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An Innovative Approah Based on a Tree-Searhing Al-gorithm for the Optimal Mathing of Independently Op-timum Sum and Di�erene Exitations
L. Mania, P. Roa, A. Martini, and A. Massa

AbstratAn innovative approah for the optimal mathing of independently optimum sumand di�erene patterns through sub-arrayed monopulse linear arrays is presented.By exploiting the relationship between the independently optimal sum and di�ereneexitations, the set of possible solutions is onsiderably redued and the synthesisproblem is reast as the searh of the best solution in a non-omplete binary tree.Towards this end, a fast resolution algorithm that exploits the presene of elementsmore suitable to hange sub-array membership is presented. The results of a set ofnumerial experiments are reported in order to validate the proposed approah point-ing out its e�etiveness also in omparison with state-of-the-art optimal mathingtehniques.
Key words: Linear Arrays, Monopulse Antennas, Sum and Di�erene Pattern Synthesis,Tree-Searhing Algorithm. 2



1 IntrodutionA traking radar system using the monopulse tehnique [1℄ an be realized through anantenna array able to generate two di�erent patterns, namely the di�erene pattern andthe sum pattern. These patterns are required to satisfy some onstraints as narrowbeamwidth, low side lobe level (SLL) and high diretivity. In partiular, as far as the sumpattern is onerned, there is the need of maximizing the gain. On the other hand, themore ritial issues to be addressed dealing with di�erene patterns are onerned withboth the �rst null beamwidth and the normalized di�erene slope on boresight diretion,sine they are strongly related to the sensitivity of the radar (i.e., to the angular error).The optimal exitation oe�ients for the sum and the di�erene patterns an be indepen-dently omputed by using analytial methods as desribed in [2℄ and in [3℄, respetively.Nevertheless, the implementation of two independent feed networks is generally una-eptable beause of the osts, the oupied physial spae, the iruit omplexity andthe arising interferenes. Thus, it is neessary to �nd a suitable ompromise between thefeed network omplexity and the loseness of the synthesized sum and di�erene patternsto the optimal ones. Sine the sum pattern is used in both signal transmission and re-eption, the most ommon way to solve the problem onsists in generating an optimalsum pattern and a sub-optimal di�erene pattern [4℄, the latter synthesized by applyinga sub-arraying tehnique. Aordingly, the synthesis is aimed at optimizing pre-spei�edsub-array layouts by sinthesizing sub-array and radiating element weights, but not theatual beamforming network.In suh a framework, several approahes for de�ning how the elements ould be groupedand the sub-arrays weights omputed have been proposed. As far as linear arrays areonerned, MNamara proposed in [4℄ the Exitation Mathing method (EMM) aimedat determining a best ompromise di�erene pattern lose as muh as possible to theoptimum in the Dolph-Chebyshev sense [5℄ (i.e., narrowest �rst null beamwidth and largestnormalized di�erene slope on the boresight for a spei�ed sidelobe level). Towards thisend, for eah possible grouping, the orresponding sub-arrays oe�ients are iterativelyomputed through pseudo-inversion of an overdetermined system of linear equations. It3



is evident that sine the best sub-array on�guration is not a-priori known, the wholeproess is extremely time-expensive due to the exhaustive evaluations. Moreover, beauseof the ill-onditioning of the matrix system, large arrays annot be easily managed.In order to overome the ill-onditioning and related issues, optimization approahes havebeen widely used [6℄[7℄[8℄[9℄[10℄. Although suh tehniques allows a signi�ant advane-ment in the framework of sum-di�erene pattern synthesis, they are still time-onsumingwhen dealing with large arrays. As a matter of fat, even though the solution spae issampled with e�ient searhing riteria, the dimension of the solution spae is very large.In order to overome suh drawbaks allowing an e�etive hoie of the array elementsgrouping as well as a fast and simple solution proedure, this paper proposes an innovativeapproah that, likewise [4℄ and unlike [6℄[7℄[8℄[9℄[10℄, is aimed at obtaining a ompromisedi�erene pattern optimum in the Dolph-Chebyshev sense [5℄ starting from the observationthat the sub-arraying is not blind . As a matter of fat, it an be guided by onsideringsimilarity properties among the array elements, thus signi�antly reduing the dimensionof the solution spae. Starting from suh an idea and by representing eah solution bymeans of a path in a non-omplete binary tree, the synthesis problem is then reast as thesearhing of the minimal-ost path from the root to the leafs of the solution tree. In graphtheory, a tree is a graph de�ned as a non-empty �nite set of verties or nodes in whih anytwo nodes are onneted by exatly one path. The nodes are labeled suh that there is onlyone node alled the root of the tree, and the remaining nodes are partitioned in subtrees.In our ase, sine the tree is either empty or eah node has not more than two subtrees, itis a binary tree. Aordingly, eah node of a binary tree has either (I) no hildren, or (ii)one left/right hild (i.e., non-omplete binary tree), or (iii) a left hild and a right hild(i.e., omplete binary tree), eah hild being the root of a binary tree alled a subtree[11℄[12℄. In order to solve the problem at hand, thus e�iently exploring the solutiontree, suitable ost funtions or metris are de�ned and an innovative algorithm for theexploration of the solution spae is de�ned by exploiting the loseness (to a sub-array)property of some elements, alled border elements, of the array.The paper is organized as follows. In Setion 2, the problem is mathematially formulated4



