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Abstract

Factorization machines (FMs) are a class of gen-
eral predictors working effectively with sparse data,
which represent features using factorized parame-
ters and weights. However, the accuracy of FMs
can be adversely affected by the fixed representa-
tion trained for each feature, as the same feature is
usually not equally predictive and useful in differ-
ent instances. In fact, the inaccurate representation
of features may even introduce noise and degrade
the overall performance. In this work, we improve
FMs by explicitly considering the impact of each
individual input upon the representation of features.
We propose a novel model named Input-aware Fac-
torization Machine (IFM), which learns a unique
input-aware factor for the same feature in differ-
ent instances via a neural network. Comprehensive
experiments on three real-world recommendation
datasets are used to demonstrate the effectiveness
and mechanism of IFM. Empirical results indicate
that IFM is significantly better than the standard
FM model and consistently outperforms four state-
of-the-art deep learning based methods.

1 Introduction

Prediction now plays a crucial role in many personalized
systems, such as online advertising [McMahan et al., 2013;
Juan et al., 2016] and recommendation [Koren et al., 2009;
Cheng et al., 2014]. Typically, the recommendation task is
formulated as estimating a function that maps categorical pre-
dictor variables (a.k.a. features) to a target. For example, we
need to predict the click probability (target) that a user (first
predictor variables) of a particular occupation will click on
an item (second predictor variables). The first and second
predictor variables are usually combined in the form of an
instance, e.g., {young, female, student, pink, skirt}.

To build predictive models with these categorical predictor
variables, it is indispensable to accurately represent them in
machine identifiable forms. A common solution is to con-
vert them to a set of binary features (a.k.a. feature vector)
via one-hot encoding [Cheng et al., 2016]. Depending on the
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number of possible values of categorical predictor variables,
the generated feature vector can be very high dimensional and
sparse. To build an effective model with such sparse data,
factorization machines (FMs) were proposed [Rendle, 2010],
which learn a one-dimensional weight and a k-dimensional
embedding vector as the representation of each feature from
sparse data. Owing to its efficient linear training time and
high prediction accuracy, FMs have been successfully applied
to various applications, from recommendation systems [Ren-
dle et al., 2011] to natural language processing [Petroni et
al., 2015]. Despite great promise, FMs produce a single rep-
resentation for each feature and the same representation of a
given feature is shared in different instances to compute its
predictive power, which may lead to inferior performance. In
this paper, we argue that the impact of each individual input
should be given full consideration when creating the repre-
sentation for each feature.

Many existing studies attempt to improve the prediction
accuracy of FMs by focusing on feature interactions. For ex-
ample, DeepFM [Guo et al., 2017] models high-order feature
interactions through a neural network, while AFM [Xiao et
al., 2017] enhances FMs by learning the importance of each
feature interaction from data via a neural attention network.
Nevertheless, these improvements are limited as the unique-
ness of each instance is not exploited.

In our work, we propose to improve FMs from a new per-
spective that tries to refine the representation of features ac-
cording to different instances. In real-world applications, a
feature usually has dissimilar levels of predictive power in
different situations. For example, the feature female is ap-
parently crucial for click probability in an instance: {young,
female, student, pink, skirt}. However, in another instance:
{young, female, student, blue, notebook}, the feature female
is relatively less crucial. As such, the same feature on differ-
ent instances should be assigned different levels of predictive
power to better reflect its specific contribution.

In this paper, we present a novel model for prediction
tasks under sparsity named Input-aware Factorization Ma-
chine (IFM), which enhances FMs by explicitly considering
the impact of each individual input on the representation of
features. It refines the weight and embedding vector of each
feature with regard to different instances and adds nonlinear-
ity to the model simultaneously. Specifically, we adopt the
idea of end to end memory network [Sukhbaatar et al., 2015]
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to enable each feature to contribute dissimilarly in different
instances. In this way, the representation of each feature is not
only related to itself, but also to the instances containing it.
In contrast to other deep learning based methods that mainly
focus on feature interactions, our use of neural networks for
more informative representations of features greatly enhances
the expressiveness and interpretability of FMs. Comprehen-
sive experiments show that our IFM features two major ad-
vantages: i). it produces better prediction results compared
to existing techniques; ii). it provides deeper insights into the
role that each feature plays in the prediction task.

