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1920.1 255 

MISCELLANEA. 

AN INQUIRY INTO THE NATURE OF FREQUENCY DISTRIBUTIONS 
REPRESENTATIVE OF MULTIPLE HAPPENINGS WITH PARTICULAR 
REFERENCE TO THE OCCURRENCE OF MULTIPLE ATTACKS OF 
DISEASE OR OF REPEATED ACCIDENTS. 

By MAJOR GREENWOOD and G. UDNY YULE. 

SECTION I.-Introductory; the pigeon-hole schema; 
the Poissont series. 

IN the practical applications of statistics such problems as the 
following often present themselves :-Of n households exposed to 
risk, in, returned 0 cases of disease, ml returned each a single case,. 
m2 each two cases . . . m1 each n cases. Might such a dis- 
tribution have arisen from sampling a " population," each member 
of which was subject to a constant chance of infection throughout 
the period of exposure, or is the form of the distribution valid evidence 
that particular households were especially prone to take the disease 
in question ? 

A precisely similar problem is to be solved when we desire toa 
ascertain whether the frequency of multiple accidents sustained by 
individual operatives in a factory is the product of uniform or of 
variable cause groups. 

But little thought is required to make it appear that such 
problems are of first-rate importance; we merely give an instance. 
The degree of infectivity of various diseases has been assigned by 
many epidemiologists from an examination of the relative frequen- 
cies of multiple cases in households and this without consideration 
of the probabilities involved; in similar fashion the immunising 
value of a successfuil passage through an attack of disease is inferred 
from the absolute rarity of second or third attacks: again without 
recourse to any criterion of the general frequency type. This paper 
describes an attempt to provide more exact criteria for use in in- 
vestigations of the kind. 

A first step in the direction of reducing such inquiries to a uniform 
scientific rule was taken by Professor Karl Pearson in his study of 
the distribution of multiple cancer deaths in houses.* Professor 
Pearson looked at the problem as one of distributing n balls in N 

* Biometrika, ix, 1913, p. 28. 
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256 Miscellanea. [Mar. 

pigeon holes; he supposed that the chance of a case of cancer 
,occurring in any one house was 1/N and devised a test for the 
probability that the observed discrepancy between the actual 

distribution and that of the binomial + N ) might have 

arisen by chance. 
The sufficiency of this comparison needs justification. Thus, 

suppose we have the case of a platoon of N soldiers amongst whom 
n wounds have been distributed, ml soldiers having been wounded 
once, m2 wounded twice, &c.; it might appear that the proportion 
n/N should be the characteristic parameter and that if the same 
proportional distribution of wounds amongst 2N soldiers, receiving 
2n wounds, has been observed, the distribution should be in pari 
materid. In effect if the distribution over N individuals had 
happened to be written out upon s sheets each relating to N/s 
soldiers, different conclusions might be reached, by the pigeon-hole 
schema, on combining the s separate binomials from those that 
would emerge by fitting a binomial to the pooled data. It is also 
to be remarked that any modification of the strict pigeon-hole 
schema to agree with such -a condition as that the receipt of one 
wound renders the victim more likely to be (or less likely to be) 
wounded again, involves the absurdity that the others will ipso 
facto become less liable to injury. The total number of balls anld 
the total volume of the pigeon holes are constants; if a pigeon hole 
that has received a ball expands and becomes more likely to secure 
a second, it must squeeze its neighbours and diminish their capacities. 

The problem of randomness or non-randomness of distribution 
in such cases as that of cancer houses we think must be formulated 
in the following terms. 

1. By an uncomplicated chance distribution, we suppose that 
the distributing factors are independent of (a) the previous history 
of the houses in respect of the occurrence or non-occurrence of a 
case within any particular house during the period of the distribu- 
tion and also independent of (b) the character of the inmates and 
their individual predisposition (we are supposing of course that the 
numbers, ages and sexes of the inmates are alike in all houses). 
Under these conditions the distribution should depend upon a single 
parameter. In the pigeon-hole schema for N large and n/N finite, 
the condition is fulfilled, but we do not think that for N small the 
employment of this binomial can be justified. 

2. By a modified chance distribution we understand (a) that 
either the happening of the event at random, as under 1, differen- 
tiates the population into sub-groups within each of which the above 
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1920.1 An Inquiry into the Nature of Frequency Distributions. 257 

conditions are fulfilled, but the numbers in the sub-groups undergo 
contilnuous modification from the beginning to the end of the period 
of observation. Or (b) we suppose that the population is ab initio 
divisible into sub-groups for each of which the chance is different 
but constant throughout. The first case corresponds to that of a 
population of equally susceptible units exposed to a disease which 
is infectious or the sustaining of which affects after-liability to take 
it by the individual or within the household. The second case is 
that of varying original susceptibility. No doubt in reality both 
factors would be involved. 

For the purpose of recognizing a case partaking of the character 
1, we believe that the ordinary Poisson limit to the binomial is the 
correct standard to employ. It in fact provides a lower limit. A 
distribution which, judged by this process, does not appear to be 
one of uncomplicated chance is not likely to be in conformity with 
our postulate 1. 

