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Abstract: A combined inputloutput control system is presented for periodically determining the  set of jobs t o  be  
released (input variables) and the  capacities of processing centers (output variables) in the  dynamic job shop, so 
that a composite cost function is minimized. A n  interactive heuristic optimizing algorithm incorporating a 0-1 linear 
mixed integer program is formulated. The  resulting control system is compared by simulation with an  alternate 
system for which only input is subject to control. Significant improvements are  obtained for most performance 
measures evaluated. 

Long and unpredictable manufacturing lead time (MLT) 
is characteristic of most job shops. MLT is usually the cause 
for high work-in-process (WIP) inventory levels and poor due 
date performance, each of which has adverse impacts on the 
marketing and financial performance of the firm. 

Significant improvements are not obtainable by concen- 
trating only on scheduling and dispatching. These short-term 
actions must be augmented with the medium-term activities 
of releasing and loading (input control) and capacity adjust- 
ment (output control). According to Tatsiopoulos and Kings- 
man [12], these medium-term factors are the most significant 
determinants of the magnitude and variance of MLT. Bal- 
lakur and Steudel [I] conclude that there is a real need t o  
take an integrated approach to the dynamic job shop control 
problem. 

Dynamic job shops are complex systems for which future 
conditions cannot be anticipated by analyzing only current 
performance. At each decision point there is a need to predict 
shop behavior as a basis for action. Hence, it is important to 
measure and monitor input characteristics and to compensate 
for their anticipated effect before it is detected in the output. 
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Feedback control alone is usually ineffective as an aid in 
making timely corrections. 

Control System Types 

Job shops are generally controlled by a feedback oriented 
system based on a reference or "normal" lead time. Its func- 
tion is to detect variations in normal lead time for changing 
input parameters. Decisions regarding control are based only 
on current and past performance. 

A second type of control system is feedforward oriented, 
where anticipatory corrective action is taken. Measured dis- 
turbance by prediction serves as input to the feedforward 
control system. But, feedforward control alone does not in- 
clude a means for checking whether output is maintained at 
the desired level. Accordingly, feedforward and feedback 
control must often be combined as illustrated in Figure 1. 

Most authors have concentrated on feedback control for 
either input or  output, but not both. Irastorza and Deane [7] 
use the job pool concept together with a workload balance 
oriented loading algorithm, which incorporates a mixed in- 
teger programming approach. They included constraints de- 
rived from the current workload assignments at each 
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Figure 1. Feedforward-Feedback Process Control Loops 

processing center. Shimoyashiro, Isoda, and Awane [ l l ]  pre- 
sent a method for scheduling and control based on the ad- 
justment of load balance among machines and upon the 
limitation of work input. They show that the load balance 
and input of work significantly influence most shop perfor- 
mance measures. Bechte [2] describes a load oriented order 
release technique to control MLT. Each of these are feed- 
back-input type of control systems. 

A feedback-output control system for determining optimal 
machine center capacities, assuming fixed input of new or- 
ders, was developed by Karni [S]. The result was a capacity 
requirements plan minimizing the sum of capacity and WIP 
costs. Fahrycky [6] based capacity change decisions on de- 
rived urgency factors for each job based on its due date. He 
used the average urgency ratio and the workload level as a 
trigger for capacity change. 

InputIOutput Control 

Inputloutput control (IIOC) is described in the literature 
as a technique for the control of queues at processing centers 
[3]. The principle of IIOC is based on the adjustment of the 
input andlor output to a machine center by measuring the 
length of the queue in standard processing hours so that a 
constant workload level is maintained. As used herein, IIOC 
pertains to the control of input andlor output to the shop as 
a whole, rather than to individual centers. 

The benefits of IIOC are clear from the literature reviewed. 
However, the literature contains limited material on ap- 
proaches that control the job shop at the aggregate level. A 
philosophic approach in this area was presented by Bertrand 
and Wortmann [5 ]  who describe an IIOC related technique 
based on general control theory. This theory can rarely be 
applied to actual production control problems due to its rel- 
ative complexity. Therefore, the production control problem 
is often decomposed into subproblems which are then solved 
by means of simple heuristics. 

performance is compared with an alternate control system by 
economic and other measures. 