2 Preliminaries

Factorization machines are proposed to learn feature inter-
actions for sparse data, which combine the advantages of
Support Vector Machines (SVMs) with factorization models.
FMs enhance linear regression (LR) using the second-order
factorized interactions between features. Given a real valued
feature vector x ∈ R

n where n denotes the number of fea-
tures and most of the elements xi in a vector x are zero, the
FM model estimates the target by modelling the interactions
via factorized interaction parameters:

ŷFM (x) = w0 +
n
∑

i=1

wixi +
n
∑

i=1

n
∑

j=i+1

⟨vi,vj⟩xixj (1)

where x is the feature vector of the instance and xi denotes
the i-th dimension of the feature vector while ŷ represents the
value predicted by the FM model (e.g., the estimated proba-
bility of click). w0 is the global bias and wi models the weight
of the i-th variable. vi is a k-dimensional embedding vector
of the i-th variable and ⟨vi,vj⟩ is the dot product of two vec-
tors of size k, which models the interaction between the i-th
and j-th variables. Here, k is the dimension of embedding
vectors, which controls the complexity of FMs. Note that the
feature interactions can be reformulated [Rendle, 2010] as:

n
∑

i=1

n
∑

j=i+1

⟨vi,vj⟩xixj =
1

2

k
∑

f=1











n
∑
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−
n
∑

j=1

v2j,fx
2
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(2)

where vj,f denotes the f -th element in vj . The time complex-

ity of Equation 1 is O(kn2), but with reformulating it drops
to linear time complexity O(kn).

It is worth noticing that FMs produce a fixed representation
for each feature: the same weight wi and embedding vector
vi are shared across all different instances that involve the
i-th feature. However, it is not unusual that a certain fea-
ture is not equally predictive and useful across different in-
stances. Consequently, due to the lack of flexibility in feature
representation, FMs may suffer from the insufficient ability
for modelling complex data, which may adversely affect their
performance in general.

3 Input-aware Factorization Machine

In this section, we present the details of the proposed IFM
model to show how to boost the performance of FMs via the
input-aware strategy.
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Figure 1: The network architecture of our proposed Input-aware
Factorization Machines model

3.1 The IFM Model

Similar to factorization machines, given a sparse feature vec-
tor x ∈ R

n as input, where a feature value xi = 0 means that
the i-th feature does not exist in the instance, IFM predicts
the target as:

ŷIFM (x) = w0 +
n
∑

i=1

wx,ixi +
n
∑

i=1

n
∑

j=i+1

⟨vx,i,vx,j⟩xixj

(3)
where the first and second terms model the global bias of data
and weights of features respectively, and the third term cap-
tures the feature interaction. Note that, in our method, the sec-
ond and third terms model each feature’s effect on the label
in a nonlinear way, as the weight wx,i and embedding vector
vx,i of each feature not only correlate with the i-th feature but
also are related to the input vector x. Figure 1 illustrates the
network architecture of our proposed IFM model, where the
extra components in addition to traditional FMs are marked
by dark background.

Embedding Layer
As in FMs, a weight and an embedding vector are randomly
initialized for each feature as its representation. Formally,
let vi ∈ R

k be the embedding vector of the i-th feature,
where k is the embedding size. Due to the sparsity of x,
we only need to include the embedding vectors of non-zero
features, i.e., Vx = {vi} where xi ̸= 0. Finally, we stack
all vectors in Vx into a single k × h dimensional vector:
Vx =

[

vT
1 ,v

T
2 ....,v

T
h

]

, where h denotes the number1 of non-
zero elements per instance.

Factor Estimating Network
The input-aware strategy is inspired by memory networks
[Weston et al., 2014], which are a class of deep learning based
models mainly used in question answering (QA) tasks. One
of their key ideas is to allow different memory records to con-

1In this paper, we assume that h is a fixed value for each dataset.
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Figure 2: The neural network architecture of Factor Estimating Net-
work

tribute differently to each question. Motivated by this inher-
ent flexibility of memory networks, the input-aware strategy
is proposed to extend the functionality of FMs by introduc-
ing an input-aware factor mx,i into the feature weight wi and
embedding vector vi, which allows each feature to contribute
dissimilarly in different inputs.