For consider the matter thus. Let the N persons be exposed 
to risk during a small interval of time-an interval so small that the 
chance of any one person meeting with two accidents may be regarded 
as negligible. Let the chance of a person meeting with an accident 
during this small interval be p, and the chance of his not meeting 
with all accident be q. Then at the end of the interval the numbers 
with 0 and with 1 accident respectively will be given by N (q + p). 
At the end of 2 intervals the numbers with 0, 1 and 2 accidents 
will be given by the expansion of N (q + p)2, and so on. At the 
end of T intervals, therefore, the distribution will be given by the 
binomial expansion of N (q + p) T. But here p is very small and q 
near unity, while T we must suppose very large in order to give us 
a finite number of accidents. Hence if X is the ratio of the number 
of accidents n (i.e., pTN) to the number N of persons at risk the 
true distribution is given by the Poisson series 

e (1+X+2! *i ** 

This, as it seems to us, and not the pigeon-hole binomial, is 
the form to which " uncomplicated distributions " should be ex- 
pected to be assignable. But when the number of persons at risk, 
N, is large the distinction breaks down, for then as we have already 
pointed out the " pigeon-hole binomial " is itself merged in Poisson's 
series. 

But we think it right to add that the a posteriori test of fit to the 
Poisson series by the x2 method is likely to exaggerate the evidence 
in favour of the distribution being random, owing to the fact that 
we determine X from the observations themselves. 
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258 Miscellanea. [Mar. 

Thus, suppose we are given 'a priori that X is 0.1. Then the 
distribution to be expected is, for 10,000 sets 

0 9048 
1 905 
2 45 
3 2 

Suppose the observed data are:- 
0 8997 
1 950 
2 50 
3 3 

The concordance of the observed with the expected series is not 
particularly close, and the probability P of a fit as bad or worse 
arising on random sampling would be only 0.32. We might there- 
fore reasonably suspect some source of divergence. But fitting a 
Poisson- series from the observations we have for the argument 
0.1059 and for the " expected " values calculated from this argu- 
ment 

0 8995 
1 953 
2 50 
3 2 

giving an excellent fit and a value of P well over 0.9. It should 
always be remembered, in using the x2 method, that the results 
in strictness apply only to testing the fit of an observed distribution 
to a distribution given a priori. The figures obtained for P must 
be regarded with a little caution when the constants of the fitted 
curve or polygon are obtained from the observations themselves. 

SECTION II.-The generalized pigeon-hole schema. 
For the reasons just set out, we consider the range of experience 

within which the pigeon-hole schema is applicable to be 
narrow and dissent from the opinion that such a problem as that 
of random or not random distribution of cases of disease in houses 
can be solved by an appeal to the method. Nevertheless the schema 
admits of various modifications not devoid of interest and we shall 
therefore set out the results we have obtained. 

The simple case of a pure binomial distribution, viz. 

N(NN1) N 

N being the number of pigeon holes and n the number of balls to 
be distributed, together with the conditions under which the binomial 
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1920.] An Inquiry into the Nature of Frequency Distributions. 259 

approximates to the exponential form of Poisson, are too familiar 
to need any comment beyond what is contained in other sections of 
this memoir. We pass at once to a modification of this form, making 
the assumption that the chance of any pigeon hole receiving a ball 
is not independent of the number of balls already lodged in it, i.e., 

is not constantly equal to 
I 

Let us write ,,nu for the number of pigeon holes which after the 
nth ball has been distributed contain each m balls. Thus, after 
n - 1 balls have been distributed, on the average tn - '0u contain 
no balls, n - llu contain 1 ball . . . nj- 1u contain n - 1 balls. 

Then on the hypothesis of constant chance the distribution of 
the nth ball will be governed by the relation 

n-lU + n-liu + . * n - 1U=N (1) 

But if the previous disposition of balls affects the fall of the nth 
then the governing condition is not (1) but 

cOf- o0u + n U+ yn'2U+ . . . . = N (2) 
/3'- 11U+ ,ynl- 1,u -- 

The empty pigeon holes receiving 1 - n 

or nOU-n - 1 + (3) 

a, A, y . . . . being positive constants. 
As will hereafter appear, there is no loss of generality in writing 
= " = 

.... s. 
so that (3) becomes- 

nu N-s n- u =us 1 (4) 
0 N 0-- 

where s is a constant. Equation (4) is the fundamental equation 
of what we shall term the " biassed pigeon-hole schema." 

When there is no bias, s _ 1 and (4) reduces to 

nu N n-l_ =0 (5) 
which is a simple homogeneous equation of differences, its solution 

being nou C (N 1)N 1 

Since lou = N -1, C N -1; and 

this becomes N (N 1) the appropriate term of the binomial. 

If s $ 1, we have a first order difference equation with 
constant coefficients, the solution being- 

NU mN(NN s) +) N(s -1) (5A) 
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260 Miscellanea. [Mar. 

and it appears that when all pigeon holes into which balls have fallen 
are equally favoured as against empty pigeon holes, the number 
which will remain empty after n balls have been distributed is:- 

(N- -8 N +(s-l) -N<( N- } 1) (6) 

while n u, nou, etc., are given by the terms of 
N'N-s s )n, (Ns+ (7) 

omitting the first term. 
The constant s can be deduced from the second moment coefficient 

of the statistics. 

For the second moment coefficient of (NN s+ about the 

sn(N- s) + n2 2 d cos centre of the zero group is sN2 N2 p ancosqently the 

value of u,P for the complete frequency provided by (6) and (7) is: 
n{IN - n+s(n -1)} (8) 

N2 
from which s can at once be calculated. 

The expressions (6) and (7) assume that all pigeon holes which 
have received one or more balls prior to the throw considered are 
equally favoured at the expense of the empty pigeon holes. But 
(4) can be interpreted in a more general sense. In effect the 
position merely is that 1 - (n - 1(U- nou) balls are to be distributed 
between N -n - lou pigeon holes and we can make any condition we 
please as to how. 

Let us accordingly contrast the pigeon holes containing one ball 
apiece with those holding two or more. 