de�ning a set of metris aimed at quantifying the loseness of eah solution to the optimalone (Set. 2.1) as well as the tree struture (Set. 2.2) and the algorithm for e�etivelyexploring the solution spae (Set. 2.3). In Setion 3, the results of seleted numerialexperiments are reported and ompared with those from state-of-the-art optimal mathingsolutions. Conlusions and future possible trends are drawn in Setion 4.2 Mathematial FormulationLet us onsider a linear uniform array ofN = 2M elements {ξm; m = −M, ...,−1, 1, ...,M}.Following a sub-optimal strategy, the sum pattern is generated by means of the sym-metri set of the real optimal (1) exitations Aopt = {αm; m = 1, ...,M} [2℄[13℄, whilethe di�erene pattern is de�ned through an anti-symmetri real exitation set B =

{bm = −b−m; m = 1, ...,M} [5℄. Thanks to suh symmetry properties, one half of theelements of the array S = {ξm; m = 1, ...,M} is desriptive of the whole array.Grouping operation yields to a sub-array on�guration mathematially desribed in termsof the grouping vetor C = {cm; m = 1, . . . ,M}, cm ∈ [1, Q] being the sub-array indexof the m-th element of the array [7℄. Suessively, a weight oe�ient wq is assoiated toeah sub-array, q = 1, ..., Q, and, as a onsequene, the sub-optimal di�erene exitationset is given by
B = {bm = wmqαm; m = 1, ...,M ; q = 1, ..., Q} (1)where wmq = δcmqwq (δcmq = 1 if cm = q, δcmq = 0 otherwise) is the weight assoiated tothe m-th array element belonging to the q-th sub-array.Aordingly, the original problem is reast as the de�nition of a sub-array on�guration

C and the orresponding set of weights W = {wq; q = 1, ..., Q} suh that the sub-optimaldi�erene pattern B is as lose as possible to the optimal one, Bopt = {βm; m = 1, ...,M}.Towards this end, let us formally proeed as follows. Firstly, two di�erent metris arede�ned in order to quantify the loseness of the sub-optimal solution to the optimal one.Then, exploiting some properties of the sub-array on�gurations, a non-omplete binary
(1) In the Dolph-Chebyshev sense [5℄, unless mentioned elsewhere.5



tree, where eah path odes a possible elements grouping, is built. Finally, a simplealgorithm for a fast searh of the lowest ost path in the binary tree is presented forde�ning the best sub-optimal solution of the problem in hand.2.1 De�nition of the Solution-MetriIn order to �nd the optimal solution, let us de�ne a suitable ost funtion or metri thatquanti�es the loseness of every andidate/trial solution Ct to the optimal one,
Ψ {Ct} =

M
∑

m=1

[vm − dm {Ct}]
2 , (2)where vm and dm are referene and estimated parameters, respetively. The estimatedparameters dm {Ct} are de�ned as the arithmeti mean of the referene parameters vmrelated to the array elements belonging to the same sub-array. As far as the refereneparameters V = {vm; m = 1, ...,M} and the sub-arrays weights W = {wq; q = 1, ..., Q}are onerned, they are de�ned aording to two di�erent strategies, namely the GainSorting (GS) algorithm and the Residual Error (RES) algorithm.Conerning the GS tehnique, the referene parameters v(GS)
m are set to the optimal gains

v(GS)
m =

βm
αm

, m = 1, . . . ,M, (3)while the sub-array weights are assumed to be equal to the omputed gains d(GS)
m

w(GS)
q = δcmqd

(GS)
m

{

C
(ess)
t

}

, q = 1, ..., Q, m = 1, . . . ,M. (4)Conerning the RES algorithm, the referene parameters are equal to the the so-alledoptimal residual errors v(RES)
m given by
v(RES)
m =