To estimate the input-aware factor mx,i, we first feed the
stacked vector Vx into the Factor Estimating Network (FEN)
to learn a unique vector Ux for the given input x. Figure 2
shows the architecture of FEN. The network begins with a
stack of fully connected layers that are capable of learning
unique information from x. Formally, the definition of the
fully connected layers is as follows:

a1 = σ1 (W1Vx + b1) ,
...

Ux = aL = σL (WLaL−1 + bL)
(4)

where Wl, bl, σl and al are the weight matrix, bias vector,
activation function and the output of the l-th layer, respec-
tively. Next, Ux, which is the output vector of the last hidden
layer aL, is used to learn an input-aware factor mx,i for each
feature in the input x:

m′
x = UxP,P ∈ R

t×h,

mx,i = h×
exp(m′

x,d)
∑h

j=1
exp(m′

x,j)
, xi ̸= 0

(5)

where P denotes the weight matrix that transforms Ux to a h-
dimensional vector m′

x, and t denotes the number of neurons
in the last hidden layer. Finally, the elements m′

x,d, d ∈ [1, h]
in m′

x are normalized through a softmax function, so that the
sum of all elements is equal to h, representing the input-aware
factor mx,i of each non-zero feature in x.

Reweighting Layer
Once the outputs from FEN are obtained, they are used to
refine the feature weight wi and embedding vector vi with
regard to the current input. The inputs of this layer are the
wi and vi of the given input x and the input-aware factor
mx,i from the previous layer. Formally, the definition of the

reweighting layer is as follows:

wx,i = mx,iwi

vx,i = mx,ivi
(6)

where wx,i, vx,i are the refined representations of features for
the specific input x.

FM Prediction Layer
In this layer, the input-aware weight wx,i and embedding vec-
tor vx,i are fed into factorization machines to predict the tar-
get as Equation 3. It is worth mentioning that, similar to
Equation 2, we can reformulate Equation 3 to reduce the run-
time of this layer to linear time complexity O(kn):

n
∑

i=1

n
∑

j=i+1

⟨vx,i,vx,j⟩xixj =
1

2

k
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f=1
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n
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−
n
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j=1

v2
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2
j



 (7)

In summary, in IFM, the model parameters are Θ =
{w0, wi,vi,Wl,bl,P}. Compared to the FM model, the ad-
ditional model parameters of IFM are {Wl,bl,P}, which are
mainly used for capturing the input-aware factors.

3.2 Relationship with FM and AFM

It is easy to see that, in the IFM model, by fixing all mx,i to
1, wx,i and vx,i only depend on the i-th feature, and IFM re-
duces to the original FM model. On the other hand, if we ne-
glect the second term of Equation 1, AFM [Xiao et al., 2017]

can be seen as a similar case to IFM.
To show this, we compare the formulation of feature inter-

action in AFM with ours:

pT

n
∑

i=1

n
∑

j=i+1

ai,j ⟨vi ⊙ vj⟩xixj ≈
n
∑

i=1

n
∑

j=i+1

mx,imx,j ⟨vi,vj⟩xixj

=
n
∑

i=1

n
∑

j=i+1

⟨vx,i,vx,j⟩xixj

(8)

As can be seen from Equation 8, by replacing mx,imx,j

with ai,j and fixing pT to a constant vector of [1, ..., 1], we
can roughly cover the AFM model.

3.3 Learning

As IFM directly enhances FMs from the perspective of data
modelling, it can also be applied to a variety of prediction
tasks, including regression, classification and ranking. Differ-
ent objective functions should be used to customize the IFM
model for different tasks. For binary classifications, the loss
function is log loss. For regression, a commonly adopted loss
function is the squared loss:

Lreg =
∑

x∈χ

(ŷIFM (x)− y (x))
2

(9)

where χ denotes the training data, and y (x), ŷIFM (x) de-
note the label and target of the input x, respectively. In this
work, we mainly focus on the regression task and optimize
the squared loss of Equation 3. The optimization for ranking
and classification tasks can be done in the same way. To opti-
mize the loss function, we employ adaptive gradient descent
(AdaGrad), a universal solver for neural network models. The
key to implementing the AdaGrad algorithm is to obtain the
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derivative of the squared loss Lreg w.r.t. each parameter with
an adaptive learning rate. In our model, not only can we train
all parameters directly through backpropagation, but also we
can pretrain the feature weight wi and embedding vector vi

through a FM.