The primary criterion for comparing the performance of 
the control system and its alternate is cost. Average system 
cost per period, for various factors was computed for each 
experimental run. Total system cost consists of the wst of 
machine underutilization, the cost of scheduling overtime and 
second shifts, the cost of WIP inventory, and the cost of 
tardiness. 

Non-cost based performance measures are also considered. 
These include mean flow time, flow time variance, mean tar- 
diness, tardiness variance, average WIP level per period, shop 
utilization, average overtime and second shift scheduled per 
period. 

General Methodology 

The dynamic job shop control system presented determines 
the best values for input and output variables for the forth- 
coming period based on a composite cost based performance 
criterion. Control is actuated on an end-of-period (EOP) ba- 
sis. The general methodology is based on a two-stage analysis, 
as illustrated in Figure 2. 

Figure 2. General Control System Methodology 

Performance Measures 

In this paper an inputloutput control system for the dy- 
namic job shop is presented and abbreviated DIIOCS. Its 

Data for the control system comes from shop status related 
to jobs already in process and the status of jobs in the pool. 
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During the first stage analysis, an iterative search method is 
utilized to generate several solution sets. At each iteration, 
the prediction model generates forecasted data oil which the 
dependent variables of the mathematical model are based. 

The cost performance of each iteration consists of two com- 
ponents: (i) cost items affected by the prediction model but 
not by the mathematical model (denoted as CPM), and (2) 
cost items affected by both the prediction model and the 
mathematical model (denoted as CMIP). The total cost for 
each iteration is denoted as CTOT where, CTOT = CPM + 
CMIP. Solution sets generated are compared by their cost 
performance. The minimum cost solution set is selected as 
the output of the first stage analysis. 

The second stage analysis compares the workload levels 
expected to accumulate at each machine center against pre- 
defined norms. Capacity levels (or output variables) set by 
the first stage analysis are either increased, decreased, or 
unchanged based on these norms. Only the capacity levels 
are modified. The resulting solution set from this stage de- 
termines the decision variable values to be implemented in 
the forthcoming period. 

The Mathematical Model 

The mathematical model of the job shop control system 
establishes various relationships between shop characteristics 
for a planning period. These relationships are affected by 
input and output variables sought by the model. The objective 
function minimizes the sum of the expected costs of under- 
utilization, overtime, second shift, EOP workload, WIP in- 
ventory, and tardiness, all for the forthcoming period. It 
includes the cost items that are directly related to the decision 
variable of the mathematical model. By incorporating these 
cost components into a single objective function, a trade-off 
between conflicting factors is made possible. 

The primary function of the model is to determine specific 
values for decision variables that will give a minimum cost 
solution. These decision variables are of two types. The first 
identifies the set of jobs to be released from the pool into 
the shop (i.e., input control), while the other identifies the 
capacity levels of machines (i.e., output control). This model 
assumes that we are at the end of a period and that the 
decisions pertain to only the forthcoming period. 

The following notation is used in the formulation of the 
problem: 

i identifies jobs 

j identifies machines in the shop 

n = number of jobs in the pool 

m = number of machines in the shop 

s = number of jobs in the shop at the end of the 
present period 

f = expected number of jobs in the shop at the end 
of the next period 

N = nominal work hours for a machine per period 

CI(j) = penalty cost for one hour of idle time on ma- 
chine j 

CO(j) = cost of one hour of overtime on machine j 

CS(j) = cost of a second shift on machine j 

CL1 = penalty cost for holding one hour of workload 
at the end of the next period (within the first 
range, S K )  

CL2 = penalty cost for holding one hour of workload 
at the end of the next period (within the second 
range, > K) 

K = workload limit that defines the boundary be- 
tween the first and second range 

UL(j) = K minus the workload level in the first range 

OL(j) = workload level in the second range 

CV = penalty cost for holding one hour of value in 
the shop 

CT = cost of one hour of tardiness 

SU(j) = expected idle time to be realized on machine j 
in the next period 

WiPs(i) = expected total value to be added on job i al- 
ready in the shop 

WIPp(i) = expected total value to be added on job i in the 
pool if it is released into the shop 

TAs(i) = expected tardiness for job i in the shop 

ET(X(i)) = expected tardiness for job i in the pool (depen- 
dent on whether it is released or  not) 

