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Abstract

An input/output approach to the optimal concentration transition control problem of a certain type of distributed chemical reactors is proposed
based on the concept of residence time distribution, which can be determined in practice by using data from experimental measurements or
computer simulations. The main assumptions for the proposed control method to apply are that the thermal and fluid flow fields in the reactor
are at pseudo-steady-state during transition and that the component whose concentration is to be controlled participates only in first-order
reactions. Using the concept of cumulative residence time distribution, the output variable is expressed as the weighted sum of discretized
inputs or input gradients in order to construct an input/output model, on the basis of which a constrained optimal control problem, penalizing
a quadratic control energy functional in the presence of input constraints, is formulated and solved as a standard least squares problem with
inequality constraints. The effectiveness of the proposed optimal control scheme is demonstrated through a continuous-stirred-tank-reactor
(CSTR) network and a tubular reactor with axial dispersion and a first-order reaction. It is demonstrated through computer simulations that the
proposed control method is advantageous over linear quadratic regulator (LQR) and proportional-integral (PI) control in terms of control cost
minimization and input constraint satisfaction.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Modern chemical plants generally produce a variety of prod-
ucts, and it is common that these products are only slightly
different in terms of their composition. For example, polymers
of different molecular weights in a polyethylene plant have
different properties such as texture and mechanical strength
(e.g., Cervantes et al., 2002; Lo and Ray, 2006; McAuley and
MacGregor, 1992). Glasses with different levels of colorant
agent exhibit different appearances and solar performances
(Trier, 1987). To satisfy the need of different customers, a mod-
ern manufacturing plant should be able to make product transi-
tions in a short time and to maintain a high quality of the new
product at the same time. In some cases, a product transition in a
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chemical plant might take days or even weeks due to a long
residence time of the chemical reactor involved. This makes the
optimal control of outlet concentration in distributed chemical
reactors an important subject at the interface of reactor engi-
neering and process control. Due to the coupled flow, thermal
and reaction phenomena involved in a distributed chemical
reactor, a detailed description of flow, temperature and con-
centration fields in typical reactors require multi-dimensional
computational fluid dynamic (CFD) simulations (e.g., Li and
Christofides, 2005, 2006; Li et al., 2006). A direct use of CFD
models for control design or dynamic optimization involves sig-
nificant computational cost. Although application of advanced
model reduction techniques to derive reduced-order models
from the detailed partial differential equation (PDE) pro-
cess models may work well in certain cases and lead to
efficient dynamic optimization and control algorithms (see,
for example, Armaou and Christofides, 1999, 2000, 2002;
Baker et al., 2000; Baker and Christofides, 2000; Bendersky
and Christofides, 2000; Christofides, 2001; Christofides and
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Daoutidis, 1997; Graham and Kevrekidis, 1996; Graham et al.,
1999; Groetsch et al., 2006; Park and Lee, 2000), such a
reduced-order model approach might require a huge amount
of memory and computational cost when the CFD model con-
sists of millions of grid points needed to accurately describe
the process behavior. The reader may also refer to Raja et al.
(2000) and Varshney and Armaou (2006) for recent applica-
tions of model reduction and dynamic optimization to thin
film deposition processes described by CFD equations and
Balsa-Canto et al. (2004, 2005) for further recent results on
dynamic optimization and control of distributed parameter
systems.