αm − βm
βm

, m = 1, . . . ,M. (5)Aordingly, sine βm

αm
= 1

1+v
(RES)
m

, m = 1, . . . ,M, the sub-array weights are expressed in6



terms of the omputed residual errors d(RES)
m as follows

w(RES)
q =

1

1 + δcmqd
(RES)
m

{

C
(ess)
t

} , q = 1, . . . , Q, m = 1, . . . ,M. (6)
2.2 De�nition of the Solution-TreeIn general, the total number of sub-array on�gurations is equal to T = QM sine eah ofthem might be expressed as a sequene ofM digits in a Q-based notation system. Withoutany loss of information, suh a number an be redued by onsidering only the admissible(or reliable) solutions, i.e., grouping where there are no empty sub-arrays. Moreover, letus observe that if an equivalene relationship (2) among sub-array on�gurations holdstrue, it is onvenient to onsider just one sub-array on�guration for eah set (instead ofthe whole set), therefore obtaining a set of non-redundant solutions.Now, let us sort the known referene parameters {vm; m = 1, ...,M} [omputed aord-ing to either the GS (3) or the RES algorithm (5)℄ for obtaining a ordered list L =

{lm; m = 1, ...,M}, where li ≤ li+1, i = 1, ...,M − 1, l1 = minm {vm}, and lM =

maxm {vm}. Sine the ost funtion is minimized provided that elements belonging toeah sub-array are onseutive elements of the ordered list L (see Appendix A for adetailed proof), the solution spae an be further redued to the so-alled essential solu-tion spae ℜ(ess) omposed by allowed solutions. Consequently, the dimension T of thesolution spae turns out to be redued from T = QM up to T (ess) =









M − 1

Q− 1









(seeAppendix B for a detailed proof) and the essential solution spae ℜ(ess) an be formallyrepresented by means of the non-omplete binary tree depited in Figure 1. In partiular,eah omplete path in the tree odes an allowed sub-array on�guration C(ess)
t ∈ ℜ(ess)and the positive integer q inside eah node at the lm-th level indiates that the arrayelement identi�ed by lm is a member of the q-th sub-array. Thanks to this formulation,

(2) A sub-array on�guration Ci is equivalent to the on�guration Cj when it is possible to obtainthe one from the other just using a di�erent numbering for the same cm oe�ients. As an example, thesub-array on�guration Ci = {1, 2, 3, 3, 2, 3, 2, 1} is equivalent to Cj = {2, 3, 1, 1, 3, 1, 3, 2}.7



the original minimization problem (i.e., Copt = arg {mint=1,...,T [Ψ (Ct)]}) is reast as thatof �nding the optimal path in the solution tree.2.3 Tree-Searhing ProedureAlthough the set of andidate solutions has been onsiderably redued by limiting thesolution spae to the essential spae, its dimension T (ess) beomes very large whenM ≫ Qand an exhaustive searhing would be omputationally expensive. In order to overomesuh a drawbak, let us observe that only some elements of the list L are andidate tohange their sub-array membership without violating the sorting ondition of the allowedsub-array on�gurations, {

C
(ess)
t ; t = 1, ..., T (ess)

} [see Eq. (14) - Appendix B ℄. Theseelements, referred to as border elements, satisfy the following property: an array elementrelated to lm is a border element if one of the elements whose list value is lm−1 or/and lm+1belongs to a di�erent sub-array. Therefore, the aggregation Copt ∈ ℜ
(ess) minimizing theost funtion Ψ is found starting from an initial path randomly hosen among the set ofpaths in the solution tree and iteratively updating the andidate solution just modifyingthe membership of the border elements. More in detail, the iterative proedure (k beingthe iteration index) onsists of the following steps.

• Step 0 - Initialization . Initialize the iteration ounter (k = 0) and the sequeneindex (m = 0). Randomly generate a trial path in the solution tree orrespondingto a andidate sub-arrays on�guration C(0) ∈ ℜ(ess). Set the optimal path to
C

(k)
opt

⌋

k=0
= C(0).

• Step 1 - Cost Funtion Evaluation . Compute the ost funtion value of theurrent andidate path C(k) by means of (2), Ψ(k) = Ψ
{

C(k)
}. Compare the ostof the aggregation C(k) to the best ost funtion value attained at any iteration upto the urrent one, Ψ

(k−1)
opt = minh=1,...,k−1

(

Ψ
{

C(h)
}) and update the optimal trialsolution C(k)

opt = C(k) if Ψ
{

C(k)
}

< Ψ
{

C
(k−1)
opt

}.
• Step 2 - Convergene Chek . If the termination riterion, based on a maxi-mum number of iterations K or on a stationary ondition for the �tness value (i.e.,8



∣

∣

∣
KwindowΨ

(k−1)
opt −

∑Kwindow
j=1

Ψ
(j)
opt

∣

∣

∣

Ψ
(k)
opt

≤ η, Kwindow and η being a �xed number of iterationsand a �xed numerial threshold, respetively), is satis�ed then set Copt = C
(k)
opt andstop the minimization proess. Otherwise, go to Step 3.