PW(j) = present workload level of machine j at the be- 
ginning of the next period 

CW(j) = workload to affect machine j during the next 
period from jobs already in the shop 

WL(i, j )  = expected workload to affect machine j during 
the next period if job i is released from the pool 

The decision variables of the model are as follows: 

X(i) = a 0, 1 variable which identifies whether job i is to 
be released from the pool (1 = release, 0 = do 
not release) 

OT(j) = hours of overtime scheduled on machine j 

S(j) = a 0, 1 variable which identifies whether a second 
shift is to be scheduled on machine j (1 = schedule, 
0 = do not schedule) 

The mathematical model which describes the job shop in- 
putloutput control system is formulated as: 

Min P: 2 {SU(j)*CI(j) + OT(j)*CO(j) 
j = l  
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Subject to 

[PW(j) + CW(j) + i WL(i, j)*X(i)] 
i-l 

And 

Three important facton affect overall performance and the 
decisions in a dynamic job shop. These are: (1) the workload 
level, (2) the WIP inventory level, and (3) the due date status 
of jobs. The focus of the following sections is how these 
factors are incorporated into the mathematical model and a 
discussion of the variables which they affect. 

Workload Level in the Shop 

The workload level, defined as the amount of work (in 
hours of processing time) that is expected to affect each ma- 
chine for the forthcoming period, consists of three elements: 
(1) the amount of work presently on each machine at the 
beginning of the current period [PW(j)], (2) the amount of 
work that will affect each machine within the next period 
from jobs located at other machines [CW(j)], and (3) the 
workload resulting from jobs being released from the pool 
[WL(i, j)]. The total planned machine capacity that will ac- 
comodate this workload consists of the nominal capacity ( N  . . .  
hours), the scheduled overtime [OT(j)], and the second shift 
lS(i)l. 

If the total expected workload level at a given machine is 
less than the total scheduled capacity, then idle time [SU(j)] 
may be expected on machine j. In the opposite case, an ex- 
pected EOP workload level [K - UL(j) + OL(j)] will result 
and is penalized at two ranges. If the level is within the first 
range (0 - K hours), the workload [K - UL(j)] is penalized 
at a rate of CL1. However, if the level is higher than K hours, 
the additional amount in the upper level [OL(j)] is penalized 
at a higher rate of CL2, where CL2 > CLl.  Treating the 
EOP workload level in this manner forces it to attain a value 
within the first range. 

Cost factors affected by the expected machine workload 
levels are as follows: cost of underutilized machine = 

[SU(j)*CI(j)]; cost of overtime = [OT(j)*CO(j)]; cost of 
second shift = [S(j)*CS(j)]; cost of EOP workload (first 
range) = {[K - UL(j)laCL1); and cost of EOP workload 
(second range) = [OL(j)*CLZ]. 

The constraint that defines the relationship between the 
workload and the planned capacity for a specific machine j 
was stated as: 

[PW(j) + CW(j) + i WL(i, j)*X(i)] 
i - l  

The left hand side of the equation represents the total work- 
load level plus slack (positive or negative), while the right 
hand side represents the total planned capacity for machine j. 

WIP Inventory Level 

The total value-added due to processing at the end of a 
period determines the WIP inventory level. Thus, WIP in- 
ventory is expressed in hours of value-added, rather than in 
number of jobs in the shop. There is also a significant dif- 
ference between the WIP inventory level and the EOP work- 
load level as discussed above. The former emphasizes the 
magnitude of the value-added to each job, while the latter 
represents the workload level that accumulates at each ma- 
chine center at the end of a period. The EOP workload level 
is incorporated to force capacity increases when the limit, K, 
is exceeded. However, WIP inventory represents the total 
capital expended on the jobs. The objective in this case is to 
complete and ship those jobs with a high value-added status, 
such that the overall WIP inventory level is minimized. 