We have- 
N - {n n - = lo NoU + .. n - 11U 

,t+ (N-n-i u- n-lu) =1 ("'0-1OU_O) 

Hence- 
nu -N Pn - Ilu= (2 - 1) n-1 Ou_2nO?+f/3- (9) 

n - 1u and n%u are given by (5A) as functions of n and s. 
Substituting, we have- 

n - N-flU = 1 +28-P (N-sys (10) 
N + o t d n 

The solution of this difference equation being : 
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1920.] An Inquiry into the Nature of Frequency Distributions. 261 

fl8(N _P nN f 2s -P[I(N-SB n p(3N-s)Nr0(N-P)n1 }11 
As tests of the correctness of this solution, we shall determine 

whether (a) it gives '1u = I for all values of /3 and s and (/3) for 
s=/ it reduces to (7). We find: 

(a) If n = 1. (11) =N- 3 {2- (s-/+)3 NN } 

N /3{2s/3?PS-s} 
s {N-,B+ N >3 

(/) The second term in the large bracket obviously vanishes 
so that we need only evaluate: 

(N;/) s { s [ - (N-B)N ] }f Put /3=rs and re-arrange 
We have: 

- 1 - s(2-r) 1 N + 1-r.s)n (N- S)n 

1 s(2-r) f,1 

+ n(n-1) (1r)2s2(N-s)-2+. . . sn 

n n-n11) } 
-Sn-1(2-r) {ns (N-S)n- 1 

+ 2! (1r) S2 (N-s)1z2+ * * * . (12) 
iN s\ n_-I 

Now putting r =1, (12) becomes nKzN ) the value re- 

quired by (7). 
To obtain the second distributing constant ,B, we must equate 

(11) to the number of pigeon holes found to contain one ball apiece. 
This process can plainly be carried further, a difference equation 

for n2u being formed and solved precisely on the lines of (9) to (11), 
as many constants, s, /3, y . . . being obtainable as there are 
sensible frequencies. 

Equation (11) can be written in a less unsuitable form for com- 
putation provided the conditions justify Poisson's approximation. 

If so, writing /3 a N X s = N (11) reduces to 

nju = n{28s-,/1 (eP le s) n(/31 - sl) (13) 
'1SiL - fi /3Pl(n -/Pi) K 1(3 

But even with this simplification the calculation of /3 is trouble- 
some and, a fortiori, that of further constants. 

Nor does it seem practicable to reduce to a relation between 
the moments of a form similar to that of (8). 
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262 Miscellanea. [Mar. 

Since, as remarked above, we do not believe that the theoretical 
basis of this schema either in the modified or original form is appro- 
priate to the class of problems with which we are dealing, the 
resultant expressions are at best mere smoothing formulae, and when 
their application involves a large amount of arithmetic do not have 
any value even from that point of view. An exception must, how- 
ever, be made in favour of the single bias case which in virtue of 
equation (8) can be readily employed and, as will appear in our 
arithmetical examples, frequently graduates the statistics with con- 
siderable success. It will therefore be of some interest to determine 
the probable error of s calculated by (8). 

Assuming n and N to be large we can write (8) 
s N/,2 N-n (14) 
N n2 Nn 

Hence, remembering that N= il 

G____ 21 (15) 

Taking differentials. 

-A 
8p - 2u281 + W 

Squaring, summing and dividing by the number of samples 

2 1 (2 2 42 2 u r ~~ 
'> At6 ( 11 'TfL2 + 1- A 2a,i,-4 fll2 f, rfL, ) I 

+ 2I (,L L'l 4 i 4 r u', P -2 2 ,i ) + / .( ) 
6 2~~~~~~~ 

But, a2,A =N2, 2, ____ = P3/2 v'l.y t 

Substituting in (16) 

(17) 

?2 = N-[ 2 -,tB (8 ) t44 22 + P3)17 

Now if conditions (6) and (7) bold, all the moments can be 
expressed in terms of N, n and s. 

N P 12 N IA2/l IN sA I fN 

The moments of the binomial 6+ NN ) about the zero 
successes are (the Poisson approxrimation being assumed to be 
valid) M2 - m + in2, M3 =m + 3 in2 + in3, M4 = in4 ? 6 in3 

+N7 i2 + m, wher in sn and these divided by s and referred 

N _ 

to the mean of the whole distribution, m-- will be the requred 
momentsN 

moments. 
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1920.] An Inquiry into the Nature of Frequency Distributions. 263 

We thus obtain: 

/ n n 

T 2--N2 (s-1 n t n 

+ N -N 3 (s - 1) + N3 (s - 1) (s -2) 

N 2 ~ ~ ~ N 
N + - n (7s -4) + Nd6 (s -1)2 >(8 

+ n4- (S3 -452 + 6s -3) 

and 

14 _ 2 N + N (7s 5) + n' (3s - 4) (s -1) 

+ N4 (s -2)2 (t1) 

As a check, note that when s = 1, the complete distribution becoming 
the ordinary binomial, 

(1 1)~~n = = = 
n 3n 2 + N (18) gives y', = luC 

= 
N and 4= + -N2 

which are the correct values for a Poisson binomial. 
Substituting from (18) in (17), we obtain after lengthy but 

straightforward reduction:- 
s2 = 8s (s-1) +(s -1) (4 -3s) 2sN (19) 

= N n + 2 (9 
If s is so small in comparison with either n or N that the first two 
terms on the right may be neglected, the standard deviation of s is 
effectively equal to:- 

IN/2sN 
n ' 

It is, however, distinctly to be noted that (19) is only valid on the 
assumption stated, while (17) is exact. 

Cases frequently occur when the biassed schema based on (6) to 
(8) reproduces the observations well, but the momental relations of 
(18) are not even approximately fulfilled. 