• Step 3 - Iteration Updating . Update the iteration index (k ← k + 1) and resetthe sequene index (m = 0).
• Step 4 - Sequene Updating . Update the sequene index (m← m+1). If m > Mthen go to Step 3 else go to Step 5.
• Step 5 - Aggregation Updating . If the array element related to l(k)m is a bor-der element belonging to the q-th sub-array then de�ne a new grouping C(k,m) byaggregating suh an element to the (q − 1)-th sub-array [if the array element or-responding to l(k)m−1 is a member of the (q − 1)-th sub-array℄ or to the (q + 1)-thsub-array [if the array element orresponding to l(k)m+1 is a member of the (q + 1)-thsub-array℄. If Ψ(k,m) = Ψ

{

C(k,m)
}

< Ψ
{

C(k)
} then set C(k) = C(k,m) and go to Step

1. Otherwise, go to Step 4.3 Numerial Simulations and ResultsIn order to assess the e�etiveness of the proposed method, an exhaustive set of numerialexperiments has been performed and some representative results will be shown in thefollowing.For a quantitative evaluation, a set of beam pattern indexes has been de�ned and om-puted. More in detail, (a) the pattern mathing ∆ that quanti�es the distane betweenthe synthesized sub-optimal pattern and the optimal one
∆ =

∫ π
0

∣

∣

∣|AF (ψ)|optn − |AF (ψ)|recn

∣

∣

∣ dψ
∫ π
0 |AF (ψ)|optn dψ

, (7)where ψ = (2πd/λ) sinθ, θ ∈ [0, π/2], (λ and d being the free-spae wavelength andthe inter-element spaing, respetively), |AF (ψ)|optn and |AF (ψ)|recn are the normalized9



optimal and generated array patterns, respetively; (b) the main lobes beamwidth BW and() the power slope Pslo that give some indiations on the slope on the boresight diretion
Pslo = 2×

[

max
ψ

(|AF (ψ)|n)× ψmax −
∫ ψmax

0
|AF (ψ)|n dψ

]

, (8)
ψmax being the angular position of the maximum in the array pattern; (d) the sidelobespower Psll

Psll =
∫ π

ψ1

|AF (ψ)|n dψ, (9)where ψ1 is the angular position of the �rst null in the di�erene beam pattern.The remaining of this setion is organized as follows. Firstly, some experiments aimed atshowing the asymptoti behaviour of the proposed solution are presented (Set. 3.1) anda omparative study is arried out (Set. 3.2). Furthermore, some experiments devotedat showing the potentialities of the proposed solution in dealing with large arrays aredisussed in Set. 3.3. Finally, the omputational issues are analyzed (Set. 3.4).3.1 Asymptoti Behavior AnalysisIn order to assess that inreasing the number of sub-arrays Q the synthesized di�erenepatterns get loser and loser to the optimal one, let us onsider a linear array of N =

2×M = 20 elements haraterized by a d = λ
2
inter-element spaing. The optimal sumpattern exitations, {αm, m = 1, ...,M}, have been �xed to that of the linear Villeneuvepattern [13℄ with n = 4 and 25 dB sidelobe ratio (Fig. 2 - Villeneuve, 1984), whilethe optimal di�erene weights {βm, m = 1, ...,M}, have been hosen equal to those of aZolotarev di�erene pattern [5℄ with a sidelobe level SLL = −30 dB (Fig. 24 -MNamara,1993). Then, Q has been varied between 2 and M and both GS and RES tehniqueshave been applied. For sake of spae, seleted results onerned with Q = 3, Q = 6, and

Q = 9 are reported in terms of di�erene exitations [Fig. 2(a) - GS approah; Fig. 2(b)- RES approah℄. As expeted, the oe�ients obtained with both the GS and RESonverge to the optimal ones and, starting from Q = 6, the di�erenes between generatedand referene di�erene patterns turn out to be smaller and smaller.10