WIP inventory level is represented only in the objective 
function. The expected total value-added to the jobs already 
in the shop (in total f jobs) by the end of next period is 
estimated from the prediction model and is denoted as 
WIPs(i). Since this variable is independent of the decision 
variables of the MIP it is included in the CPM cost component 

(Value = WIP,(i)*CV). The corresponding WIP inven- 
i -I  

tory levels due to the jobs in the pool (denoted as WIP,(i)) 
are multiplied by a cost factor CV ($ per hour of value- 
added). Only this component of the WIP is represented in 
the objective function because it is dependent on X(i)'s. Jobs 
which are expected to complete all their operations during 
the next period are not considered in the WIP calculations. 
The flow of the jobs which depend to a great extent on the 
waiting times realized at machines are estimated from the 
prediction model. 

Due Date Status 

An important objective in job shop control is to assure that 
jobs complete processing on or  before their due date. Jobs 
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that complete their final operation after their due date are 
tardy and subjected to a penalty. The difference between job 
completion date and its due date determines the magnitude 
of tardiness. For jobs already in the shop, the expected tar- 
diness measure is denoted as TAs(i). Jobs which are early 
have a zero TAs(i) value. The expected completion times of 
the johs (which determines tardiness values) are also based 
on estimated waiting times. Since the tardiness values for jobs 
already in the shop (in totals jobs) are not dependent on the 
decision variables of the MIP, the cost related to this 

factor is included in the CPM cost component (value 1 
, _ I  

TAs(i) * CT) . 
Tardiness estimation is somewhat more complicated for 

jobs in the pool, since the decision of whether to release a 
job or not affects its expected tardiness measure. An expected 
tardiness measure (TA(i)) for all pool jobs is initially com- 
puted on the assumption that they will be released into the 
shop. Some jobs would have high tardiness values and others 
high slack values, based on their status. Jobs with high ex- 
pected tardiness values are the most likely candidates for 
release. However, the jobs which are not released have to 
wait at least one period until a decision can he made regarding 
their release. Jobs which have an expected tardiness in this 
decision period will have a much higher tardiness measure 
by the next period if not released. The time difference be- 
tween each successive period must be considered in deter- 
mining the true expected tardiness measure, based on 
whether the job will be released or not. 

The relationship that defines the expected tardiness mea- 
sure under any condition is: 

Z(i) is a 0 - 1 variable which attains a zero when TA(i) is 
positive and one when TA(i) is zero. FT(i) is the expected 
future tardiness at the end of the next period if job i is not 
released this period. In case there is an expected future slack, 
rather than tardiness, this value is set to zero. 

A summation of the expected tardiness values for all pool 
jobs are then multiplied by the marginal cost of tardiness, 
CT ($ per hour of tardiness), to determine this cost compo- 
nent in the objective function. Like WIP inventory levels, 
estimated tardiness values are directly related to the waiting 
times to be realized in the shop. A prediction model is utilized 
to perform this estimation. 

The InpuUOutput Control System (DUOCS)* 

Most of the dependent variables in the mathematical model 
are based on estimated waiting times. Predicted waiting times 
are a function of the capacity levels, which are decision var- 
iables. An analytical relationship that defines the dependency 
between waiting times and capacity levels does not exist for 
the mathematical model formulated. Olhager and Rapp [9] 

suggest that a non-linear relationship links waiting time and 
capacity utilization. However, this relationship assumes in- 
dependence between machines, as well as, exponential pro- 
cessing time distributions. Since dependencies between 
machines are important, this non-linear relationship was not 
utilized herein. 

The dependent variable values of the model are determined 
from a prediction model analysis performed for the forth- 
coming period. This prediction model simulates the fonh- 
coming period based on fixed machine capacity settings. The 
outcome is a set of estimated waiting times based on these 
capacity levels. Running the prediction model simulation 
based on different capacity levels results in different waiting 
times. The relationship between waiting times and capacity 
changes is incorporated by this iterative approach, where at 
each iteration the prediction model capacity levels are 
changed. Its purpose is to evaluate different capacity level 
combinations and select the solution set with a minimum total 
cost. This generated solution set forms the basis for further 
analysis in the second stage. 

