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ABSTRACT Chest pain is a common complaint in the emergency department, but this may prevent

a diagnosis of major adverse cardiac events, a composite of all-cause mortality associated with

cardiovascular-related illnesses. To determine potential predictors of major adverse cardiac events in Taiwan,

a pilot study was performed, involving the data from 268 patients with major adverse cardiac events,

which was by an artificial neural network method. Nine biomarkers were selected for identifying non–

ST-elevation myocardial infarction from common chest pain patients. By using a machine learning-based

feature selection technique, five biomarkers were chosen from a set of 37 candidate variables. A full and a

reduced risk stratification model were built. The full model was based on the characteristics of both invasive

(i.e., creatinine and troponin I) and non-invasive (i.e., age, coronary artery disease risk factors, and corrected

QT interval) variables, and the reduced model was based only on non-invasive variable characteristics. The

full model showed a sensitivity of 0.948 and a specificity of 0.546 when the cutoff was set at 2 points, with

a missed major adverse cardiac events rate of 1.32%, a positive predictive value of 0.228, and a negative

predictive value of 0.987. High performancewas also obtainedwith the fivemajor biomarkers in the predictor

built by the machine learning algorithm. The full model had the highest performance, but the reduced model

can be applied as a quick and reasonably performing diagnostic tool.

INDEX TERMS Chest pain, emergency department, scoring system, major adverse cardiac events,

ST-elevation myocardial infarction, non–ST-elevation myocardial infarction, risk stratification, machine

learning.

I. INTRODUCTION

Major adverse cardiac events (MACE) is a composite of

all-cause mortality associated with cardiovascular-related

illnesses acute coronary syndrome (ACS), a type of MACE,

is a syndrome that occurs after a sudden decrease in blood

flow caused by an infarction or ischemia of a coronary

artery or downstream cardiac tissues. Patients with ACS often

The associate editor coordinating the review of this manuscript and

approving it for publication was Shiping Wen .

have abrupt chest pain accompanied by shortness of breath,

dizziness, nausea, or sweating [1]. As chest pain is a common

complaint in the emergency department (ED), it may cloud

the diagnosis of ACS or MACE. The characteristic electro-

cardiogram (ECG) is initially applied to quickly diagnose

patients with chest pain in order to detect acute coronary

obstruction. If an elevated ST signal is detected, ST-elevation

myocardial infarction (STEMI) can be quickly detected

and treated. However, numerous previous studies have

identified patients with myocardial ischemia and subsequent
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cardiac injury without such an ST elevation [2]–[4]. In fact,

approximately 70% of the 625,000 patients diagnosed with

ACS annually have non–ST-elevation ACS, according to an

American Heart Association report [5].

Based on its differential characteristics, ACS is divided

into several subgroups: STEMI, non–ST-elevation myocar-

dial infarction (NSTEMI), and unstable angina (UA). Despite

the similarities between NSTEMI and UA, UA is character-

ized by coronary artery occlusion resulting in a reduction in

blood flow not severe enough to produce cardiac injury [6].

Although ECG is a cost-effective and immediate test for the

detection of STEMI [4], the existence of varying subgroups

pose an unmet need for other approaches to accurately

identify all ACS patients.

The first approach to distinguish ACS patients from all

others with chest pain is to apply risk stratification for

classification. Many elements including patient symptoms,

physical exam results, findings of investigations, demograph-

ics, and risk factors can be applied to build a predictionmodel.

Although some physicians do not use prediction models due

to a lack of evidence of their superiority over pure clinical

impression [7], prognostic and diagnostic prediction models

can nonetheless better help EDs manage the resources.

Several risk-scoring models have been developed to classify

possible ACS. The three commonly used models for identi-

fying potential ACS including NSTEMI are 1) thrombolysis

in myocardial infarction (TIMI) [8]; 2) GRACE non-

ST-elevation ACS [9]; and 3) HEART [10]–[14].

The variables considered in TIMI include medical history,

demographics, ECG changes, and lab values. Seven factors

were selected by using multivariate logistic regression [8].

In addition to the aforementioned variables, prior medical

therapy is also included in the GRACE model by using the

same regression method, for a total of eight variables [9].

The HEART score for predicting MACE was developed

in 2008 based on clinical experience and the interpretation

of medical literature [13]. In addition to ECG pattern, age,

and risk factors for coronary artery disease (CAD), this model

also incorporates patient history and troponin concentration,

which were not included in the previous models. Troponin is

a regulatory protein complex of troponin C, troponin I, and

troponin T, found in skeletal and cardiac muscles. Troponin

elevation has been suggested as a predictor of MACE [15],

[16]. Troponins I and T have similar sensitivities, and both

have been used as cardiac biomarkers [10], [14], [17]–[23].