Overfitting is a perpetual issue in model training and we
employ dropout [Srivastava et al., 2014] and L2 regulariza-
tion to control the overfitting of FEN. In doing so, the actual
objective function to be optimized is:

Lreg=

∑

x∈χ

(ŷIFM (x)− y (x))
2
+λ∥Φ∥

2
(10)

where λ controls the regularization strength and Φ denotes
the weight matrix {W,P} in FEN.

4 Related Work

As extensions of FMs, GBFM [Cheng et al., 2014] selects
good features using gradient boosting and models only the
interactions between good features. Field-aware FM (FFM)
[Juan et al., 2016] enables each variable to have multiple em-
bedding vectors for feature interactions, but its large number
of parameters may result in undesirable computational cost.
In our work, we aim to boost the performance of FMs by
explicitly considering the impact of each individual input on
the representation of features, which refines the weight and
embedding vector of each feature with regard to different in-
stances.

Meanwhile, an increasing number of researchers are in-
terested in employing deep learning for prediction. Specif-
ically, some models use DNN to explore high-order feature
interactions: Wide&Deep [Cheng et al., 2016], employs a
Multilayer Perceptron(MLP) on the concatenation of feature
embedding vectors to learn feature interactions; DeepCross
[Shan et al., 2016] applies a deep residual MLP to learn cross
features; PNN [Qu et al., 2016] introduces a product layer
between the embedding layer and DNN layers to learn fea-
ture interaction; DeepFM [Guo et al., 2017] uses the FM
component and the deep component to get 2-order and high-
order interaction information; NFM [He and Chua, 2017] ex-
tends FMs by using DNN to explore high-order nonlinear fea-
ture interactions; xDeepFM [Lian et al., 2018] learns certain
bounded-degree feature interactions explicitly and arbitrary
low/high-order feature interactions implicitly. Some other
models extend FMs by discriminating the importance of fea-
ture interactions. For example, AFM [Xiao et al., 2017] uses
attention mechanism to weight different feature interactions,
and FwFM [Pan et al., 2018] uses mutual information to dis-
tinguish the strength of feature interactions.

In all the above models, each feature holds a fixed repre-
sentation for different instances, instead of an adaptive rep-
resentation according to each unique instance. Consequently,
the performance of these methods may be limited, as the im-
pact of each instance on the representation of features is ig-
nored. By extending FMs with a more accurate and flexible
representation of features, IFM is expected to produce supe-
rior performance compared to existing methods.

5 Experiments

In this section, we conduct extensive experiments to answer
the following questions:

• (Q1) How do the key hyper-parameters of IFM (e.g., the
dropout ratio and the number of hidden layers) impact
its performance?

• (Q2) Can the factor estimating network effectively refine
the representation of features for different instances?

• (Q3) How does IFM perform compared to state-of-the-
art methods for sparse prediction?

5.1 Experimental Settings

Datasets. For regression tasks, we evaluate various pre-
diction models on two public datasets: Frappe2 [Baltrunas
et al., 2015] and MovieLens [Harper and Konstan, 2016].
The Frappe dataset has been used for context-aware mobile
app recommendation, which contains 96,202 records with
957 users and 4,082 apps. The MovieLens dataset has been
used for personalized tag recommendation, which contains
668,953 tag applications of 17,045 users on 23,743 items with
49,657 distinct tags. We follow the data processing details of
NFM [He and Chua, 2017] and randomly split instances by
8:1:1 for training, validation and test. For binary classifica-
tion, we use the Avazu3 dataset, which was published in the
contest of Avazu Click-Through Rate Prediction in 2014. The
public dataset is randomly split into training and test sets by
4:1. Meanwhile, we remove the features appearing less than
20 times to reduce dimensionality.

Evaluation Metrics. We use MAE (mean absolute error)
and RMSE (root mean square error) for evaluating regres-
sion tasks such as recommendation and use AUC (Area Un-
der ROC) and log loss (cross entropy) for binary classification
tasks.

Baselines. We compare IFM with the following competitive
methods, some of which are state-of-the-art models for sparse
prediction.

- LibFM [Rendle, 2012]: This is the official implementa-
tion4 for factorization machines that features stochastic
gradient descent.