This statement will now be illustrated. 
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264 Miscellantea. [Mar. 

B. Shop. L. Factory. [High-explosive shell manufacture.] 

Calculated fromn the Calculated from the Accidents. Frequency. unmodified basdslea exponential. 

0 397 379 403 
1 133 163 125 
2 47 36 44 
3 5 5 10 
4 1 1 2 
5 0 *1 -3 
6 0 
7 1 J 

584 

Here N 584, n 253. 
The exponential limit of the binomial fails completely to reproduce 

these data. 
The mean is .4332, "2 = .5504. 
Hence s = 1.6303 and the resultant distribution agrees satisfac- 

torily with the original data. 
The remaining moments of the observations up to the 4th are 

=1 _ 1.003 and a4 = 4.194, while the theoretical values from 
equation (18) are .769 and 2.020. Hence G.'2 from (17) is .030 if 
the theoretical and .103 if the observed moments are substituted in 
the equation. 

The inference is that although the method provides a reasonable 
fit (P = .51 when the usual goodness of fit test is used*) we should 
not regard the result as anv substantiation of the theoretical basis. 
On this account it seems unprofitable to perform the heavy arith- 
metical work involved in the fitting of further constants. 

In other words, equation (8) is merely a useful basis for an 
interpolation formula. 

SECTION III.-The generalised Poisson series. 
As we have seen, the method just examined involves the assump- 

tion that the happening of the event not only improves the prospects 
of the successful candidates but militates against the chances of 
those who had hitherto failed; this assumption cannot be enter- 
tained and we proceed to develop a frequency system not involving it. 

Let uls suppose that the chance of meeting with an accident 
(acquihing some disease, &c., or, in general, being the subject of any 
happening whatever) is po for those who had at the time of observa- 
tion never had an accident; that for those previously credited with 

* When the whole distribution is used and the freqencies from 4 accidents 
upwards are combned. Bat, as Pearson has shown (loc. cit p. 255 8upra), it 
is proper to omit the zero group in comparisons of the p e3ent type. In that 
case, P becomes *37. The P's discussed on p. 276 infra have been compiled by 
the second method. 
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an accident it is p'; that for those who had had 2, 3 . . . r 
accidents the chances are P2, P3 . . . p, Then writing pr ? qr- 1, 
the development of the series is illustrated in the table on page 265. 

It will be seen that any row may be written:- 
rAo + Po rAl + popl rA2 + PoP1P2 1.A3, etc. (20) 

where the A's are functions of q's. 
We have nAr = _ ? qr n-jAr (21) 

n-jAr = n-2Ar-1 + qr n-2A. (22) 

Hence 
?jAr =n-iAr.i + qr n-2A,1 + q2r n-3Ar.j + ? . n-r r_lAr-1 (23) 

Now suppose the whole period of exposure to consist of very 
small intervals of time and the total time of exposure T to be very 
great in comparison with the length of such intervals, then if T-1 is 
sensibly equal to T, we may write (23) 

TA7. tAr- 1 qr T-t.dt. (24) 

Now suppose all p's to be small but their several products with 
T finite and write 

p,T = X0 
pjT = X 
p2T = A2 

PrT -Ar. 
Then, by Poisson's theorem, 

tAo = e-Pot 
and fo = TAO = e-;o, (25) 
where fo is the relative frequency of no accidents. 

Hence A T 
T e=Jet qT-t.dt (26) 

0 
rT 

= e-pot e-p (T-0 dt 

Po-Pi f 
Then using f's to denote the relative frequencies 

xo \ -\ fi = poAl - - X (e- e-xo) (27) 
So X0 is given from the zero frequency by (25) 'and XA from 

(27) which may conveniently be written:- 
fi = e= -eXo (28) xo( xo -xI 

Passing to the next term, we must integrate 
T 

(e-Pit e-pot ) e-p2(T-t) sdt (29) 
0 
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I 1 - e I-(\A) 1-e(OX)1 e= e-A 2 __](30) l P1-P2 Po P2 
Hence:- 

f2=POPlA01 \A-- A {l eA 
2 

-e-A e,-2 -e-o} (31) 

By a precisely similar method successive f's can be calculated. 
After simplification we have for the first six f's the following 

equations 
ft e e\o (32A) 

fif=iAiie - - -je- o (32B) 
ft (o - AOI - A,0 - A- A) 
t:> = (A AA)0(I A e-N2 (A A )?A e-,\] 

+ Ao01 _e (32c) 

A, O'k A,A,0 
A,1) (A - A2) 

A -3 A0AA2 A 
( -3)(AI - A3) (AI - A3) 

XOXIX2 11-X2 

(Ao - A2) (A1 -A2) (A2 -A3) 
+ XAoA1A2 - 

(A+ - A1) (A1 - AX) (A1 - A3) 
A 0x 2 e-Ao (32D) 

g~ ~~~ ~A - oA A1)3 ( _ )eA -A3) 

-An A4) (A- A4) (A2 - A4) (A3 A4) 
AnAAA2A3 e X4 

(A0 A3) (A1- A3) (A2 - A3) (A33--A4) 

(A0- A2) (A1 - X3) (A2 - X3) (2 - AX4) 
A0X1A2X3 -e 

(Xo 2A) (A1 -A2) (A1 - A3) (A1 - A4) 

(A -kA1) (A,, - X2) (Ao - A3) (AI-A) e(32E) 

_ _A0 A1Ak2A3A _e-_ _ _32E_ 

a (Ao _ As) (X1 Al) (A2 X5) (X3 - X) (A4 - A5) 
A0A1X2A2,3A4 e-5) 

(A o-A) (X1 - A4) (A2 - A4) (A3 - A4) (X4-- A5) 

+(- (- A0A1,A3A4 -A4 
+(A,o- A,4) (I A3) (A2 -A3) (A3 - A4) (A3-4a5 

A0A1A2A,34 -A 
(A0 - A2) (A1 - A2) (A2 - A3) (A2 - A4) (A3 AAs) 
(A0 2 (A1I A 2) (A1 - A3) (A1 - A4) (A1 - 5) + A,OAIX2A,3A,4 e-Al! 