The TIMI, GRACE, and HEART scoring systems have

been validated for the prediction of MACE in an undifferen-

tiated ED chest pain population [24]–[29]. Of the numerous

studies comparing the performance of these models, many

have suggested that the HEART scoring system has a higher

sensitivity and greater negatives (negative predictive values)

[10], [18], [21], [30]. However, these models all require

lab values, such as creatinine or troponin, from invasive

blood tests. It is still critically necessary to develop a faster,

non-invasive diagnostic tool with high sensitivity that can

predict and aid in preventing sudden ACS events in patients

with chest pain in the ED. Machine learning (ML) is the

study of algorithms that use statistical models to compute

and predict outcomes without being restricted to explicit

instructions. ML-derived algorithms are based on statistical

analysis of input data, i.e., training data, to make predictions.

Therefore, these algorithms can be dynamically exerted when

new data are available.

Given the advances in ML, more and more studies have

applied it to build risk stratification models in medicine to

predict conditions including MACE, acute cardiac compli-

cations, and acute respiratory distress syndrome [31]–[35].

In a previous ML study for the perdition of MACE,

an ensemble-based scoring system (ESS) was built based

on physiologic heart rate variability (HRV), vital signs,

and ECG changes in chest pain patients in the ED of

Singapore General Hospital [34]. However, there has yet to

be a machine-learning based scoring system for chest pain

patients with potential MACE in Taiwan. Because of the

dynamic characteristics inML, there is a practical and critical

need for a model to be specifically applied to individuals in

Taiwan.

In this study, we developed a score as a predictor of MACE

in patients presenting with chest pain in the ED through

machine learning. A faster diagnostic model with fewer or

only non-invasive variables is also being established.

II. METHODS

A. FEATURE SELECTION

The aim of feature extraction is to simplify the model

and reduce training time overfitting. Feature or variable

selection is method of data dimensionality reduction and

is considered an important process in both statistical and

ML modeling. To minimize the number of features in the

model, we adopted ML-based feature selection techniques.

Two estimated methods were used in this study, mutual infor-

mation and recursive feature elimination. Mutual information

measures the dependence between features and response

variables (outcomes). More specifically, mutual information

quantifies the amount of information obtained about one

random variable through observations of the other random

variable. We calculated the mutual information between

MACE (outcome) and features one by one. The value of the

mutual information ranges from 0 to 1. If the value is 0,

the feature is independent of the response, while higher values

mean higher dependency. Recursive elimination utilizes the

importance scores based on the ML model and sorts the

scores from largest to smallest. Then, the least important

feature is pruned from the current set of features, and new

scores are estimated again for the remaining features. This

process is repeated until the number of remaining features is

equal to the required number (set to 5 in this study).

B. PARTICIPANTS

The training data for the model were obtained from a cohort

of 1175 patients with chest pain who presented to the ED
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of Sanchong Hospital from December 2016 to June 2017,

while the validation data were obtained from a cohort

of 162 patients with chest pain who presented to the ED of

Banqiao Hospital from March 2017 to June 2017. Sanchong

Hospital and Banqiao Hospital are both regional hospitals of

New Taipei City in Taiwan.

C. PATIENT INCLUSION AND ELIGIBILITY

All possible patients from the Internal Medicine departments

of the above hospitals were considered for potential inclusion,

and any patient with a primary diagnosis of STEMI, an age

younger than 20 or incomplete data was excluded.

D. OUTCOME

The primary endpoint of this study was the occurrence of

MACE, a composite outcome of death, acute myocardial

infarction, unstable angina pectoris and revascularization,

including coronary artery bypass graft (CABG) or per-

cutaneous coronary intervention (PCI), within 90 days of

presentation to the ED.

E. MACHINE LEARNING MODELS

In this study, the ML models included artificial neural

network (ANN) [36]–[39], random forest (RF) and support

vector machine (SVM), used to implement feature selection.

Two regression models were also used for the feature

selection: logistic regression (LR) and ridge regression (RR).

The normal linear regression method can be used to train

and predict response variables with continuous values. Unlike

linear regression, LR transforms the response variable into a

value >1, indicating a positive outcome, or ≤ 1, indicating a

negative outcome, by logit transformation. While LR uses all

the features to estimate the optimized weights of features that

contribute to the responses, RR attempts to identify important

features and sets the irrelevant features to zero. If the data set

contains many irrelevant features, RR tends to have a higher

performance than LR [40].