- Wide&Deep [Cheng et al., 2016]: The wide part is lin-
ear regression and the deep part is a three-layer MLPs
with layer sizes 1024, 512 and 256.

- DeepFM [Guo et al., 2017]: The FM part is a factor-
ization machine, and the deep part is a three-layer MLP
with layer sizes 200, 200 and 200.

- NFM [He and Chua, 2017]: We take the implementation
of NeuralFM and set the number of layers in the hidden
layer to 1 with 512 neurons as the original paper.

- AFM [Xiao et al., 2017]: We use the implementation
for AttentionFM, where the attention factor is set to 16
and the L2 regularization of attention net is set to 2 as
recommended.

2http://baltrunas.info/research-menu/frappe
3http://www.kaggle.com/c/avazu-ctr-prediction
4http://www.libfm.org/

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1469



Parameter Settings. We implement our method using Ten-
sorflow5. To enable a fair comparison, all methods are learned
by optimizing the squared loss (Equation 9) using the Ada-
grad (Learning rate: 0.01). The batch sizes for Frappe and
MovieLens are set to 2048 and 4096, respectively, while the
embedding size is set to 256 for all methods. The batch sizes
for Avazu is set to 2048 and the embedding size is set to
40. We use a L2 regularization with λ = 0.00001 for NFM,
Wide&Deep, DeepFM and IFM. The default setting for the
number of neurons per layer in IFM is 256. For Wide&Deep,
AFM, DeepFM and IFM, we find that pre-training their fea-
ture embeddings with FM leads to better performance than
using random initialization, and so we present their perfor-
mance with pre-training.

5.2 Hyper-Parameter Study (Q1)

We study the impact of hyper-parameters on IFM in this sec-
tion, including the number of hidden layers, the dropout ratio
and activation functions. We conduct experiments on the vali-
dation data by holding the settings for the FM prediction layer
while varying the settings for FEN.
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Figure 4: Impact of network hyper-parameters (MAE)

Depth of Network

Figure 3(a) and Figure 4(a) show the impact of the number
of hidden layers in FEN. We can observe that the perfor-
mance of IFM increases with the increasing of networks at
the beginning. However, the model performance starts to de-
grade when the depth of networks is greater than 2(Frappe)
or 3(Movielens). This is caused by overfitting evidenced by
the observation that the training error still keeps decreasing.

5Codes are available at https://github.com/gulyfish/Input-aware-
Factorization-Machine

Dropout Ratio

Dropout is an effective regularization technique for neural
networks to prevent overfitting. Figure 3(b) and Figure 4(b)
show the impact of dropout ratio on FEN. By setting the
dropout ratio to a proper value, the performance of IFM on
both datasets can be significantly improved. Specifically, the
optimal dropout ratios for Frappe and MovieLens are 0.3 and
0.4, respectively. This verifies the usefulness of dropout on
the factor estimating network, which also improves the gen-
eralization of IFM.

Activation Function

A common practice in deep learning literature is to employ
non-linear activation functions on hidden neurons. We thus
compare the performance of different activation functions on
IFM. As shown in Figure 5, ReLU is more appropriate than
others for the two datasets.
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Figure 5: Impact of activation functions on IFM performance
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Figure 6: The comparison of convergence behaviors of IFM and FM

5.3 Impact of the Factor Estimating Network (Q2)

The factor estimating network in IFM plays a pivotal role
in refining the representations of features for different in-
stances. We first compare IFM with FM to demonstrate the
importance of the factor estimating network. Figure 6 shows
that IFM generally converges faster than FM. On Frappe and
MovieLens, both the training and validation errors of IFM are
much lower than those of FM, indicating that IFM can better
fit the data and lead to more accurate prediction. This justifies
the rationality of IFM’s design of learning a unique weight for
the same feature in different instances via a neural network,
which is the key contribution of this work.

Mechanism Analysis

To better demonstrate the effect of FEN, we select three test
instances from Frappe. Table 1 shows the difference in fea-
ture representation with respect to different instances. We
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can see that, in IFM, the same predictor (e.g., x3 and x9) may
have significantly different degrees of importance in differ-
ent instances, as evidenced by the diverse input-aware factor
values. By contrast, FM assigns each feature a fixed level
of predictive power in three instances, resulting in systemati-
cally larger prediction errors.