(A0O - A1) (A0 - A0A1A(Al 3A AX 
J X 

5)e A,OAiA2 A,3 4 e Ao (32F) 
(Ao-XI) (A0o- A2) (A0 - A3) (Ao - A3) (A0- 5) 

T 2 
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268 Miscellane(. [Mar. 

The validity of equations (32) can be tested in a variety of 
ways. One method is to evaluate the indeterminate forms which 
result when Xo is made equal to X,, X2, . . . In that case we 
ouight to find that the series reduces to 

exo? + Xoe-o + ?2 e- 2! 
the ordinary Poisson limit. 

As examples, we may reduce f, and f2 
X0 (e-A' _- e-'Ao) 

1l 
c ?-1 

Differentiating the numerator and denominator with respect to X, 
we have: 

-Xoe -I = -eo when XA = X0. 
/ e-A2 e -X e 

=X1 (~(Xo - X.) (X1 -X2) (X0 -X1) (k1 -X2) 

+ ( e-ko 
(ko _X1) (X0 -2)2 

____ _e- __- ? (XI - X2) e- o - (X0 -X2) e-A\0 

= (tx -fX02) (Xj - X2) (X0 - A1) (X1 - X2) (X0 - ) 
proceeding to the limit for X1 =o we have 

X20 (e (1 ? X- ) e-o) 

Differentiating numerator and denominator with respect to X2 twice 
we reach 

e0As2 X02 e-xo 
A2- = - 2 when X2 

It may be remarked that equations (32) can be deduced by a 
method analogous with that employed in generalising the pigeon- 
hole schema. 

We have (in the notation there employed) 
nU., = qmn- 'urn + pm_1n-1Urnj- 

writing PM = C4'np0 and qrn = /3mqo 
uo qon-lU( = qon 

nu, =31q01-1Uo +?p(nIUO 
Solving the difference equation we have:- 

)1= C01 qfn + 
poo 

and since 0=11 o; C= -(-1 
(1- i3qo 

or 

- ?o op' (i - p1fl) (32G) 
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Then , = L1 Po2 q (1-f3) 
nl+1U2 - fl2q011u2 = p1nU1 - 1n- 

The solution of which is 
1 al Po2 qo0n 2 fe 1[,n 

t1c)=l1- A (P2' - fln) _ (t -1) (32H) 

remembering that a, = Pi, = q0, /2 = go 
Po qo qo 

and writing as before Ao = pot, X, = pit, and A2 = p2t 32G and 32E 
reduce to 32B and 32c. 

This method of solution is, however, much more laborious than 
that adopted above. 

By means of equations (32) values of the A's can be obtained 
in any particular case. The arithmetical labour is, however, very 
heavy, and before discussing the general problem further we shall 
examine in detail the particular case of Ao AX, XI = A2 = ... Ar. 

The required expressions might be deduced from the general 
equations (32) but the evaluation of the indeterminate forms becomes 
increasing troublesome as we proceed, and it is better to take the 
case independently. 

If we write r - - approx. 1- (p -po) 

rt = ( 1- A - e-Ql-o) and qot -(i-t -e-Ao 

when t = T and is very large. 
Hence poAj - poqot-l (1 + r + r2 + .... rt-e) = qot-- A1 

where 8 = A - Ao 
Similarly, 

popA2 ppoqot2(1+ 2r + 3r2+ ...t-1.rt2) 
The sum of the series in brackets is 

1-rt-l (t - 1) rt- 
(1-r)2 1-r 

Hence, assuming t so large that t - 1 may be put equal to t. 

p0pA2 = q0t-2 
1 

(1 e-e e ) 

Proceeding in this way and expanding e-8 in powers of 8 we 
reach:- 

: 1 + Ao( 1 2!+ 3 ( 4(33 5(3) 

+0oA1 2!3! 4! 5!6! / 

+ A X 2( 1 _ 3( + 682 1082 
4 5! ( + 
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-t- k X1 
1 'I 8 

10- 2083 
(4 ! 5 ! + 1 7! + * * (33) 

+LX X4( 1 58 + 1582 1 
O\5! 6! 7! /+ 

The series in (33) may be treated as follows 
Write 8 +8 - + 

f 8) 2! 3! 4! 
Then 1 28 3&2 1 

f (s) = 3!- 4! + . 
.! 4 

(34) 

So the coefficient of XI) is 
X12 A13 f/ ) f (8) - Xif' (8) + 2! f 3f (8) 3 . (35) 

= f (8 -Al) =f (-O) 
But 1 -e8 e* _ -1 

8 f(-A0) 
Hence (33) is e-Ao (1 + eAo - 1) = 1, or (33) gives the complete 

frequency. 
Passing to the moments referred to zero, we must evaluate 

f(8)- 2Xif'(8) + 1 .?f "(8) 4f3 "(8) 

Expand f(8 -Xl) and multiply by Xi; we have 
k,3 

Xif(8 _Al) = Xlf(8) - 2f'(8) + 2--f "(8) . 
Differentiating with respect to A, treating 8 as constant, we 

find:- 
d[A1f(8 -Al)] -f()- 2Xf'(8) + 32 1f"(8)* 

Hence the mean is given by:- 
M- oe - 0 d[Xjf(8 - Xi)] (36) 