3.2 Comparative AssessmentFor omparison purposes and in the framework of synthesis tehniques aimed at deter-mining the best ompromise di�erene pattern as lose as possible to the optimal one,let us onsider the EMM by MNamara [4℄ as referene (3) . As far as the test ases areonerned, the same benhmark investigated in [4℄ has been taken into aount. The arraygeometry and the optimal sum exitations was as in Set. 3.1, while the optimal di�er-ene exitation vetor Bopt has been hosen for generating a modi�ed Zolotarev di�erenepattern with n = 4, ε = 3 and a sidelobe ratio of 25 dB [3℄.The �rst test ase deals with a uniform sub-arraying over the antenna with Q = 5. Thevalues of the sub-arrays weights optimized with the GS and the RES areWGS = {0.2951 ,
0.8847, 1.1885, 1.3994, 1.4878} and WRES = {0.3411 , 0.8915, 1.1193, 1.4016, 1.4881},respetively. Moreover, the synthesized di�erene patterns are shown in Figure 3, whilethe omputed beam-pattern indexes are reported in Table I. The advantages on the use ofthe tree-based approahes are evident, as on�rmed by the values of both the SLL (almost
4 dB below the level ahieved by the EMM , SLLEMM = −17.00 dB vs. SLLGS = −21.00and SLLRES = −20.50) and the pattern mathing index (∆EMM

∆RES ≃ 1.4 and ∆EMM

∆GS ≃ 1.5- Tab. I). Moreover, it is worth noting that, thanks to the struture of the solution tree,the dimension of the essential spae redues to T (ess) = 1 (sine l1 and l2 belong to the�rst sub-array, l3 and l4 to the seond one, and so on), thus allowing a signi�ant savingof omputational resoures. As a matter of fat, the EMM requires the solution of anoverdetermined system of linear equations in orrespondene with any possible uniformgrouping [4℄, i.e., a number of T = 945 evaluations.Seond and third test ases onsider non-uniform sub-arraying. The former on�gurationis an example of the limited number of sub-arrays (Q = 3) that might be used witha small monopulse antenna. The latter has the same number of sub-arrays as that ofthe �rst on�guration (Q = 5). The tree-based algorithms have been applied and thefollowing sub-array on�gurations have been determined. In partiular the same grouping
(3) No omparison with optimization-based proedures (i.e., [6℄[7℄[8℄[9℄[10℄) have been reported sinethey are aimed at minimizing a pattern parameter (e.g., the SLL) and not at better mathing an optimaldi�erene pattern. 11



CGS,RES
opt = {1, 2, 3, 3, 4, 5, 5, 5, 4, 3} has been synthesized when Q = 5, while CGS

opt =

{1, 1, 2, 2, 3, 3, 3, 3, 3, 2} and CRES
opt = {1, 2, 3, 3, 3, 3, 3, 3, 3, 3} have been obtainedfor Q = 3. The obtained beam patterns are shown in Fig. 4 and the orrespondingvalues of the pattern indexes are reported in Tab. II. As it an be notied, the GS and

RES improve the performanes of the EMM in mathing the optimal di�erene patternas pointed out by the behavior of the global mathing index ∆ ( ∆EMM

∆GS

⌋

Q=3
= 1.33 and

∆EMM

∆RES

⌋

Q=3
= 1.42; ∆EMM

∆GS

⌋

Q=5
= 1.63 and ∆EMM

∆RES

⌋

Q=5
= 1.68). Conerning the smalleron�guration, it is further on�rmed (as already pointed out in Setion 3.1) the �exibilityand reliability of the GS algorithm in dealing also with omplex ases where a limitednumber of sub-arrays is taken into aount. As a matter of fat, forQ = 3 the GS gives thebest performanes getting the highest sidelobe ratio ofSLL = 18.63 dB and synthesizinga main lobe very lose to the optimal one, i.e., BGS

w = Bopt
w = 0.3735 and PGS

slo = 0.1800vs. P opt
slo = 0.1802.3.3 Large Arrays AnalysisThis setion is aimed at analyzing the performanes of the proposed tree-based teh-niques when dealing with large arrays. As far as the optimal setup is onerned, sum

{αm, m = 1, ...,M} and di�erene {βm, m = 1, ...,M} optimal exitations have been ho-sen to generate a Dolph-Chebyshev pattern [15℄ with SLL = −25 dB and a Zolotarevpattern [5℄ with SLL = −30 dB, respetively.As a �rst experiment, a linear array of N = 200 elements with λ/2 spaing has been usedby onsidering various sub-arraying on�gurations. Figure 5 shows the optimal di�erenepattern (i.e., the synthesis target) and the patterns obtained when Q = 4 and Q = 6by using both GS and RES. For ompleteness, the values of the synthesized di�ereneexitations are displayed in Figure 6. It is worth noting that the GS algorithm outper-forms the RES. As a matter of fat, although both approahes satisfatorily approximatethe optimal main lobe harateristis in terms of both BW and Pslo, the solutions om-puted with the gain-based logi present higher sidelobe ratios (SLLGS⌋