To circumvent the computational complexity brought by the
possible high dimensionality of the dynamic system, an input/
output approach to transition control problems for a class of
distributed chemical reactors is proposed based on the con-
cept of residence time distribution. Specifically, we consider
processes in which the grade of the final product is deter-
mined by the concentration of a key component that has a very
low concentration and participates only in first-order reactions.
When these conditions are satisfied, the dynamics of the transi-
tion process is linear and an input/output model that describes
the dynamic relationship between the inlet and outlet concen-
trations of the key component can be constructed using the
concept of cumulative residence time distribution. A major
advantage of this method is that the residence time distribution
is a common term in reactor engineering and reliable measure-
ment techniques are readily available (Fogler, 1998). The reader
may also refer to several papers in the literature regarding the
determination of the residence time distribution through CFD
simulations (see Ekambara and Joshi, 2004; Gunjal et al., 2003;
Harris et al., 1996; Heibel et al., 2001, 2005; Rigopoulos and
Jones, 2003). Another advantage of the input/output approach
is that once the residence time distribution is determined and
the input/output model is constructed, iteratively solving the
process dynamics (which may be described by PDEs) is not
necessary. Finally, constraints on the input can be easily in-
corporated in the input/output model and handled in the so-
lution of the transition control problem. Using the concept of
cumulative residence time distribution, the output variable is
expressed as the weighted sum of discretized inputs or input
gradients in order to construct an input/output model, on the ba-
sis of which a constrained optimal control problem, penalizing
a quadratic control energy functional in the presence of input
constraints, is formulated and solved as a standard least squares
problem with inequality constraints. The effectiveness of the
proposed optimal control scheme is demonstrated through a
continuous-stirred-tank-reactor (CSTR) network and a tubular
reactor with axial dispersion and a first-order reaction. It is
demonstrated that the proposed control method yields the same
control trajectory as the one obtained from linear quadratic reg-
ulator (LQR) theory (designed based on the state-space model)
if there are no constraints present. However, when constraints
are present, the proposed optimal control method is shown to
be advantageous over LQR and proportional-integral (PI) con-
trol in terms of control cost minimization and input constraint
satisfaction.

2. Control problem formulation

The focus of this work is on a certain type of optimal tran-
sition control problems in a class of distributed chemical re-
actors where the grade of the product is directly related to the
concentration of a key component in the effluent stream. This
key component is assumed to participate only in first-order re-
actions although there might be other reactions (which can be
of any order) occurring within the reactor. In such a case, the
concentration in the exit of the reactor is regulated by the con-
centration at the entrance of the reactor. In general, the reac-
tor might be non-isothermal and flow recirculation might exist
within the reactor. However, a pseudo-steady-state of the flow
and thermal fields should hold during the transition process.
This assumption is valid if the concentration of the key com-
ponent to be controlled is very low. It is also assumed that the
concentration distribution at the plane of the exit is negligible.
Considering such a reactive flow process with species transport,
an accurate description of the transport phenomena involves
the following dynamic conservation equations (the number of
species is assumed to be two for simplicity):

�(�v)
�t

+ ∇ · (�vv) = ∇ · (�) − ∇p + F,

�(�h)

�t
+ ∇ · (�hv) = ∇ · (�/cp∇h)S,

�(��i )

�t
+ ∇ · (��iv) = −∇ · (ji) + Ri, i = 1, 2, (1)

where � is the density of the fluid, v = [vx, vy, vz]T is the ve-
locity vector, � is the stress, p is the pressure, h is the enthalpy,
� is the thermal conductivity, cp is the heat capacity, �i is frac-
tion of component i in the mixture, and ji is the diffusion flux
of component i. F, S, and Ri are the source terms. The ma-
nipulated input and controlled output variables appear in the
boundary conditions of the above PDEs (see the second ex-
ample in the case studies section for a detailed formulation).
Through discretization in space (usually with local discretiza-
tion techniques such as finite difference, finite element or finite
volume, etc.) and incorporation of the boundary conditions, the
above PDEs can be converted into a set of ordinary differential
equations of the following form:

ẋ = f (x) + g(x)u,

y = h(x), (2)

where x = [�v1
x, �v1

y, �v1
z , �h1, ��1

1, ��1
2, . . . , �vN

x , �vN
y ,

�vN
z , �hN, ��N

1 , ��N
2 ]T is a 6N vector. Here N is the

number of grid points in the CFD model. N might be
several million in some large-scale chemical reactors. u
and y are the concentration of the key component at
the entrance and the exit of the reactor, respectively.
The control problem is to minimize the following func-
tional subject to the process dynamics and constraints
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in the input:

min
u(t)