Now substituting Xi (X , 1) for XAf (8-AX) 

(36) reduces to 

M = 1(e 1) 
f 1+ 

NoA 1 (37) 

Multiplying the expansion of f (8 - A,) by A12, and differen- 
tiating twice with respect to A1, we find:- 

dA,2 2f (8)-2 3 lf(8) +3 42f (8)-45 123f (8) 
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which is times the sum of the first and second moments 
X0 eAs 

about zero. 
Hence od2 + M = o e-, d [X2 f (8 - X1)] 

Substituting 12 (X 
- 

1) for X12f (S - l) 

and reducing, we find:-- 

O,uI - M = X1 2(X- + 1) Xi2(e 1 
Xi A 0 ~~~XoeAs- 

{X~ -X_exs + }(38) 

Hence M = (1 _ X)( - e x) + 'k (39) 

t - M = X1(X+2) -2 Mi. (40) 

from which Ao and X1 may be obtained by successive approxi- 
mation. 

(39) and (40) are fairly suitable for calculation, but we have not 
succeeded in obtaining a solution of the general case in terms of 
moments which would be of the least use in practice. 

As arithmetical examples we may take the following. 

Accidents in a 60-lb. shrapnel shop. 

C alculated Calculated 
Accidents. Observed persons. from (39 and 40) from (8) A 6025 s 8943. A1 5015 

0 398 410.6 412 
1 294 260 *3 258 
2 43 66.4 66 
3 10 11.2 11.5 
4 3 1.4 1.5 
5 2 { .2 {l 

750 

Actually the fit is almost identical with that afforded by the one 
biassed pigeon-hole schema. But neither result is good. 

It has been found that when Xo is not greatly different from X1, 
equation (8) graduates the data effectively; for XA = 2X0 the fit 
is excellent, but when X, > 5 Xo the graduation fails. Thus we 
find:- 
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A0 5, A1O0. ) ̂0=1,A1=2. A0= 6,A1=2-5. Xo= 5, A1=5O0. 

Suc- 
cesses. Eq. (8) Eq. (8) Eq. (8) Eq. (8) 

True. s =1558. True. s =1 351 True. s =2 320. True. 8 = 2 737. 

0 607 608 368 377 607 621 607 641 
1 239 235 233 216 131 110 67 27 
2 109 111 194 199 113 116 70 54 
3 35 35 118 123 77 82 69 71 
4 8 8 56 57 42 43 61 71 
6 2 21 22 21 19 18 48 57 
6 ....f .... 7 6 8 7 34 38 
7 .... .... 21 2 3 2 21 22 

9 ........ ... ... 6 5 
10 .... 3 2 
11 .. ... .. ... .. ... 2 ~ 1 
12 .......f....... ..f 

The empirical conclusion to be drawn is that data which by the 
method of equation (8) yield values of s below 2-0 and are effectively 
graduated may be regarded as examples of the present class. Owing 
to the rapidity with which this test can be made and the comparative 
laboriousness of (39) and (40) the point is of some practical interest. 

Equations (32) were used to fit the following statistics: 
Cancer Houses (Bionetrika viii. 431). 

Cases. Houses. Calculated from (8). 

0 2523 2530 
1 315 296 
2 20 36 
3 63 
4 1 

2865 

These lead to A(, = 1271, XA *1632, X2 95, X3 *61. 
Although equations (32) provide a complete formal solution of 

the general problem, and by a scrutiny of the probable errors' of 
the X's it would be possible to determine whether their differences 
are significant and warrant the conclusion that we are really dealing 
with a case of varying chance in the terms of the hypothesis, the 
form reached is not altogether satisfactory. For the values of the 
's are subject to high probable errors, especially in the tail of the 

1 A method was worked out for obtaining these, but we have not thought 
it worth while to give space to it here. As an illustration we find the probable 
errors of the A's just given to be 0046, *0215, *2635, 4240. 
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distribution, and in any practical case it would become very difficult 
to say what was the probable form of the functional relation between 
A and the serial number of the accident to which it referred. For 
practical puirposes it would be much more satisfactory to assume 
some fairly flexible form of functional relation between A and the 
serial number of the accident-a form involving not more than a 
moderate number of constants such as three-and to find equations 
for these constants in terms of the moments of the distribution. We 
have made some attempts to find such a soluttion, but so far they 
have not succeeded. 

We now tturn to the other modification of the Poisson schema 
which is effected by supposing that ab initio the liabilities to accident, 
to disease, &c., are not the same for all units of the population of 
houses or workers. 

SECTION IV.-The infinitely compound Poisson distribution. 
We now suppose that the population at risk consists of persons 

(or other variates), the liabilities or susceptibilities of whom to 
accident vary, the frequencies being assigned by the ordinates of 
f (A) where A is a variable parameter. 

One naturallv commences with the assumption that f (A) is a 
normal function or 

1 _(A-nM)2 

Y= e 2a2 (41) 

m being the mean of A and o- the standard deviation. Then, 
supposing that within any group to which the parameter As applies 
the frequency of multiple happenings is expressed by the Poisson 
exponential 

e-^ (l +As + ....) 22 

we shall have for thefo frequency of the complete distribution 

fo- e- J. dA (42) 

1 -(rnT\ _2(A--o2)2 
_ ~-- e 2 J e 2a2 dX 

.-0 /27r(r 

eim 

) (43) 

Similarly, 

- 1 e(0i2).J l(Am e) dA 

e-m-)(m - 2) (43A) 
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1 _ (m_a2) 
2 + C 

2 

Q'2 = 72 e 2 e A 

f= --e-~( 2 
2! (44) 

fB3ut the ea (f- ) dX 

e (nz st)t (m ou2)l3+ 3 (m A c e2) of (4 

curves is ariray The for weaot,4iceiseqainswl 

3 ! 
f n_ O). (rn 0- 2)4 + 6 (in -(T2) 2(G3 +O (46) 

4! 