Q=4
= −21.90 and

SLLGS
⌋

Q=6
= −25.13) with an enhanement of more than 10 dB and 5 dB with respet12



to the RES approah (SLLRES⌋

Q=4
= −10.10 and SLLRES⌋

Q=6
= −19.95), respetively.Moreover, the overall mathing performanes turn out signi�antly inreased as furtheron�rmed by the values of ∆ ( ∆RES

∆GS

⌋

Q=4
≃ 3.77 and ∆RES

∆GS

⌋

Q=6
≃ 2.47).The last test ase (and seond experiment dealing with large strutures) is onerned witha linear array of N = 2 ×M = 500 elements (d = λ/2). As a representative example,the ase of Q = 4 is reported and analyzed (Tab. III). The arising beam patterns allowone to drawn similar onlusions to those from the previous senario, sine one againthe e�etiveness of the GS tehnique in dealing with a limited number of sub-arrays ispointed out. As a matter of fat, the ratio between the mathing indexes turns out quitelarge and equal to ∆RES

∆GS

⌋

Q=4
≃ 4.1 (Tab. III). On the other hand, it is worth noting thatunlike tree-based proedures the EMM is not reliable in dealing with large arrays sine itrequires the numerial proessing of overdetermined linear systems, whose ill-onditioningget worse when the ratio M

Q
grows.3.4 Computational IssuesNow, let us analyze the omputational osts of the tree-based approahes, providinga omparison with the EMM , as well. Towards this end, let us �rstly onsider thedependene of the dimension of the solution spae on the number of elements of the array

M . As a representative ase, let us analyze the behavior of T and T (ess) when Q = 3(K = 100 and η = 10−3) (Fig. 7). As it an be observed, the dimension of the solutionspae T of the EMM grows exponentially with M , while, as expeted [see AppendixA℄, T (ess) shows a polynomial behavior. Obviously, the same behavior holds true also fordi�erent values of Q (Fig. 7).On the other hand, the omputational e�etiveness of the Tree-Searhing proedure insampling the solution spae is further pointed out from the evaluation of the CPU-time, t,needed for reahing the onvergene (Fig. 8). As a matter of fat, maxQ {tQ} = 70 [sec](kopt = 90) in orrespondene with the largest array (M = 250), while maxQ {tQ} =

12.8 [sec] (kopt = 8) and maxQ {tQ} = 2.3 [sec] (kopt = 4) when M = 100 and M = 50,respetively. 13



4 ConlusionsIn this paper, an innovative approah for the synthesis of sub-arrayed monopulse antennasby mathing independently-optimum sum and di�erene exitations has been proposed.By exploiting some properties of the sub-array on�gurations, the problem of �nding a�best ompromise� di�erene pattern by grouping array elements has been reast as thesearh of the optimum, in terms of either the GS or the RES logi, path inside a non-omplete binary tree. Towards this purpose, a fast resolution algorithm has been de�nedand assessed by means of several numerial experiments.Conerning the methodologial novelties of this work, the main ontribution is onernedwith the following issues: (a) an appropriate de�nition of the solution spae; (b) anoriginal and innovative formulation of the sum-di�erene problem in terms of a searh ina non-omplete binary tree; () a simple and fast solution proedure based on swappingoperations among border elements and ost funtion evaluations.Moreover, the main features of the proposed tree-based tehniques are the following: (i)a redution of the dimensionality T (ess) of the synthesis problem, by exploiting the infor-mation ontent of independently optimal sum and di�erene exitations; (ii) a signi�antredution of the omputational burden, by applying a fast solution algorithm for explor-ing the solution tree (i.e., sampling the solution spae); (iii) the apability to deal withlarge-arrays synthesis in an e�etive and reliable way.Beause of the favorable trade-o� between omplexity/osts and e�etiveness, the pro-posed tree-based strategy seems a promising tool to be further analyzed and extended toother geometries and synthesis problems. Towards this purpose, further methodologialstudies will be oriented in two di�erent diretions: (I ) improving the solution proedure bydeveloping a ustomized ombinatorial approah, thus further reduing the omputationalosts as well as improving the onvergene rate; (II ) re-formulating the sum/di�ereneoptimization problem (dealt with in [6℄[7℄[8℄) in terms of a binary-tree exploration.
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vj is assigned to the same subset of elements). Towards this end, the proof follows theguidelines reported in [16℄.Let us onsider a non-ontiguous partition PQ = {Vq; q = 1, ..., Q} of the set V and threeelements vi, vj , vn suh that vi < vj < vn. Let elements vi and vn belong to a subset withmean value dr and let vj belong to a di�erent subset having mean value ds. Whatever thevalues of dr and ds, at least one the following statements holds true































|vj − ds| ≥ |vj − dr| > 0,

|vi − dr| ≥ |vi − ds| > 0,

|vn − dr| ≥ |vn − ds| > 0.