The main events of the iterative stage analysis were illus- 
trated in Figure 2. The mathematical model and the predic- 
tion model are embodied into the iterative procedure, which 
proceeds as follows: At the end of a period, initial conditions 
for the prediction model are determined for (1) jobs already 
in the shop, (2) a set of critical jobs selected from the pool 
(based on their due date and expected completion time), and 
(3) capacity levels for the machines. Thereafter, the predic- 
tion model simulates the events of the forthcoming period. 
Statistics and output generated from this prediction (i.e., ex- 
pected waiting times at machines and the status of jobs) are 
utilized to compute the dependent variables of the mixed 
integer mathematical model (MIP). Subsequent to the pre- 
diction model analysis, the MIP is solved. The solution set 
and its objective function value (CMIP) is stored for further 
analysis. The total cost measure for this iteration consists of 
the objective value from the MIP (CMIP) and the costs re- 
lated to factors independent of the MIP (CPM). 

Costs which are independent of the MIP are: (1) cost of 
f 

WIP inventory for johs already in the shop, i.e., C 
i = l  

WIPs(i)*CV, (2) cost of tardiness for the same jobs, i.e., 

TAs(i)*CT, and (3) cost of scheduling overtime or second 
1 = 1  

shifts in the prediction model (denoted as PMCOST). 
I 

Then, CPM = 1 WIPs(i)*CV + 2 TAs(i)*CT + PMCOST. 
i -  l i- 1 

These values must be included in the iteration total cost be- 

'This section giver a summary description of the DllOCS. Individuals inrer- 
cited in more detail are encouraged to refer ro the following seelions of [ID]: 
(1)  Ertimatiun of the dependent variables for MIP. pp. 75-85; (2) Character- 
istia of the prediction model, pp. 86-91; (3) Stage I procedure of the DIIOCS, 
pp. 93-98; (4) Stage I1 procedure of the DIIOCS, pp. 98-102; (5) FORTRAN 
code for the job shop rimulatar including the DIIOCS procedure Appendix 
A ;  (6) FORTRAN code far the FLCS simulator, Appendix 8; (7) MPSWMIP 
code and JCL statements for executing the program on an IBM 370 MVS 
System, Appendix C. 
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cause they vary from iteration to iteration. The capacity level 
solution from the MIP is added to the prediction model ca- 
pacity level settings to determine the final output variables 
for this iteration. This marks the end of an iteration. 

The only variations which occur from one iteration to an- 
other are the prediction model capacity level settings. Each 
iteration results in different dependent variable values and 
these lead to different solutions. As an example, high capacity 
level settings will boost the output rate of the shop, giving 
low waiting times. Low waiting times will provide favorable 
dependent results, such as lower tardiness and WIP inventory 
values for the MIP. The output of the MIP, based on favor- 
able values, will result in a solution set with a lower objective 
cost value. However, since these favorable dependent vari- 
able values were a result of high prediction model capacity 
settings, the cost of scheduling this additional capacity is also 
reflected in the total cost i.e., in CPM (cost of the prediction 
model). Thus, there are basically two opposing wst factors; 
high capacity level settings resulting in low MIP costs and 
high prediction model costs, and low capacity settings re- 
sulting in high MIP costs and low prediction model costs. 

At the end of the iteration process, the minimum total wst 
solution is selected as the output of this stage. The number 
of iterations that can be performed is limited due to com- 
putation problems that would arise if all capacity combina- 
tions were evaluated. A six machine job shop with the option 
of eight, five hour overtime increments would require eval- 
ution of (8)6 or 262,144 different capacity combinations. Only 
a limited number of these are evaluated. 

Capacity level settings from the iterative stage are sub- 
jected to re-evaluation. The purpose of this re-evaluation 
stage is to consider the expected workload levels that will 
affect each machine (estimated from the prediction model) 
and modify the capacity levels accordingly. Depending on 
these workload levels and the solution set of the iterative 
stage, the capacity levels are either unchanged, increased, or 
decreased based on norms. The steps of this stage are illus- 
trated in Figure 3, where 

INC = the increment value giving the best result in the 
iterative stage 

NM, = norm value for the i'th workload limit (i = 1, 2 ,  
3) 

WL(j) = expected workload (hours of processing) to affect 
machine j during the next period. 

An extensive simulation study was performed to determine 
what norms should be used to represent the limits for capacity 
changes. Runs were based on shop conditions with varying 
load levels (high, medium, low). The following criteria were 
used in determining the limits: (1) any reduction in capacity 
levels should not lead to a decrease in the machine utilization 
for that period, and (2) an increase in any capacity level 
should only be attempted when the machine is already fully 
utilized and when there is an expected large workload to 
affect this machine. The norm values determined from the 
sample runs were the ones that best adhered to the above 
criteria. 