But the assumnption of a norm-al distribution cannot be justified 
as values of A- may be supposed to range, from zero far in the 
positive direction so that f (A) should be skew. A choice of skew 
curves is arbitrary. The form we adopt,* since its equation is well 
suited to the reductions just outlined, is the binomial curve. This 
equation may be written, assuming the range to start from zero, 

y a y0e-cAr-l and its integral r (46A) 
bt(r) 

Multiplying by eA is equivalent to substituting r + 1 for c and 
multiplying by A is equivalent to stubstituting r + 1 for r 

er noo 
fo-= Aif eie?I)A.A-l.dA 

_ c l(r) 7t c ) (47) 
r(r)* (C + )r -C / (7 

Similarly 

r(C' ( )r+2 
= (48) 

(c r ( + 1) (49A) 

f2 3 (C + 1)!(r +(1) (r + 2) (49B) 

So that the successive f's are given by the terms of 

(C 4 )(1r+c4 1 + r(c+1) r(r 1) (r + 2) )(5) C + 1 C + 1 ~~~~~~~~~~~~~~~~~~~~~~~~~2 ! (C + 1)2 3!( ) 

* Yule, Journzal Royal Statistical Society, 1910, lxxiii, p. 26. The curve 
was developed from a negative binomial and might therefore seem inappropriate. 
It is shown in the appendix that the same curve might have been developed 
from a positive binomial; no definite criterion between positive and negative 
binomial is always possible, but see the discussion given. 
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The second bracket is the expansion of (1- + 1) so that the 

whole sum of (50) is unity as it must be since fo + f + f2 .... 1 
The first moment about zero of (50) is 

____ r rAl (rA+1)(rA+) 
(c+)1 c+I X Ac+ 1A 2! (c+ 1)2 ? . f 
The second bracket is ( + 1 or 

M =- (51) 
c 

The second moment about zero is 
c +1 r I + 2 +A 1 + 3 (r + 1) (r A- 2) 

A-+1/ c 
I 

A- 2 1 A- 2' (C A- 1)2 A-.1 
The second bracket reduces to ( A ) 1 + r + 

r ( + r + 1 r r(c + 1) 
Hence it.) = L-(A-r - )~- (52) 

Thus the distribution is fitted with great ease from the mean and 
second moment of the observations. 

We have found this result of great service and append a few 
examples of its use in graduation. Several illustrations will be 
found in the undermentioned report by Miss Woods and one of us.* 

(1) 648 Women working on 6-inch H.E. shells for five weeks. 

acdNts. Oberaios Simple Poisson Method of 
Mehdo 

acNci?de?nfts.| Observations. 5 SimPseries, equation (8). equations (51) and (52). 

0 447 406 452 442 
1 132 189 117 140 
2 42 45 56 45 
3 21 7 18 14 
4 3 1 4 5 
5 2 {0.1 f1 f2 

(2) 414 Machinists three months' study. 

0 296 256 313 299 
1 74 122 41 69 
2 26 30 33 26 
3 8 5 17 11 
4 4 1 7 5 
5 4 ro*i 2 2 
6 1 1 {2 
7 0 f 0l 
8 1L 

* Incidence of Industrial Accidents. Report No. 4 (Industrial Fatigue 
Research Board), Stationery Office, London, 1919. Some errors in the 
evaluations of P in that report have been corrected 
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(3) 198 Machinists six months' study. 

No. of 1 . Simple Poisson Method of IMethod of 
accidents. | Observations. series, equation (8). equations 

(51) and (52). 

0 69 53 71 66 
1 54 70 49 61 
2 43 46 41 38 
3 15 20 23 19 
4 13 7 10 9 
5 1 2 3 4 
6 .2 051 7 f 02 0 6 

Using Prof. Pearson's Goodness of Fit test,* the odds against 
such divergences as are shown by the simple Poisson series are found 
to be very great. (1) and (3) are fairly well graduated by eq. (8) 
P *13 and P = *14. Equations (51) and (52) graduate all three 
fairly well, the values of P being respectively 0 29, 0*64 and 0*18. 
In 14 sets of data published in the report above mentioned the average 
value of P for graduations by the method of (51) and (52) was 0-38. 
Of the 14 P's, 6 were under 0 *25, 3 between 0 25 and 0 *5, 4 between 
*5 and *75, and 1 between *75 and 1. If the hypotheses were 
correctly applicable the expectation would be 3.5 P's in each case, 
and the value of P for the observed against the theoretical distribu- 
tion is 0 * 30. The hypothesis comes reasonably well out of the test.t 

The propriety of assuming that the Poisson approximation holds 
for the several distributions within the " population " depends 
upon the validity of the arguments adduced in the earlier pages of 
this memoir. The choice of the binomial curve to represent the 
distribution of the continuously varying liabilities throughout the 
"population " has been dictated by considerations of practical 
convenience. An infinitv of skew curves fulfilling the required 
conditions might be imagined, but no objective evidence favouring 
one more than another can be produced. We think, therefore, that 
the proposed method should be adopted. 