(10)
Let us denote with vt the element satisfying (10) and its own subset as V k = {vk; k = 1, ..., Nk}.Moreover, let us refer to the other subset as V h = {vh; h = 1, ..., Nh}. Aordingly, theost funtion (2) assoiated to the partition PQ may be written as:

Ψ =
M
∑

m=1

v2
m −Nk · d

2
k −Nh · d

2
h −

Q
∑

q=1; q 6=h,k

Nq · d
2
q (11)15



Nq and dq being the number of elements and the mean value of the q-th sub-array, re-spetively.Now, let us onsider a new partition P (1)
Q obtained by moving the element vt from thesubset V k to the subset V h. We obtain two new subsets V (1)

k = V k \ {vt} and V
(1)
h =

V k ∪ {vt}
(4) with mean values equal to d(1)

k = Nkdk−vt

Nk−1
and d(1)

h = Nhdh+vt

Nh+1
, respetively.Aordingly, the ost funtion assoiated to the partition P (1)

Q an be written as:
Ψ(1) =

M
∑

m=1

v2
m −

(Nkdk − vt)
2

Nk − 1
−

(Nhdh − vt)
2

Nh − 1
−

Q
∑

q=1; q 6=h,k

Nqd
2
q . (12)Now, by subtrating (12) from (11), after some manipulations, it turns out that

Ψ−Ψ(1) =
Nk

Nk − 1
(vt − dk)

2 −
Nh

Nh + 1
(vt − dh)

2 . (13)Aording to (10), Ψ > Ψ(1) and it an be onluded that for every non-ontiguouspartition we an �nd another one with the same number of subsets, but with a smallerost. Hene, the partition minimizing the ost funtion (2) is a ontiguous partition.Appendix BThis setion is devoted at quantifying the dimension T (ess) of the essential solution spae
ℜ(ess) =

{

C
(ess)
t ; t = 1, ..., T (ess)

}, thus pointing out the omputational saving allowed bythe proposed approah ompared to exhaustive or global sampling solution proedures.More in detail, the aim is that of determining the number T (ess) of andidate solutionsor, in an equivalent fashion, the number of allowed paths in the solution tree.Generally speaking, sine a sub-array on�guration C an be mathematially desribedby a sequene of M digits of a Q-symbols alphabet, the whole number of aggregations isequal to T = QM . Thanks to the equivalene relationship, the set of andidate solutionsan be limited to the number of paths in a omplete binary tree of depth M , thus the
(4) We expliitly note that the new partition P

(1)
Q has the same number of subsets as PQ. As amatter of fat, aording to (10), the element vt annot be equal to the mean value dk and thus, V k hasardinality greater than one. It follows that the sub-set V

(1)
k has at least one element.16



number of non-redundant solutions results T = 2M−1. Moreover, by taking into aountonly admissible (i.e., grouping where there is at least one element in eah sub-array) andallowed (i.e., sorted aggregations) omplete sequenes, the set of solution an be furtherredued. With referene to the ordered list L = {lm; m = 1, . . . ,M ; lm ≤ lm+1}, theallowed paths are mathematially desribed as
C

(ess)
t =

{

c
(ess)
t,m

∣

∣

∣ c
(ess)
t,m ≤ c

(ess)
t,m+1, c

(ess)
t,1 = 1, c

(ess)
t,M = Q

}

, t = 1, ..., T (ess), (14)where c(ess)m denotes the sub-array number to whih the m-th element lm of the orderedlist L belongs.In order to determine the essential dimension T (ess) = T (ess)(Q,M) of the solution spae,let us onsider the �reursive� nature of the binary solution tree and, as a referene ex-ample, the ase Q = 2. In suh a situation, the grouping vetor C(ess)
t is a sequene of

M symbols from the set {1, 2} that satis�es the following onstraints: (a) c(ess)t,1 = 1, (b)
c
(ess)
t,M = 2, and () if c(ess)t,m = 2 then c(ess)t,m+1 = c