F. EXTRACTED FEATURES

Combining the 5 previously selected features and the top

5 features based on the ML models, we can identify

2 features, corrected QT interval (QTc) and Age, in common.

Since CAD risk is an important factor, as described in the

previous chapter, we finally included CAD risk in the later

analysis to obtain a total of 3 features.

G. STATISTICAL ANALYSIS

All participants’ characteristics and the between-individual

comparisons of whether MACE occurred within 90 days

of ED admission are presented as the means ± standard

deviations or numbers (in percentage), and analyzed by t test

and chi-squared test (or Fisher’s exact test) for continuous

and categorical variables, respectively. The composition of

MACE was expressed as a percentage of the total study

population. In order to identify potential risk factors for

90-day MACE, the derivation cohort was separated into two

parts. First, we utilized the feature selection procedure to

extract important features through the ML models. Second,

univariate logistic regression was applied to assess whether

the extracted features were risk factors for developingMACE

within 90 days for the non-invasive variables, including basic

characteristics, vital signs, and ECG variables. Among these,

continuous variables, such as age, were categorized according

to the definition generally recognized in epidemiology,

and QTc was based on critical values commonly used in

clinical settings as a cutoff. Significant variables (p<0.01)

in univariate analysis were then entered into multivariate

logistic regression to evaluate the risk of MACE. The final

model had a score range between zero to two, based on the

risk direction of each variable group. The same approach

was used in the second part to confirm significant factors,

though all variables in this study were submitted to univariate

logistic regression. The final scores were determined by

the standardized risk. All unstandardized coefficients of

significant variables in the multivariate model were divided

by the smallest coefficient and rounded to the nearest integer,

which then became the points in the scoring model.

Model calibration for the two final models was assessed by

Hosmer-Lemeshow goodness-of-fit test, and the performance

of the model was assessed by using discriminatory values,

such as the area under the receiver operating characteristic

curve (AUROC), sensitivity, specificity, positive predictive

value (PPV), and negative predictive value (NPV). Validation

was performed with the validation cohort according to the

two risk score models obtained from the derivation model

described above, and discriminatory values were used to

evaluate model performance. All statistics were performed

with SAS 9.4 software, and the feature selection procedure

was implemented in WEKA ML Workbench. Unless speci-

fied otherwise, all P values < 0.05 were deemed statistically

significant.

H. ETHICS APPROVAL

The study was approved by the Institutional Review Board in

New Taipei City Hospital, with ERC NTPC No. 106001-E at

trial sites in New Taipei City Hospitals.

III. RESULTS

After the exclusion of 237 patients with a primary diagnosis

of STEMI and those younger than 20 years old, a final

cohort of 938 patients were retained for further analysis.

A total of 116 and 822 patients had chest pain with and

without MACE, respectively (Table 1). The average age

in this cohort was 52.2 years old, and the average age of

the patients with MACE was 64.8 years old, approximately

14.3 years older than those without MACE (50.5 years old).

Significantly more males were MACE patients (65.52% >

34.48%, p<0.0001). This is consistent with a previous study

on 763 patients in Singapore General Hospital [41]. More

than half of the MACE patients had diabetes and hyper-

tension, and merely half of the cohort had hyperlipidemia.

Furthermore, the ECG variables PR, QRS, and QTc of the
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TABLE 1. Baseline characteristics of chest pain patients in the study.

MACE patients were all higher than those of the non-MACE

patients, p< 0.05.

Note that the most important features (set to 5 in this study)

were those remaining after the feature selection procedure

had been run, selected by the ML model. These were age,

QTc, CAD risk factors, creatinine, and troponin I. A full

and a reduced risk stratification model were built. The

full model was built by multiple logistic regression based

on the characteristics of both invasive (i.e., creatinine and

troponin I) (Table 2) and non-invasive (i.e., age, number of

TABLE 2. Multivariate logistic regression and final corresponding score
(ACE 2 and ACE 1 model).

CAD risk factors, and QTc) variables (Table 3). In this model,

the unstandardized coefficients were normalized by dividing

the total set by 0.6392, which was the smallest common

multiplicative factor. The risk score of full model has a range

of 0 to 10 points.

TABLE 3. Discriminatory values for the reduced model, full model and
HEART scores (low-risk).