0 yec---I s t  h 
i NM, OTU) = a 

OT(I) = INC - 
Final decision set lor 

this period 

Figure 3. Procedure for Stage I I  Analysis 

Three norms were utilized to identify the limits for various 
decisions. The first two (denoted NM, and NM2) represent 
the workload limits for decisions about a decrease in capacity 
levels. The other norm (NM3) identifies the limit on whether 
a second shift should he considered or not. The values de- 
termined for the norms NM,, NMz, and NM3 were 20, 30, 
and 70 hours, respectively. 

The re-evaluation procedure is as follows: If the workload 
level [WL(j)] is less than NM,, then the capacity level for 
machine j is set to only the nominal work hours (N hours). 
However, if WL(j) is less than NM2 and greater than NM,, 
then the capacity level is set to N + INC hours. If, on the 
other hand, the workload is greater than NM3 and no second 
shift has been scheduled as a result of the iterative stage, then 
a second shift is planned for that machine. After completing 
this procedure for all machines, the resulting modified ca- 
pacity levels represent the final output decision variables for 
the forthcoming period. 

The jobs indicated by a one in the (X(i) ,  i = 1, . . . , n) 
set are released into the shop. Also overtime andior second 
shifts are scheduled based on the final values of the capacity 
levels. 

The Simulation Model and Results 

The DI/OCS was evaluated by comparison with an alter- 
nate control system. A hypothetical six machine job shop 
simulator was used in the evaluation. The job arrival process 
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to the shop was Poisson distributed. Four different shop load 
levels were simulated by choosing four different arrival rates. 
The total number of operations for each job was uniformly 
distributed between 4 and 10. The machine sequence (rout- 
ing) for each job was determined from an equal probability 
transition matrix (i.e., a pure job shop was considered). The 
mean processing times for each operation was generated from 
a uniform distribution with parameters 3 and 9 hours. Actual 
operation processing times were determined when the jobs 
were actually on the machines and generated from a normal 
distribution. The processing times generated from the uni- 
form distribution at the jobs' arrival to the shop were the 
mean of the distribution (p). The variance of the distribution 
was based on a coefficient of variation of 10%(Cv = 0.1); 
i.e., 2 = (CV*~) ' .  The normal distribution was truncated at 
i; 3 4  to eliminate negative as well as very high values. The 
FCFS dispatching rule was used to determine which job to 
select for processing when a machine became idle. 

A workload based due date assignment rule was utilized. 
An expected pool and shop queue time was added to the total 
estimated processing time to determine the expected com- 
pletion time of a job. The machine queue times were based 
on a forecast of the average waiting times to be realized at 
each machine. The due date assignment rule, described in 
more detail in [lo], was based on the ideas of Bertrand [4]. 

Cost parameters of the MIP model and the EOP workload 
limit ( K )  were determined from a comprehensive simulation 
sensitivity analysis. The objective here was to set these pa- 
rameters relative to each other so that a good balance among 
various tendencies is achieved under any shop condition. The 
K, C I ( j ) ,  CO(j), CS(j), CL1, CL2, CV, and CTvalues were 
set to 15 hours, $10, $20, $700, $10, $40, $3, and $6, re- 
spectively. 

The period was assumed to be a week, and only three 
iterations of the first stage analysis were performed. The main 
job shop simulator, coded in FORTRAN, continuously in- 
teracted with IBM's MPSXiMlP 370 mathematical program- 
ming package for solving the MIP's developed at each 
iteration. Each problem was simulated for a length of 3 years 
(or equivalently 150 periods). 

The basic characteristics of the comparative job shop con- 
trol system are: finite loading, fixed capacity, and pool ori- 
ented. We refer to this system as a Finite Loading Control 
System (FLCS). The main difference between the two control 
systems is in the degrees of control. The DIIOCS is both input 
and output flexible, while the comparative system is only 
input flexible. 