J =
∫ ∞

0
(y(t) − yf )2 dt + �2

∫ ∞

0
(u(t) − uf )2 dt

s.t. ẋ(t) = f (x(t)) + g(x(t))u,

y(t) = h(x(t)),

umin �u(t)�umax, (3)

where uf and yf are the steady-state concentration of the key
component at the inlet and outlet of the reactor after transi-
tion, and � represents the weight on the control action during
the transition process. Apparently, a steady-state solution of the
process requires solving the full 6N dimensional state-space
model. Because a pseudo-steady-state of the thermal and flow
fields can be assumed during the transition process, the veloc-
ity and temperature do not need to be solved again in the dy-
namic simulation once they become available in the steady-state
simulation. In such a case, a description of the concentration
evolution within the reactor consists of, however, still N state
variables. If N exceeds 106, a huge amount of memory and
computational cost is required in the control design although
the dynamic model is linear.

3. Input/output approach to the control problem

To circumvent the computational complexity brought by the
possible high dimensionality of the control problem described
by Eq. (3) in the control design, it is proposed in this work to
develop a model describing the input/output behavior through
the concept of residence time distribution. Under the assump-
tions made in this work, the transition process is linear and
the residence time distribution acts as an impulse response of
a linear dynamic system. In this section, the transition process
without reaction is first discussed, followed by one with a first-
order reaction.

Let p(t) be the residence time distribution in a generic reac-
tor. The amount of the molecules that enter the reactor at time
� and spend time t − � in the reactor before exiting is given by
u(�)p(t − �) d� if no reaction is involved. Therefore, the efflu-
ent concentration y(t) is the convolution of u(�) and p(�), or

y(t) =
∫ t

−∞
u(�)p(t − �) d�

=
∫ ∞

0
u(t − s)p(s) ds, (4)

where s = t − �. The cumulative residence time distribution
P(t) is related to p(t) by

P(t) =
∫ t

0
p(�) d�. (5)

For a reactor with no dead zones or sinks, the molecules
entering the reactor will eventually exit from the effluent stream,
i.e., limt→∞ P(t) = 1 and limt→∞ p(t) = 0. Let L be the
operator mapping u(t) to y(t), or y(t)=L([u(t)]), it is readily

verified that

L(a[u(t)]) = aL([u(t)]),
L(a1[u1(t)] + a2[u2(t)]) = a1L([u1(t)]) + a2L([u2(t)]),
lim

t→∞L(1) = 1, (6)

where a, a1, and a2 are constants and u(t), u1(t), and u2(t) are
the input variables.

Let y0 and yf be the steady-state value of the initial and final
concentration of the key component in the exhaust during the
transition process, and introduce two dimensionless variables
ū(t) and ȳ(t) of the following form:

ū(t) = u(t) − y0

uf − u0
,

ȳ(t) = y(t) − y0

uf − u0
; (7)

it can be verified that

ȳ(t) = L([ū(t)]), (8)

provided that the process before transition is at steady-state,
which guarantees L(1)=1. The constraints applied on u(t) can
be determined using the relationship u(t)=y0 + (uf −u0)ū(t).
For example, if

umin �u(t)�umax (9)

then⎧⎪⎪⎨
⎪⎪⎩

umin − y0

uf − u0
� ū(t)� umax − y0

uf − u0
(if y0 < yf ),

umax − y0

uf − u0
� ū(t)� umin − y0

uf − u0
(if yf < y0),

(10)

which can also be written in the following form:

ūmin � ū(t)� ūmax. (11)

From the above analysis, it is seen that the concentration
transition problem can be converted into a dimensionless form
with the output changing from 0 to 1. In the remainder, we focus
on the dimensionless form of this dynamic process and drop the
bar sign on the input and output variables. The optimal control
problem using the input/output model can be then expressed as
follows:

min
u(t)