N Method x3 x9 · · · ŷ − y (x)

1
FM w3,v3 w9,v9 · · · 0.22

IFM 3.12∗ (w3,v3) 0.15∗ (w9,v9) · · · 0.09

2
FM w3,v3 w9,v9 · · · 0.34

IFM 0.67∗ (w3,v3) 0.05∗ (w9,v9) · · · 0.16

3
FM w3,v3 w9,v9 · · · 0.14

IFM 2.29∗ (w3,v3) 1.19∗ (w9,v9) · · · 0.07

Table 1: The changes of representation w.r.t. the same features in
different instances from Frappe

Performance Analysis of Model Components

Note that, in IFM and other baseline models, each extra
model component has its own unique functionality: DNN
models high-order feature interactions; attention tries to pro-
duce a weight for each feature interaction; FEN focuses on
the adaptive representation of features. To provide more in-
sights into the effect of each type of component, we first train
all models without using the extra components (i.e., simu-
lating the standard FM model). We then freeze feature em-
beddings, and train the extra components only. To enable
a fair comparison, the hyper-parameters of each model are
carefully tuned for best possible performance, and upon con-
vergence, the relative improvements (RI) of each model on
Frappe and MovieLens are listed in Table 2. It is clear that
with the help of FEN, IFM achieves 35% and 22% improve-
ment on the two datasets, respectively. Although the DNN
and attention components also bring noticeable benefits to the
FM model, the importance of incorporating adaptive feature
representation is clearly highlighted.

Method Component
Frappe MovieLens

RI RI

FM - - -

DeepFM DNN 20% 12%

NFM DNN 21% 10%

AFM Attention 12% 9%

IFM FEN 30% 18%

Table 2: Relative improvements (RI) of extra components on Frappe
and MovieLens

5.4 Performance Comparison (Q3)

In this section, we compare IFM with several strong base-
lines, and the results are summarized in Table 3 and Table 4,
from which we have the following key observations:

• First, IFM consistently achieves the best results (mini-
mum prediction errors) on three datasets with large per-
formance margins over state-of-the-art methods. This

demonstrates overall the effectiveness of IFM and fur-
ther justifies the importance of input-aware feature rep-
resentation.

• Second, Wide&Deep, DeepFM and NFM are consis-
tently better than the FM model, which is attributed to
the feature extraction by DNN for modelling higher-
order feature interactions. However, the superiority of
IFM demonstrates that a shallow model with accurate
representation of features can achieve even better per-
formance than deep learning methods. This points to
a promising direction for future research: developing
more effective methods for learning accurate feature rep-
resentations.

Method
Frappe MovieLens

MAE RMSE MAE RMSE

LibFM 0.1611 0.3352 0.2604 0.4706

Wide&Deep 0.1304 0.3222 0.2385 0.4502

DeepFM 0.0891 0.3149 0.1856 0.4485

NFM 0.0912 0.3074 0.2141 0.4413

AFM 0.1280 0.3085 0.2220 0.4379

IFM 0.0685* 0.2872* 0.1522* 0.4273*

* indicates that the improvement of IFM over all other methods
is statistically significant (α=0.05).

Table 3: Performance comparison for regression task on Frappe and
MovieLens (embedding size: 256)

FM AFM NFM DeepFM IFM

AUC(%) 76.20 77.82 77.98 78.22 78.48

Logloss 0.3912 0.3821 0.3798 0.3782 0.3771

Table 4: Performance comparison for binary classification task on
Avazu (embedding size: 40)

6 Conclusion

In this paper, we presented an effective predictive model
named Input-aware Factorization Machine (IFM) for sparse
datasets. It aims to enhance traditional FMs by purposefully
learning more flexible and accurate representation of features
for different instances with the help of a factor estimating net-
work. The major advantage is that it provides a principled
mechanism to better reflect the predictive power of each fea-
ture in specific situation, while keeping the linear time com-
plexity as the original FMs. Extensive experiments on three
real-world benchmark datasets show that the accurate repre-
sentation of features can yield better performance than captur-
ing high-order feature interactions. In terms of four popular
performance metrics, IFM significantly outperforms the clas-
sical FM and state-of-the-art deep learning based approaches
such as Wide&Deep, AFM, NFM and DeepFM on regression
and classification tasks.
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