Capacity levels were set at the nominal 40 hours per week 
for all periods. Input to the shop was controlled by a finite 
loading procedure. At periodic intervals, jobs were released 
into the shop based on the FCFS rule until the sliop was 
loaded to its limit. A maximum load limit of 170% of nominal 
capacity was set for all machines. The job arrival process, 
routing procedure, and the mean and actual processing times 
were identical to the DIIOCS simulation. 

A total work content (TWK) based due date assignment 
rule was used for the comparative simulation runs. At the 
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time of a job arrival, the estimated pool waiting time was 
added to the total work content (sum of processing times) 
multiplied by a factor to determine its due date. In equation 
form, Due date = arrival time + pool time + factoraTWK. 
The factor which affects the tightness of the due dates was 
set to 2.6. This value resulted in approximately equal tardi- 
ness and earliness measures in sample sensitivity nms. Al- 
though the due date assignment rules used in hoth cases were 
not identical, results indicated that the rule associated with 
DIIOCS set tighter dates on the average than the TWK rule 
utilized in the comparative system. This gives the comparative 
system some initial advantage. 

Shop load levels ranging from 70% to 90% were simulated 
during the runs. To accomplish this, the mean time between 
arrivals (MTBA) for the Poisson distrihutior. was varied four 
times. Each simulation trial (i.e., with one set of MTBA) was 
replicated ten times using different seed values. Identical ran- 
dom number streams were utilized in the comparative sim- 
ulations to provide for an unbiased painvise comparison with 
the DIIOCS results. Initial conditions, including the random 
number seed values, were identical in the same i'th replicate 
in hoth cases. 

Statistics were collected on the following performance cri- 
teria: mean tardiness (MT), tardiness variance (VT), work- 
in-process inventory level per period (WIP), mean flow time 
(MFT), flow time variance (VFT), shop utilization (UTIL), 
overtime usage per period (OVER), second shift usage per 
period (SHIFT), and the average total cost per period ($TO- 
TAL). The cost parameters used are as follows: Cost of 
underutilization = $5.00 per idle machine hour; Cost of over- 
time = $12.00 per hour; Cost of extra shift = $350.00 per 
machine period; Cost of WIP inventory = $2.40 per hour of 
value added; and Cost of tardiness = $2.00 per hour of tar- 
diness per job. 

The results of the simulation runs are given in Tables 1 and 
2 and illustrated graphically in Figures 4 through 7. The per- 
centage improvements achieved by the DIIOCS are illustrated 
in Table 3. A negative improvement value implies that the 
FLCS performed better than the DIIOCS. 
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Figure 4. MT and VT Perlorrnance. 
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Figure 5. MFT and VFT Performance 

Statistical results and absolute differences in the mean val- 
ues clearly indicate that the performance of the DIIOCS was 
superior to the FLCS, especially at highly loaded shop con- 
ditions (i.e., MTBA = 7.5). This improvement was a result 
of the combined input and output capability of the DI/OCS. 
The performance of the systems are especially important at 
high load levels because most problems such as backlogs, high 
and variable MLT, and excessive WIP inventories occur at 
these levels. Thus, the results at these load levels are of more 
interest and value than those achieved under low shop loads. 

In general, at low shop loads, the differences between the 

A COMPARATIVE 

--- UTlL 

MEAN TlME BETWEEN ARRIVALS(HRS) 

Figure 6. WIP lnvenioty and UTlL Performance. 

performances diminished due to the absence of excessive 
backlogs and imbalance problems. The only measure that did 
not show improvement was shop utilization. This could be 
traced to the capacity level variations in the DIIOCS. How- 
ever, as observed in Figure 6, and indicated by Table 3, the 
magnitude of this reduction was small and insignificant as 
compared to the improvements achieved in other measures. 
The percentage reduction in the utilization measure varied 
from a low of 2.94 to a high of 4.77. As a trade-off for this 
reduction, significant improvements were achieved in MT, 
VT, WIP, MFT, and VFT as summarized in Table 3. 