J =
∫ ∞

0
(y(t) − yf )2 dt + �2

∫ ∞

0
(u(t) − uf )2 dt

s.t. y(t) =
∫ t

−∞
u(�)p(t − �) d�,

umin �u(t)�umax, (12)

where yf = uf = 1 is the target concentration of the input and
output at the steady-state. The problem of Eq. (12) approxi-
mates well the original one of Eq. (3), which is based on
a state-space formulation, provided that the residence time
distribution does not change during the transition process.
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For the processes under consideration, this condition is a rea-
sonable one since the existence of the key component has neg-
ligible effect on the thermal and fluid fields in the reactor.

Solving Eq. (12) might involve a significant computational
cost if the numerical discretization is not appropriately chosen.
In this work, a method is proposed to represent the output as
a linear sum of the inputs or the gradient of inputs, which is
demonstrated to be computationally efficient in the example
section. Specifically, if the input is discretized into n uniformly
distributed time intervals, the output at time tn−1 < t � tn can
be solved in the following way:

y(t) =
n−1∑
i=1

∫ ti

ti−1

u(�)p(t − �) d� +
∫ t

tn−1

u(�)p(t − �) d�

=
n−1∑
i=1

ui

∫ ti

ti−1

p(t − �) d� + un

∫ t

tn−1

p(t − �) d�

=
n−1∑
i=1

ui

∫ t−ti−1

t−ti

p(s) ds + un

∫ t−tn−1

0
p(s) ds

(s = t − �)

=
n−1∑
i=1

ui[P(t − ti−1) − P(t − ti )]unP (t − tn−1)

=
n∑

i=1

(�ui)P (t − ti−1), (13)

where �ui =ui −ui−1 and ui =u(i�t). Let t = tn =n�t , then

y(n�t) =
n∑

i=1

(�ui)P ((n − i + 1)�t). (14)

Introducing the following variables: Pi = P(i�t), yi =
y(i�t), �u = [�u1 �u2 . . . �un]T, u = [u1 u2 . . . un]T,
y = [y1 y2 . . . yn]T, the output and input of the dynamic sys-
tem of Eq. (14) can be formulated as y = P �u and u = E �u,
where

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

P1 0 . . . . . . 0

P2 P1
. . .

...
...

. . .
. . .

. . .
...

...
. . . P1 0

Pn . . . . . . P2 P1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (15)

and

E =

⎡
⎢⎢⎢⎢⎢⎣

1 0 . . . . . . 0

1 1
. . .

...
...

. . .
. . .

. . .
...

...
. . . 1 0

1 . . . . . . 1 1

⎤
⎥⎥⎥⎥⎥⎦

. (16)

If the time interval, �t , is sufficiently small, the integral in
Eq. (12) can be approximated using the trapezoid sum, and the

optimal control problem of Eq. (12) can be converted to the
following standard least squares minimization problem:

min
�u

J = ‖A �u − b‖2

s.t. C �u�d, (17)

where A = [ P
�E ], b = [ e

�e ], C = [ E
−E ], d = [ umaxe

−umine ], and

e = [1 1 . . . 1]T. The constrained optimization problem of
Eq. (17) constitutes a very high-order problem (infinite-
dimensional when n = ∞) owing to the fact that the time
interval is defined from zero to infinity. However, one can for-
mulate the following finite-horizon constrained optimal control
problem to obtain a computationally efficient formulation:

min
u(t)

J =
∫ Tf

0
(y(t) − yf )2 dt + �2

∫ Tf

0
(u(t) − uf )2 dt

s.t. y(t) =
∫ t

∞
u(�)p(t − �) d�,

umin �u(t)�umax (18)

provided that uopt(t) = yopt(t) = uf = yf = 1 as t �Tf , or∫ ∞
Tf

(y(t) − yf )2 dt
∫ ∞
Tf

(u(t) − uf )2 dt = 0. In other words, the
fact the process will approach the steady-state for a sufficiently
large Tf is taken into account. A representative example will
be used to show this behavior in the case study section.