The results obtained may now be summarised. 
A general solution of the problem of the distribution arising 

when the -chance of a happeping is affected by antecedent success 
or failure has been obtained, although not in a form very suitable 
for computation. In the particular case of but two orders of 

* Biometrika ix., 1913, p. 28. 
t The distribution of P's for g-aduations by the method of equation (8) is 

8 from 0- *25, 3 from 25 - .50, 1 from 50- 75 and 2 from *75-1 00, 
which gives P = *04. Since P is itself subject to a large error of sampling, we 
do not attach much importance to this comparison. 
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probability of the happening, a solution in terms of the moments of 
the distribution has been reached. It also appears that a first 
approximation to the form of the distribution can be deduced very 
rapidly from a modification of the ordinary pigeon-hole schema, 
although such modification has no correct theoretical foundation. 
Lastly, a very simple form of solution of the problem arising when 
the initial chances within the population vary has been provided. 

We are alive to the inconvenience of the form in which the 
general soluition of the first problem proposed has been expressed, 
but think it possible that the treatment may suggest to other investi- 
gators better lines of attack. 

APPENDIX. 

On the relation between the binomial curve and the binomial series. 
In case any others may find the same difficulties as we did 

ourselves, we think it may be as well to give a brief note on the 
relations between the constants of the curve 

I1 X ya -yx(1 
y = yo (i ?-) eY (1) 

and the constants of the binomial series from which it may be derived. 
The curve was derived by Prof. Pearson in his classical memoir in 
the Philosophical Transactions of 1895, from the frequency-polygon 
given by the binomial expansion of (q + p)"'. In that memoir, 
owing to changes of notation, the relation between the p and n of 
the binomial series and the y and a of the curve are not clear: 
following out the method of derivation in the original symbols we 
find, however, c being the distance apart at which the ordinates given 
bv the binomial series are plotted 

2 _ 
c (q - p) 2 
2cpq (n + 1) (2) 

q -P J 
But the curve may equally well be derived from a binomial series 

with negative index (Yule, Journal of the Statistical Society, 1910). 
Let this series be given by the expansion of 

QN (1 - p)-N 

and let the polygon be plotted with an interval between the ordinates 
C. Then the relations between the constants of the curve and the 
constants of the polygon are 

2Q 
C (P 1 1 
2CP (N - 1) (3) a (Il-p2) J 
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Hence the curves derived from a given positive binomial and from 
a given negative binomial are identical if 

1 Q I 
c (q-p) C (P + 1) 4 

cpq(n+1) C.P(N-1) h (4) 
q-p 1-P2 J 

If we take the constants of the one binomial as given and wish to 
find constants of a binomial of the other form with the same equiva- 
lent curve, there are, in general, an infinity of soluitions, for we have 
only two equations for the three unknowns. In one class of cases, 
however, solution is impossible: namely, when we are given P, C and 
N, and N is less than unity; no real values of p, c, n can then satisfy 
the equations. In this case the initial ordinate of the curve is infinite 
and ^t is negative. When the curve is of this form we may con- 
clude definitely that it is derived from a negative and not from a 
positive binomial. In any other case the given curve may represent 
a polygon of either type, it we know nothinig as to the position of 
the start of the curve, and may regard it as possible to place the 
binomial aniywhere on the axis of abscissoo. 

Supposing that the constants of the positive binomial are given, 
we may then assume a ratio of C to c, say 

C/c = r 
and deduce values of P and N which will lead to the same curve- 
constants. We find 

- q - p -r 

N ( )2r2{4pqn + 1 - r21 

Note that 
q 

qp) 

2 r 
p? 22(5 Note that (5) shows there are limits for the admissible values of 

r: to give a positive value of P we must have r < q-p. 
As an illustration, if 

P- 8 q -7 n-=8 
and we assume 

r 1 
then 

P = Q_ N = 13.6 
Both sets of values give for the curve-constants 

y=2- a= 21 
eNa = 7 

The mean of the positive binomial is 1. In order that the mean 
of the curve may coincide with this, its origin, the mode must lie 
0.375c to the left. The mean of the negative binomial is at C.NP/Q, 
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that is, 3.4C (or 1.7c) to the right of its zero-point.* To make 
the means of the two binomials coincide, the zero of the negative 
binomial must therefore be taken 0. 7c to the left of the zero of the 
positive binomial. The figure shows the points of the two binomial 
polygons and the fitted curve. 

T I I I I I I I I I I I I I 
Positive . 0 1 2 3 4 5 6 

binomial J 
Negative i 0 1? 1 2 3 4 6 6 7 8 9 10 11 12 13 

binomial J 
Diagram showing binomial curve fitted, by the slope relation, to both a pcsitive 

binomial (hollow circles) and a negative binomial (circles blocked in). 

The form of the curve then does not seem, in general, to give 
any criterion as between positive binomial and negative binomial, 
if the binomial distribution may be regarded as arbitrarily assign- 
able to any position on the axis of absci.ssse, and the distance 
between its ordinates as also arbitrary. But if the binomial dis- 
tribution be regarded as naturally placed, and the distance between 
its ordinates, as usual, as unity, there is a criterion. For the second 
moment of the positive binomial npq is necessarily less than its 
mean np: while the second moment of the negative binomial 
NP/Q2 is necessarily greater than its mean NP/Q. Hence for the 
limiting curve the same criterion will hold. In this sense the dis- 
ttibutions given by equation (46A) of our paper for the " liabilities " 
of the operatives to accident are all of the negative binomial type, 
for the c of that equation is less than unity and hence the second 
moment is necessarily greater than the mean. 

* The moments of the negative binomial QN (1 - P)-N may be derived 
from the known formulh for the positive binomial (q + p)" by substituting 
-N for n,-P/Q forp, and 1/Q forq. In Journal of the Royal Statistical Society, 
vol. 73, p. 23, equation (5), for r/p in the equation for M, read rq/p. 
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