Table 1. Performance Measures for DlIOCS 

shop 
Load 

(MTBA) 
7.5 
8.0 
8.5 
9.0 

Table 2. Performance Measures for FLCS 
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Performance Measures 

MT VT WIP M F T  VFT UiIL OVER SHIFT $TOTAL 
9.9 327.3 261.6 158.5 5507.7 0.8483 11.3 0.06 1072.81 

10.4 303.4 233.2 137.5 3692.4 0.8087 9.0 0.03 1012.37 
10.8 317.4 208.6 122.4 2727.0 0.7672 6.7 0.03 971.26 
10.4 275.5 184.8 111.6 2109.0 0.7287 5.3 0.01 926.85 

Shop 
Load 

(MTBA) 
7.5 
8.0 
8.5 
9.0 

Table 3. Percentage Improvement (DIIOCS over FLCS) 

Performance Measures 

MT VT WIP MFT VFT UTlL OVER SHIFT $TOTAL 
48.2 5521.6 414.1 247.4 12565.7 0.8908 1617.39 
23.9 1757.0 333.3 187.8 7364.0 0.8418 1220.56 
15.4 803.0 273.6 153.3 4582.3 0.7935 1044.69 
9.9 444.1 227.8 132.2 3229.7 0.7508 931.31 

Shop 
Load 

(MTBA) 
7.5 
8.0 
8.5 
9.0 

Performance Measures 

MT VT WIP M F T  VFT UTlL $TOTAL 
79.41 94.07 36.82 35.93 56.17 -4.77 33.67 
56.60 82.73 30.04 26.80 49.86 3 . 9 3  17.06 
29.69 60.47 23.73 20.14 40.49 -3.31 7.03 
- 5.54 37.96 18.86 15.55 34.70 -2.94 0.26 
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Figure 7. Average Total Cost Performance. 
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As compared to the FLCS, the two factors that had sig- 
nificant effects on differences were capacity flexibilities and 
the shop prediction function. Combined with input flexibility, 
significant improvements in shop control were achieved. As 
the WIP level dropped, this leddirectly to a reduction in flow 
time. Backlogs were eliminated by the use of overtime and 
in some cases, by the use of second shifts. But even at the 
highest shop load level, the overtime and second shift usages 
were not high (i.e., 2 hours of overtime per period). 

Since no overtime was scheduled for the F'LCS, a more 
realistic comparison is made by observing the cost perfor- 
mance of the DIIOCS, which includes overtime cost. It is 
possible to analyze whether the improvements achieved were 
at the expense of high overtime and shift usage. Even with 
overtime cost included, the results indicated better perfor- 
mance by the DIIOCS as compared to the FLCS. 
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Summary And Conclusions 
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A dynamic job shop control system that is both input and 
output flexible was presented in this paper. Its unique char- 
acteristic is that the job release function (representing the 
input rate to the shop) and the capacity change function ( r e p  
resenting the output rate from the shop) were concurrently 
varied at each decision point. The job shop control problem 
was mathematically formulated as a 0 - 1 linear mixed in- 
teger program. The dependent variables of the MIP were 
determined from a prediction model that forecasts the forth- 
coming periods' events. Evaluation of the control system was 
achieved by simulating a hypothetical job shop. 

The performance of the DIIOCS was compared with the 
performance of an alternate control system which was only 
input flexible. Performances were evaluated under different 
shop load levels with the FCFS dispatching rule. Measured 
performances included the total cost per period, mean flow 
time, flow time variance, mean tardiness, tardiness variance, 
WIP inventory, and shop utilization. The following conclu- 

sions are drawn from the theory, simulation results, and sta- 
tistical analyses: 

(1) One objective was to compare the overall performance 
of the DIIOCS with the finite loading control system. The 
simulation results indicate that significant improvements 
in the overall performance (measured in cost) were 
achieved under highly loaded shop conditions. No sig- 
nificant improvement was observed when the shop was 
lightly loaded. 

(2) Significant improvements were achieved for the mean 
flow time, flow time variance, mean tardiness, tardiness 
variance, and WIP inventory levels. The only inferiority 
observed was in the shop utilization measure, but the 
maximum difference was small. The cause of this infe- 
riority could be traced to the capacity allocation function. 

(3) The general improvement achieved implies that the pre- 
diction model had some positive effect on performances. 
Although no specific analysis of the effectiveness of the 
prediction model was performed, it can be deduced that 
such a feedfonvard approach had a positive impact on 
the performance of the DIIOCS. 

(4) The improvements achieved were attributable to the dif- 
ferences in the control systems rather than to differences 
between due date rules. 
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