Remark 1. Eq. (14) can be alternatively formulated in the
following way:

y(n�t) =
n∑

i=1

ui{P((n − i + 1)�t) − P((n − i)�t)} (19)

or y = �Pu, where

�P =

⎡
⎢⎢⎢⎢⎢⎢⎣

P1 0 . . . . . . 0

P2 − P1 P1
. . .

...
...

. . .
. . .

. . .
...

...
. . . P1 0

Pn − Pn−1 . . . . . . P2 − P1 P1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (20)

The equivalent least squares minimization problem of Eq. (12)
will have then the following form:

min
u

J = ‖Au − b‖2

s.t. umin �u(t)�umax, (21)

where A = [�P
�I ], b = [ e

�e ].

Remark 2. Uniformly distributed time intervals are used in the
formulation of the analysis of process dynamics and optimal
control in this work. When the input is actually comprised of
discretized signals with non-uniform time intervals, the output
can still be calculated using Eq. (14) or (19). However, numer-
ical integration might be involved in solving Eq. (12).
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Remark 3. Generally speaking, the formulation of the opti-
mal control problem using Eq. (21) is superior to the one us-
ing Eq. (17) from a viewpoint of computational time. Solving
Eq. (17) or (21) involves the operation of high-dimensional ma-
trices and vectors. However, because only linear algebraic op-
erations are involved, the solution of Eq. (21) is very fast (i.e.,
it takes only several CPU seconds in general to solve Eq. (21)
using Matlab on a Pentium 1.7 GHz computer if the dimension
of matrix �P is no more than 600). Given the fact that the ma-
trix A in Eq. (17) or (21) is not square and the number of rows
(2n) is larger than the number of columns (n), an accelerated
algorithm can be developed based on the concept of singular
value decomposition. Let A = SVDT be the singular value de-
composition of matrix A, where S, V and DT are 2n×2n, 2n×n,
and n × n matrices, respectively. Then the norm

‖Au − b‖2 = ‖SVDTu − b‖2

= ‖VDTu − S−1b‖2

=
∥∥∥∥
[

VrDTu
0

]
−

[
br
bm

]∥∥∥∥
2

= ‖VrDTu − br‖2 + ‖bm‖2, (22)

where V = [Vr
0 ] in which Vr is a n by n matrix, S−1b = [ br

bm
],

in which br and bm are both n × 1 vectors. Because bm is
independent of u, a least squares problem equivalent to Eq. (21)
can be formulated as follows:

min
u

J = ‖Aru − br‖2

s.t. umin �u(t)�umax, (23)

where Ar = VrDT. A representative example will be used to
compare the results and solution times using these two least
squares representations in the case studies section.

Remark 4. If there are no input constraints present, an explicit
analytic solution to Eq. (21) can be obtained by calculating
�J/�u = 0, and the solution is

uopt = (ATA)−1ATb

= (�PT �P + �2I)−1(�PT + �2I)e. (24)

Solving such an equation is instantaneous on a modern com-
puter. As will be illustrated in an example in the case studies
section, the solution to Eq. (24) is the same as the one obtained
from LQR if a state-space model is available.