The second model, the reduced model, was developed by

multivariate logistic regression based only on non-invasive

characteristics (Table 3). Only age, CAD risk factors, and

QTc were used as risk factors. Each risk factor was stratified

to three levels (0, 1, and 2), an efficient application in a

clinical setting. Therefore, the risk score of the reducedmodel

has a range of 0 to 6.

For the low-risk setting, a sensitivity of 0.948 (95% CI

0.908-0.989) and a specificity of 0.546 (95%CI 0.512-0.580)

were still seen with the full model for a score = 2 (Table 3).

Although the specificity in the reduced model were lower

than those in full model, a sensitivity of 0.966 (95% CI

0.932-0.999) could still be obtained. In addition, the full

model has high performance for predicting MACE, with an
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AUROC of 0.88 (95% CI, 0.851-0.908) (Table 3). Validation

was performed using the external data from Banqiao

Hospital; the AUROC was 0.853 (95% CI 0.7707-0.935) and

0.808 (95% CI 0.771-0.883) for the full (ACE 2) and reduced

(ACE 1) model, respectively. The ROC curves for the full and

reduced models are shown in Figure 1.

FIGURE 1. Receiver operating characteristic (ROC) curves of risk score for
ACE 1 and ACE 2 model and HEART for the validation set from Sanchong
Hospital.

IV. DISCUSSION

Two risk stratification models, one full and one reduced,

were established by incorporating basic characteristics, vital

sign, and lab data for the prediction of 90-day MACE in

patients presenting to the EDwith chest pain. In the derivation

cohort, the AUROC of the full model was 0.880, better

than the 0.801 of the reduced model. In the validation

cohort, the AUROC of the full model was 0.830, also better

than the 0.808 of the reduced model. This is reasonable

because all five variables were used in the full model. It is

surprising that the reduced model, which only took into

consideration age, the number of CAD risk factors, and

QTc, still demonstrated a high AUROC (above 0.8). The

application of the reduced model is feasible, as only non-

invasive characteristics were needed; these data are easy

to collect, do not require additional lab work, and should

therefore facilitate a simple and cost-effective workflow in

a hospital setting.

Among these variables, age, CAD risk factors, and

troponin are also used in the HEART scoring system. This

was the first time, however, that QTc was included as a

risk biomarker for MACE. Prolonged QTc intervals have

been used as a risk marker for patients with acute coronary

syndrome in many studies [42]–[44]. The cutoff for the QTc

interval ranged between 440-450 ms. The best cutoff for

QTc was determined to be 450 ms for predicting the risk

of ACS with a moderately or severely abnormal subsequent

stress test [45]. In an analysis of 45 individuals, a significant

association was shown between myocardial infarction and

a QTc interval of ≥440 ms [44]. Interestingly, although

it has been known that the length of the QT interval in

the population is associated with many factors, including

age, sex, coexisting disease, medication usage, dietary habit,

and genetic variants [46]–[48], a strong association between

MACE and QTc still was identified in this study.

The risk score cutoff must be examined from three different

perspectives. First, emergency medicine providers must

ensure to some extent that no cases of MACE are missed.

Time-to-decision is imperative within the context of the ED

care setting. Any applicable approaches must integrate well

into the workflows of the frontline emergency providers.

Second, from society’s perspective, minimal healthcare

costs for maximal value should be deemed efficient and

sustainable. Third, for patients, healthcare serves tomaximize

one’s health [49].

The low-risk cutoff score for the full model was set to 2,

although a cutoff score of 3 gave the highest sensitivity and

specificity. Emergency doctors expect <1% missing MACE

rate, which translates to a positive predictive value of >

99%; the low-risk score was thus adjusted to 2 to obtain

a missing MACE rate of 1.32% in the full model. As a

result, the sensitivity increased from 0.914 to 0.948, while

the specificity decreased from 0.714 to 0.546. This decreased

specificity was consistent with a previous study: a pooled

sensitivity of 99.4% was raised to what was considered an

acceptable risk of missing MACE in the low-risk group in

terms of the HEART score, while the specificity decreased

to 22.0% [14].

V. CONCLUSION

Two risk stratification scoring systems specific to Taiwanese

individuals were presented. The full model was shown to

have high performance and a low missed MACE rate; the

reducedmodelwas found to be capable of providing a quick

and high-performing diagnosis. Furthermore, we also

identified QTc prolongation as a potential predictor of

MACE. Future studies will be sure to shed light upon further

associations between QTc prolongation and MACE.
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