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Abstract 
This innovative model is presented to study the effect of non-Newtonian behavior of blood 

flow through a radially non-symmetric multiple stenosis artery using Herschel-Bulkely fluid 
model. The numerical illustration presented at the end of the paper provides the results for 
the resistance to flow, apparent viscosity and the wall shear stress through their graphical 
representations. It has been shown that the resistance to flow, apparent viscosity and wall 
shear stress increases with the size of the stenosis but these increases is comparatively small 
due to non-Newtonian behavior of the blood indicating the usefulness of its rheological 
character in the functioning of the diseased arterial circulation. Few comparisons with the 
existing results have been made in order to validate the applicability of the present model.  
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1. Introduction 

It is well known that whole blood, even during steady flow through rigid cylindrical tubes, 
does not behave as a Newtonian fluid. Instead, the velocity profile for blood changes from the 
parabolic shape of an ideal liquid to a blunter one, and along with this, there is a migration of 
erythrocytes away from the vessel wall. This change increases progressively as the vessel 
diameter decreases. Homogeneous liquids may behave closely like Newtonian fluids. 
However, there are fluids that do not obey the linear relationship between shear stress and 
shear strain rate. Fluids that exhibit a non-linear relationship between the shear stress and the 
rate of shear strain are called non-Newtonian fluids. Blood behaviour is referred to as non-
Newtonian properties. These properties are of two types as follows: (a) at low shear rates the 
apparent viscosity increases markedly. Sometimes even a certain yield stress is required for 
flow. (b) In small tubes, the apparent viscosity at higher rates of shear is smaller than it is in 
larger tubes. These two types of anomalies are often referred to as low shear and high shear 
effects respectively. It is thus concluded that the behaviour of blood is almost Newtonian at 
high shear rate, while at low shear rate the blood exhibits yield stress and non-Newtonian 
behaviour. In the series of the papers, [Texon, (1) May et al., (2) Hershey and Cho, (3) 
Young, (4) Forrester and Young, (5) Caro et al., (6) Fry (7) Young and Tsai, (8) Lee, (9); 
Richard et al., (10)] effects on the cardiovascular system can be understood by studying the 
blood flow in its vicinity. In these studies the behavior of the blood has been considered as a 
Newtonian fluid. However, it may be noted that the blood does not behave as a Newtonian 
fluid under certain conditions. It is generally accepted that the blood, being a suspension of 
cells, behaves as a non-Newtonian fluid at low shear rate [Charm and Kurland, (11); Hershey 
et al., (12) Whitemore, (13); Cokelet, (14); Lih, (15); Shukla et al., (16)]. It has been pointed 
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out that the flow behaviour of blood in a tube of small diameter (less than 0.2 mm) and at less 
than 20sec - 1 shear rate, can be represented by a power-low fluid [Hershey et al., (12); Charm 
et al., (11)]. It has also been suggested that at low shear rate (0.1 sec - 1) the blood exhibits 
yield stress and behaves like a Casson-model fluid [Casson, (17); Reiner and Scott-Blair, 
(18); Charm et al., (11)]. For blood flows in large arterial vessels (i.e., vessel diameter ≥1mm) 
[Labarbera, (19), Jung (23), Pralhad (24), Venkateshwarlu (25) Sanyal (26), Rathod (27) 
Singh (28), Mishra (29), Singh (30)], which can be considered as a large deformation flow, 
the predominant feature of the rheological behavior of blood is its shear rate dependent 
viscosity, and its fact on the hemodynamics of large arterial vessel flows has not been 
understood well. In this paper we investigated the effect of non-Newtonian behaviour of 
blood flow on the resistance to flow, apparent viscosity and wall shear stress in an stenosed 
artery by considering blood as a Herschel-Bulkely fluid model. Blood flow is considered 
through an axially non-symmetrical but radially symmetric stenosis (shown in Figure 1.(a)). 

 
Figure 1.(a). Stenosis 

2. Formulation of the Problem: 
In the present analysis, it is assumed that the stenosis develops in the arterial wall and 

symmetrical about the axis but non-symmetrical with respect to radial co-ordinates. In such a 
case the radius of artery, R(z) can be written as: Figure 1.(b) 

(m-1)
0 0

0 0 0m
0 0

1-A[L (αz-kd-(k-1)L )R(z) = ; k(d+L )-L αz k(d+L )
R                 -(αz-kd-(k-1)L ) ]

=1; otherwise

 
≤ ≤  

 
(1) 

where 
m/(m-1)

m
0 0

δ mA =
R L (m -1)                                                                  

 

    r                                                                                 
                                                                                                         
                d                      L0                       d                      L0 
  
                                          δs 
                                                              R’(z) 
                               Rc          
          
                                                                              
 
                        Figure 1.(b). Geometry of Stenosed Artery  
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R(z) and R0 is the radius of  the artery with and without stenosis, respectively. L is the length 
of artery and L0 is the stenosis length, d indicates the distance between equispaced points, k is 
number of stenosis that appears in arterial lumen, α .is a positive integer  , m is parameter 
determining the shape of stenosis in artery and δ denotes the maximum height of stenosis at  

( ) 1 /  (m – 1)
0 0kd  k 1 L L /  m

z  .
α

 + − +
 =
    

2.1. Herschel-Bulkley Fluid Model: The stress-strain relation of Herschel-Bulkley fluid is 
given as: 
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and µ denotes Herschel-Bulkley viscosity coefficient, τo is yield stress, τ is shear stress, Rc is 
the radius of the plug-flow region, u is the axial velocity along the z direction and n is the 
flow behavior index. The relation correspond to the vanishing of the velocity gradients in 
regions, in which the shear stress τ is less than the yield stress τo this implies a plug flow 
wherever τ ≤ τo when the shear rates in the fluid are very high, τ ≥ τo, the power-law fluid 
behavior is indicated. 
 