Remark 5. The above development covered transition pro-
cesses where the key component to be controlled does not take
place in any reactions. When the key component participates in
first-order reactions in an isothermal reactor, a similar approach
can be applied with the introduction of a modified cumulative
residence time distribution. Again, let p(t) be the residence
time distribution. The amount of the molecules that enter the
reactor at time t − � and spend time � in the reactor before ex-
iting is given by �(�)u(t −�)p(�) d�, where � is the fraction of
the molecule that is not consumed by the reaction. Therefore,

the effluent concentration y(t) is the convolution of u(�) and
p(�), or

y(t) =
∫ ∞

0
�(�)u(t − �)p(�) d�. (25)

For a first-order reaction, it can be readily derived that �(�) =
e−k�, where k is the reaction constant. Therefore, a modified
cumulative residence time distribution can be calculated as fol-
lows:

Pm(t) =
∫ t

0
e−k�p(�) d�

= e−ktP (t) + k

∫ t

0
e−k�p(�) d�, (26)

where P(t) is the cumulative residence time distribution defined
as P(t)=∫ t

0 p(�) d�. However, due to the first-order reaction, it
is possible that the output is not equal to the input under steady-
state, or K = limt→∞Pm(t) �= 1. Then, a similar approach can
be followed, provided that P(t) and [ e

�e ] are replaced by Pm(t)

and [Ke
�e ] in Eq. (21).

Remark 6. If the species to be controlled participates in any
reaction that is not of first-order, the residence time distribution
alone (macromixing) might not be sufficient to describe the con-
version rate due to the micromixing effect (see Fogler, 1998 for
examples). In such cases, the concentration evolution is nonlin-
ear and further development of the proposed approach is nec-
essary. The reader may refer to Li and Christofides (accepted
for publication) for a state-space approach to the optimal con-
trol of diffusion–convection–reaction processes with nonlinear
reaction terms and to Dubljevic and Christofides (2006) and
Dubljevic et al. (2005, 2006) for results on predictive control of
linear/nonlinear parabolic PDEs using reduced-order models.

4. Case studies

As presented in the previous section, the solution of the
optimal control trajectory is derived from the cumulative res-
idence time distribution function P(t) instead of the process
dynamic equations (state-space model). Therefore, the pro-
posed approach is applicable to both lumped parameter and dis-
tributed parameter processes provided the assumptions stated
above on the properties of the key component are satisfied.
In this section, we use two examples: a series of two CSTRs
and a tubular reactor with dispersion and first-order reaction to
demonstrate the applicability and evaluate the effectiveness of
the proposed method.

4.1. Two CSTRs in series

In this section, we consider two CSTRs in series example
because its dynamic behavior can be described in the form of a
state-space model and a comparison between different control
strategies can be easily made, which include LQR, PI control
and the input/output approach proposed in this work. Let u be
the concentration of the key component at the entrance of the



2984 M. Li, P.D. Christofides / Chemical Engineering Science 62 (2007) 2979–2988

reactor, x1 and x2 be the concentrations at the exit of the first
and the second CSTR, respectively, and �1 and �2 be the time
constants of the first and the second CSTR, respectively. The
dynamic evolution of the concentrations can be described by
the following state-space model:

˙̃x = Ax̃ + bũ,

ỹ = cx̃, (27)

where x̃=[x1 x2]T, A=[−1/�1
1/�2

0
−1/�2

] , b=[1/�1 0]T, c=[0 1].
The tilde sign represents the nominal value of the variable, e.g.,
x̃ = x − xf , ũ = u − uf and ỹ = y − yf . The following initial
condition is used x̃(0)=[−1 −1]T and the following parameter
values are used in the simulations: �1 = �2 = 10, umin = 0, and
umax = 5.

The LQR problem is to minimize the functional

min
ũ(t)

J =
∫ ∞

0
(x̃TQx̃ + ũTRũ) dt , (28)

and its solution is given by the state feedback law: ũ = −kx̃,
where k=R−1bTS, and S is determined by the Riccati equation:

ATS + SA − SbR−1bTS + Q = 0. (29)

To compare the proposed optimal control method and the stan-
dard LQR technique, Q = cTc = [ 0

0
0
1 ] and R = �2 to match

the cost function in Eq. (12) and the one in Eq. (28). First the
cumulative residence time distribution of the two CSTRs in se-
ries is determined as P(t)= 1 − (1 + t/10) exp(−t/10), which
is shown in Fig. 1. The optimization problem is then solved us-
ing both control techniques with two different weight settings
(R=�2=1 and R=�2=0.01, respectively). The closed-loop sys-
tem under a PI controller with Ziegler–Nichols tuning rules as
well as the open-loop system (corresponding to u(t) ≡ uf =1)
is also provided for a comparison.