(ess)
t,M = 2. Thus, eah possible solution C(ess)

tis made up of a sub-sequene of onseutive symbols 1 followed by a sub-sequene of sym-bols 2. Aordingly, the trial solutions C(ess)
t , t = 1, ..., T (ess), are obtained by moving thestarting point of the sub-sequene of symbols 2 from m = 2 (being c1 = 1) up to m = M ,

T (ess) (Q,M)
⌋

Q=2
=









M − 1

1









= M − 1. (15)As far as the ase Q = 3 is onerned, similar onsiderations hold true. In partiular, eahallowed trial solution C(ess)
t ends with a sub-sequene of suessive symbols 3. The numberof elements of suh a sub-sequene ranges from 1 to M − 2, leading to a omplementarysub-sequene of symbols 1 and 2 of length M − i. Aordingly,

T (ess) (Q,M)
⌋

Q=3
=

M−2
∑

i=1

T (ess) (Q,M − i)
⌋

Q=2
(16)Generalizing, sine the smallest and largest number of ourrenes of the symbol Q in asequene is 1 and M − (Q− 1), respetively, the essential dimension of the solution spae17



when a M elements array is partitioned into Q sub-arrays is equal to
T (ess) (Q,M) =

M−(Q−1)
∑

i=1

T (ess) (Q− 1,M − i) =









M − 1

Q− 1









. (17)
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FIGURE CAPTIONS
• Figure 1. Solution-Tree struture representing the essential solution spae ℜ(ess).
• Figure 2. Asymptoti Behavior (M = 10, d = λ

2
) - Sum {αm; m = 1, ...,M} anddi�erene {βm; m = 1, ...,M} optimal exitations. Compromise di�erene oe�-ients {bm; m = 1, ...,M} for di�erent values of Q when (a) the GS algorithm and(b) the RES algorithm are applied.

• Figure 3. - Uniform sub-arraying (M = 10, d = λ
2
, Q = 5) - Referene optimumand normalized di�erene patterns obtained by means of the EMM , the GS, andthe RES approahes.

• Figure 4. Non-uniform sub-arraying (M = 10, d = λ
2
) - Referene optimum andnormalized di�erene patterns obtained by means of the EMM , the GS, and the

RES approahes when (a) Q = 3 and (b) Q = 5.
• Figure 5. Large Arrays (M = 100, d = λ

2
) - Referene optimum and normalizeddi�erene patterns obtained by means of the GS and RES tehniques when Q = 4and Q = 6.

• Figure 6. Large Arrays (M = 100, d = λ
2
) - Di�erene exitations determined bythe tree-based tehniques when Q = 4 (a) and Q = 6 (b).

• Figure 7. Computational Analysis - Computational Analysis - Behavior of T versus
M when the tree-based searhing is applied [T = T (ess)℄.
• Figure 8. Computational Analysis - Behavior of t versus M for di�erent values of
Q (GS Approah).

20



TABLE CAPTIONS
• Table I. Uniform sub-arraying (M = 10, d = λ

2
, Q = 5) - Beam pattern indexes.

• Table II. Non-uniform sub-arraying (M = 10, d = λ
2
, Q = 3, 5) - Beam patternindexes.

• Table III. Large Arrays (M = 250, d = λ
2
, Q = 4) - Beam pattern indexes.
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Approach Pslo BW Psll max {SLL} ∆

EMM [4℄ 0.1970 0.3610 0.1038 −17.00 0.4015

GS 0.1811 0.3784 0.1082 −21.10 0.2633

RES 0.1805 0.3735 0.1160 −20.50 0.2831

Optimal [3℄ 0.1802 0.3735 0.0598 −25.00 −

Tab.I-L.Maniaetal.,�AnInnovativeApproahBasedon...�
30



Q = 3 Q = 5

EMM [4℄ GS RES EMM [4℄ GS RES Optimal [5℄

Pslo 0.2117 0.1800 0.1822 0.2000 0.1806 0.1805 0.1802

BW 0.3745 0.3735 0.3930 0.3854 0.3735 0.3735 0.3735

Psll 0.1798 0.1054 0.1365 0.0950 0.0823 0.0827 0.0598

max {SLL} −14.70 −18.63 −17.00 −23.40 −23.00 −23.00 −25.00

∆ 0.5438 0.4073 0.3829 0.2562 0.1571 0.1517 −

Tab.II-L.Maniaetal.,�AnInnovativeApproahBasedon...�
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GS RES Optimal Difference [5℄
Pslo 0.0066 0.0064 0.0066

BW 0.0148 0.0158 0.0151

Psll 0.0868 0.1797 0.0824

max {SLL} −18.00 −10.05 −30.00

∆ 0.2921 1.1934 −

Tab. III - L. Mania et al., �An Innovative Approah Based on ...�32