2.2. Conservation Equation and Boundary Condition: 

The equation of motion for laminar and incompressible, steady, fully-developed, one-
dimensional flow of blood whose viscosity varies along the radial direction in an artery 
reduces to: 

P 1 (r τ)0 ,
r r z
P0 ,
r

∂ ∂ = − + ∂ ∂ 


∂ = − ∂ 

                                                                                             (3) 

where (z, r) are co-ordinates with z measured along the  axis and r measured normal to the 
axis.  
Following boundary conditions are introduced to solve the above equations, 

L0

u/ r = 0         at r = 0
u = 0               at r = R(z),     is finite       at r = 0        
P = P              at z = 0,      P = P              at z = L

τ
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


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                                (4) 

 
3. Analysis of the Problem: 

By equation (2) and (3) we get,  
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the flow of flux, Q, is defined as, 

R R 2

0 0

d uQ= 2 p u r dr = p r - dr,d r
 
  
 

∫ ∫                                                                               (6) 

substituting  the  value  of  f (τ)  from  equation  (4)  in  equation  (6), 
11/ n (3+ )nπ P RQ = f (y),12 2μ (1+ )n
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Using equation (7) we have, 
n

(1+3n)
dp 2μ 2Q 1P = - = (1+ )ndz πf (y)R
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                                                                   (8) 

to determine λ, we integrate equation (8) for the pressure PL and Po re the ressure at z = 0 and 
z = L, respectively, where L is the length of the tube. 
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The resistance to flow is given by the coefficient λ is define as follows: 

L 0λ = P - P / Q                                                                                                                        (10)  

on using equation (9) and (10) gives, 
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When there is no stenosis in artery then R = Ro, the resistance to flow, 
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from equation (10) and (11) the ratio of (λ / λN ) is given  as: 
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The apparent viscosity (µ0/µ) is defined as follow:  
           

                                                                                             (14) 

 
 
4. Results and Discussion 

Figure (2) consists the variation of resistance to flow (λ) with stenosis size (δ/Ro) for 
different values of stenosis length. It is observed here that the resistance to flow increases as 
the stenosis size increases. It should be also noted here that the resistance to flow increases as 
stenosis length increases. Our results are therefore consistent with the observation of [9]. 

 
Figure 2. Variation of Resistance to Flow with Stenosis Size 
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Figure 3. Variation of Resistance of Flow with Stenosis Shape Parameter 

 
Figure 4. Variation of Wall Shear Stress with Stenosis Size 

 
Figure 5. Variation of Apparent Viscosity with Stenosis Shape Parameter 
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Figure (3) describes the variation of resistance to flow (λ) with stenosis shape parameter 
(m). In this graph, resistance to flow increases as stenosis length increases. It is also noticed 
here that resistance to flow decreases as stenosis shape parameter increases. This result is 
obvious because the lumen radius decreases as stenosis size increases [14]. Figure (4) depicts 
the variation of wall shear stress for different values of stenosis size. It is evident from the 
graph that the wall shear stress increases as stenosis size increases. This graph is also 
highlighted that wall shear stress increases as non-Newtonian behavior (n) increases [20]. 
Figure (5) reveals the variation of apparent viscosity (µo/µ) with stenosis shape parameter (m) 
for different values of stenosis size (δ/Ro). It may be observed here that the apparent viscosity 
decreases as shape parameter of stenosis increases. This figure is also depicted that apparent 
viscosity increases as stenosis size increases. In an artery flow, the viscosity of blood found to 
vary with the arterial radius decreasing with it. The diabetic patients are more prone to the 
various cardiovascular diseases. The viscosity of the diabetic patients is higher than that of 
normal. Therefore the blood viscosity of diabetic patients is lowered by regular dose of 
aspirin or injecting saline water in order to dilute the blood [12]. This lowers the blood 
pressure. 
 
5. Conclusion 

Blood flow through an artery mainly depends on the pressure gradient and resistance to 
flow. Resistance to flow increases as the stenosis grows and remains constant outside the 
stenotic region.  In this paper the behavior of non-Newtonian flows in an radially non-
symmetric multiple stenosed artery by considering the blood as Herschel-Bulkley fluids is 
studied. It has been concluded that the resistance to flow and wall shear stress increases as the 
size of stenosis increases for a given non-Newtonian model of the blood. These increases are 
however, small due to non-Newtonian behaviour of the blood. It has also been concluded that 
the apparent viscosity increases as yield stress increases and decreases as stenosis shape 
parameter increases. The results were greatly influenced by the change of stenosis shape 
parameter. In an artery flow, the viscosity of blood found to vary with the arterial radius 
decreasing with it. One may recollect that the diabetic patients are more prone to the various 
types of cardiovascular diseases. The viscosity of the diabetic patients is higher than that of 
normal. Therefore the blood viscosity of diabetic patients is lowered by  regular  dose  of  
aspirin  or  injecting  saline  water  in  order  to  dilute  the  blood. Thus it appears that the 
non-Newtonian behaviour of the blood is helpful in the functioning of diseased arterial 
circulation. 
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