The dynamic behavior of the closed-loop system under three
different control settings as well as the open-loop system is
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Fig. 1. Cumulative residence time distribution of the two CSTRs in series
example.
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Fig. 2. Profiles of the manipulated input and the controlled output in the two
CSTRs in series example using different control schemes. R = �2 = 1.

shown in Figs. 2 and 3. In the first case, where R = �2 = 1,
the closed-loop system demonstrates essentially the same dy-
namic behavior using the input/output approach proposed in
this work as the one using LQR (see Fig. 2). However, in the
second case, where R = �2 = 0.01, it is found that the manipu-
lated input solved by LQR does not satisfy the input constraints
(see Fig. 3). In both cases, the PI controller is not able to han-
dle the input constraints. This example clearly shows that the
input/output optimal control scheme proposed in this work is
advantageous over both LQR and PI with respect to the sat-
isfaction of input constraints and the minimization of control
action. If there are no constraints present, or the constraints,
while present, are incidentally satisfied by the manipulated in-
put solved using LQR, it is expected that the proposed optimal
control yields the same result as the LQR. This observation is
not surprising since both techniques are used to solve the same
problem.

As mentioned earlier, a suitable horizon length Tf is required
to obtain the optimal solution. Generally speaking, a larger Tf

will yield a more accurate solution. However, the computational
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Fig. 3. Profiles of the manipulated input and the controlled output in the two
CSTRs in series example using different control schemes. R = �2 = 0.01.

load will increase accordingly. To demonstrate the influence
of the horizon length on the “optimal” solution, the optimal
control problem is solved using four different horizon lengths
with R = 1 and the results are shown in Fig. 4. When Tf =
20, the obtained solution is not optimal. As Tf increases, the
solution becomes closer to the optimal solution. When Tf �60,
a further increase in the horizon length has negligible effect
on the solution. To guarantee an optimal solution is obtained,
the Tf has to be picked such that the process is close to the
steady-state at t = Tf .

Also, the solution time and accuracy are dependent on the
time interval �t besides the horizon length Tf . Because the di-
mension of the matrix �P is Tf /�t , a larger �t leads to lower
computational cost if Tf is fixed. However, the approxima-
tion of the integral in Eq. (12) using the linear summation in
Eq. (17) or (21) might be less accurate when �t is not small
enough. To study the effect of �t , the same optimization prob-
lem is solved using different time intervals with R = 0.01 and
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Fig. 4. Profiles of the manipulated input and the controlled output in the
two CSTRs in series example under constrained optimal control—effect of
different horizon lengths. R = �2 = 1.

the results are shown in Fig. 5. It is seen clearly that the input
profile solved using a large time interval (i.e., �t = 2) is dif-
ferent from the one using a short time interval (e.g., �t = 0.1).
The output profiles are surprisingly close to each other proba-
bly because the weight to the output is significantly larger than
the input and a near-optimal solution (obtained using large in-
tervals) has very similar output to the one in the actual optimal
solution (obtained using small enough intervals). This conclu-
sion may not hold when the time intervals become sufficiently
large.

Finally, the same constrained optimal control problem is also
solved using a reduced least squares model (Eq. (23)) with R=
0.01 (see Remark 3) and a comparison with the original least
squares model (Eq. (21)) is shown in Fig. 6. It can be seen that
the same profiles of the manipulated input and controlled output
are obtained with the reduced model. However, the CPU time
decreases from 5.3 to 3.0 s on a 1.7 GHz computer, resulting in
a 40% increase in computational efficiency.
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Fig. 5. Profiles of the manipulated input and the controlled output in the
two CSTRs in series example under constrained optimal control—effect of
different time intervals. R = �2 = 0.01.

