A* 

the latter is seen to be independent of A if 

a2= 1. (12) 
We then have 

J=O: C”=l. (13) 

Finally, the parameter of transformation A can be computed from the 

boundary condition at the second point, which gives 

= N(1 - A&) 
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or 

H. 

A= 
N 

(dC*/di),, + NC;zl * 

S. NA AND T. Y. NA 

(14) 

Thus, solution of Eq. (4) for a range of values of k* (and constant 

p and N) then consists of the following steps. 

1. 

2. 

3. 

4. 

5. 

4 

3 

1-z b 2 

*w 

I 

0 

1 

4ssign a value of k’ (instead of k*). 
Numerically integrate Eq. (10) as an initial-value problem with the 

boundary conditions given by Eqs. (11) and (13) from ? = 0 to 

; = 1. The values of C* and dC*/df at P = 1 are then obtained. 

The parameter of transformation A is computed from Eq. (14). 

With A, ccl, and c+ known, the solution to the original equation, 

Eq. (4), can be computed from the transformation equation, Eq. 

(6), as 
J = J, c = AC*. (15) 

The value of k* corresponding to this particular solution can then 

be computed by Eq. (8). 

I I I I 

3.561247 4 

.O .2 .4 .6 .8 I.0 

i= 
FIG. 1. Solution of Eq. (10) for C*(F). 
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6. Other values of k’ are assigned and steps l-5 are repeated until the 
required range of k* is covered. 

NUMERICAL SOLUTIONS 

As an illustration, consider the solution of the concentration profile 
of a cylinder (p = 0) for /I = 12, N = 1, and k’ = 0.5. Numerical 
integration of Eq. (10) subject to the boundary conditions (11) and (13) 
constitutes an initial-value problem. The result is shown in Figs. 1 and 2. 

I I I I 

6 = 12. 
6.086521 

I 

0 .2 .4 .6 .8 I.0 

r 
FIG. 2. Solution of Eq. (10) for dC*/dr‘. 

It is seen that, at i = 1, 

C*(l) = 3.561247, 
dC*( 1) 
- = 6.086521. 

dP 

The value of A can thus be computed as 

A= 
N 

(dC*/di) + NC*(l) = o*103651’ 
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The corresponding value of k* is therefore 

k* = 5 = 4.8240. 

The value of the concentration outside the cylinder for K = 2000 

liters/mole is 

C, = 5 = 0.002412 moles/liter. 

As a final step, the solution to the original equation, Eq. (4), can be 

computed through the transformation equation, Eq. (15); the result is 

plotted in Fig. 3. Thus, the concentration of substrate is O.l0365C,, at the 

.4 

.3 

I;: 
- 2 lY 

.I 

-0 

I I I I 

.369/26 - 

k” = 4.82 4 

P = 12. 

I I I I 

.o .2 .4 .6 .8 1.0 

r 
FIG. 3. Solution to Eq. (4). 

center of the cylinder, increases to 0.369126C, at the surface immediately 

inside the cylinder surface, and reaches Co across the cylinder surface. 

Numerical solutions for a range of values of k’ from 0.001 to 1000 

are obtained in this manner. Table I gives a summary of the numerical 
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TABLE I 

SUMMARY OF NUMERICAL SOLUllONS @ = 12) 

k’ k* C, (exact) Co from Eq. (19) C, from Eq. (17) 

0.001 0.028 0.000014 
0.005 0.136 0.000068 
0.010 0.264 0.000132 
0.050 1.114 0.000557 
0.100 1.888 0.000944 
0.250 3.380 0.001690 
0.500 4.824 0.002412 
1.000 6.524 0.003262 
1.500 7.676 0.003838 
2.000 8.602 0.004301 
5.000 12.684 0.006342 

10.00 18.216 0.009108 
25.00 33.612 0.016806 
50.00 58.770 0.029385 
75.00 83.802 0.041901 

100.0 108.806 0.054403 
200.0 208.756 0.104378 
500.0 508.510 0.254255 
750.0 758.288 0.379144 

1000.0 1008.064 0.504032 

0.000014 
0.000070 
0.000139 
0.000697 
0.001394 

0.004994 
0.005244 
0.005498 
0.006988 
0.009480 
0.016971 
0.029448 
0.041959 
0.054447 
0.104400 
0.254264 
0.379151 
0.505032 

results. It is seen that the solutions thus obtained correspond to a range 

of k* from 0.028 to 1008. Thus, if the solutions for a range of k*, say, 

from 0.1 to 1000 are sought, the data in Table I will be enough. By 

assigning various values of k’, instead of k”, the equation is seen to be 

solvable as an initial-value problem. Figure 4 is a plot of the solutions in 

Table I. 

LINEARIZED SOLUTIONS 

Two limiting solutions of Eq. (4), namely, k*C >> 1 and k*C << 1, are 

of interest since they lead to analytical solutions. For such cases, Eq. (4) 

can be approximated by the following linear equations. For k*C >> 1, 

d”C p+ 1 dC /3 
di”f-- r d,c = 2 (16) 
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SOLUTION 

lo-2 10-l IO 

FIG. 4. The surface concentration C, as a function of k*. 

with the solution 

For k*C<< 1, 

IO2 IO3 

(17) 

with the solution 

(18) 

(19) 

where 2,(/I?) is the modified Bessel function of the first kind of order zero. 

Numerical data for Eqs. (17) and (19) are listed in Table I and Fig. 4. 

It is seen that the linearized solutions always overestimate the surface 

concentration and that solutions to Eqs. (17) and (19) start to deviate 
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from the nonlinear exact solution for k* smaller than 80 and greater than 
0.2, respectively. 

CONCLUDING REMARKS 

The method just described makes possible the solution of Eq. (4) as an 
initial-value problem. Solutions to Eq. (1) for the other forms off(C) 
can be obtained by following the same steps as in this example. The 
method is seen to be applicable to differential equations where certain 
parameters appear in either the differential equation or the boundary 
conditions, or both, and solutions for a range of these parameters are 
sought. No iteration is needed and the solution can be obtained in one 
step. This method has been applied to other problems in fluid mechanics 
and heat transfer with equal success. Results of this work will be reported 
in the near future. 
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