4.2. A tubular reactor with axial dispersion and first-order
reaction

Consider a tubular flow reactor with axial dispersion and a
first-order reaction A → B. The evolution of the concentration
of component A is described by a linear parabolic PDE subject
to the so-called Danckwerts (1953) boundary conditions:

�U(z, t)

�t
= −v

�U(z, t)

�z
+ D

�2U(z, t)

�z2 − kU(z, t)

s.t. vU(0−, t) = uU(0+, t) − D
�U(z, t)

�z

∣∣∣∣
z=0+

,

�U(z, t)

�z

∣∣∣∣
z=L

= 0, (30)

where u(t)=U(0−, t) is the inlet concentration, y(t)=U(L, t)

is the outlet concentration, t is the time, v is the fluid velocity in
the reactor, L is the length of the reactor and D is the dispersion
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Fig. 6. Profiles of the manipulated input and the controlled output in the
two CSTRs in series example under constrained optimal control—comparison
between full-order least squares formulation and reduced-order least squares
formulation. R = �2 = 0.01.

coefficient. The key parameters for this problem are the Peclet
number Pe = vL/D = 10, the characteristic time � = L/v = 5
and the Damkohler number Da = kL/v = 1.

The dynamics of such a process can be solved by numeri-
cal methods based on eigenfunction expansion (e.g., Galerkin’s
method) and the optimal control trajectory can be calculated
based on the reduced-order state-space model derived from
the high-order numerical discretization and Galerkin projection
(see Li and Christofides, accepted for publication, for details).
In the present work, the optimal transition control problem of
Eq. (12) is solved using the input/output approach based on the
concept of residence time distribution. In particular, the cumu-
lative residence time distribution is first determined by apply-
ing an input step change to the high-dimensional state-space
model derived form Eq. (30) (note that for more complicated
problems, CFD simulations and particle tracing might be used).
The calculated P(t) and Pm(t) are shown in Fig. 7. Clearly,
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Fig. 7. Profiles of the cumulative residence distribution (P (t)) and the mod-
ified residence time distribution (Pm(t)) for the tubular reactor example.
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Fig. 8. Comparison of trajectories of the controlled output and the manipulated
input solved using the input/output approach and the state-space approach
for the tubular reactor example.
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Fig. 9. Profile of the concentration in the closed-loop system with the control
action derived using the input/output approach (�2 = 0.01) for the tubular
reactor example.

limt→∞Pm(t) �= 1 due to the presence of the chemical reac-
tion. The optimal control problem is solved with constraints
0�u(t)�5 using the input/output approach. In the calculation,
the control horizon length Tf is chosen to be 10 and the dimen-
sion of the matrix �Pm(Tf /�t) is chosen to be 500. A compar-
ison of the input/output approach and the state-space approach
(with LQR) is shown in Fig. 8. Clearly, when R = �2 = 0.01,
in which case the input constraints are coincidentally satis-
fied using the LQR technique, both approaches yield the same
trajectories of the controlled output and the manipulated in-
put. However, when R = �2 = 0.001, in which case the LQR
technique leads to input constraint violation, the input/output
approach computes an optimal input trajectory which satisfies
the input constraints. Finally, the control action calculated from
the input/output approach with R=�2=0.01 is implemented on
a high-dimensional approximation of the parabolic PDE and the
resulting closed-loop concentration profile is shown in Fig. 9.

5. Summary

An optimal control scheme for regulating the concentration
transition in a class of distributed chemical reactors was pro-
posed in this work. The control problem formulation was based
on the concept of the cumulative residence time distribution of
the chemical reactor which might be determined through CFD
simulations or experimental measurements. The optimal con-
trol action was calculated by solving a finite-dimensional least
squares problem with inequality constraints. The advantages of
the proposed method over PI control and LQR control were
demonstrated through two illustrative examples.
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