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Abstract For convex bodies K with C2 boundary in R
d , we explore random poly-

topes with vertices chosen along the boundary of K . In particular, we determine as-
ymptotic properties of the volume of these random polytopes. We provide results
concerning the variance and higher moments of this functional, as well as an analo-
gous central limit theorem.

1 Introduction

Let X be a set in R
d and let t1, . . . , tn be independent random points chosen according

to some distribution μ on X. The convex hull of the ti ’s is called a random polytope
and its study is an active area of research which links together combinatorics, geom-
etry and probability. This study traces its root to the middle of the nineteenth cen-
tury with Sylvester’s famous question about the probability of four random points in
the plane forming a convex quadrangle [17], and has become a mainstream research
area since the mid 1960s, following the investigation of Rényi and Sulanke [13] and
Efron [8].
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Throughout this paper, if not otherwise mentioned, we fix a convex body K ∈K2+,
where K2+ is the set of compact, convex bodies in R

d which have non-empty interior
and whose boundaries are C2 and have everywhere positive Gauß–Kronecker curva-
ture. The reader who is interested in the case of general K , e.g. when K is a polytope,
is referred to [7, 18, 19]. Without loss of generality, we also assume K has volume 1.
For a set X ⊂ R

d we define [X] to be the convex hull of X.
A standard definition for the notion of a random polytope is as follows. Let

t1, . . . , tn be independent random points chosen according to the uniform distribution
on K . We let Kn = [{t1, . . . , tn}]. Here and later we write Kn = {t1, . . . , tn} instead
to simplify notations without causing much confusion. Another one, which we call
the “inscribing polytope” model, also begins with a convex body K , but the points
are chosen from the surface of K with respect to a properly defined measure. The
main goal of the theory of random polytopes is to understand the asymptotic behav-
ior (n → ∞) of certain key functionals on Kn, such as the volume or the number of
faces.

For most of these functionals, the expectations have been estimated (either ap-
proximately or up to a constant factor) for a long time, due to collective results of
many researchers (we refer the interested reader to [5, 20] and [15] for surveys). The
main open question is thus to understand the distributions of these functionals around
their means, as coined by Weil and Wieacker’s survey from the Handbook of Convex
Geometry (see the concluding paragraph of [20])

We finally emphasize that the results described so far give mean values hence
first-order information on random sets and point processes. This is due to the
geometric nature of the underlying integral geometric results. There are also
some less geometric methods to obtain higher-order informations or distribu-
tions, but generally the determination of variance, e.g., is a major open problem.

The last few years have seen several developments in this direction, thanks to new
methods and tools from modern probability. Let us first discuss the model Kn where
the points are chosen inside K . Reitzner [11], using the Efron–Stein inequality, shows
that

Var Vold(Kn) = O(n− d+3
d+1 ),

Varfi(Kn) = O(n
d−1
d+1 ),

where Vold is the standard volume measure on R
d , fi denotes the number of i-

dimensional faces. For convenience, we let Z = Vold(Kn). Using martingale tech-
niques, Vu [18] proves the following tail estimate

P

(
|Z − EZ| ≥

√
λn− d+3

d+1

)
≤ exp(−cλ) + exp(−c′n)

for any 0 < λ < nα , where c, c′ and α are positive constants. A similar bound also
holds for fi with the same proof. From this tail estimate, one can deduce the above
variance bound and also bounds for any fixed moments. These moment bounds are
sharp, up to a constant, as shown by Reitzner in [10]. Thus, the order of magnitudes
of all fixed moments are determined.



Discrete Comput Geom (2008) 39: 469–499 471

Another topic where a significant development has been made is central limit theo-
rems. It has been conjectured that the key functionals such as the volume and number
of faces satisfy a central limit theorem.

Conjecture (CLT conjecture) Let Kn be the random polytope determined by n ran-
dom points chosen in K . Then there is a function ε(n) tending to zero with n such
that for every x

∣∣∣∣P
(

Z − EZ√
VarZ

≤ x

)
− Φ(x)

∣∣∣∣ ≤ ε(n),

where Φ denotes the distribution function of the standard normal distribution.

Reitzner [10], using an inequality due to Rinott [14] (which proved a central limit
theorem for a sum of weakly dependent random variables), showed that a central limit
theorem really holds for the volume and number of faces of the so-called Poisson
random polytope. This is a variant of Kn, where the number of random points is
not n, but a Poisson random variable with mean n. This model has the advantage that
the numbers of points found in disjoint regions of K are independent, a fact which is
technically useful. Combining the above tail estimate and Reitzner’s result, Vu [19]
proved the CLT conjecture.

The above results together provide a fairly comprehensive picture about Kn when
the points are chosen inside K . We refer the reader to the last section of [19] for a
detailed summary. The main goal of this paper is to provide such a picture for the
inscribing model, where points are chosen on the surface of K .

Before we may speak about selecting points on the boundary ∂K , we need to spec-
ify the probability measure on ∂K . One wants the random polytope to approximate
the original convex body K in the sense that the symmetric difference of the volume
of K and Kn is as small as possible. Hence, intuitively, a measure that puts more
weight on regions of higher curvature is desired. A good discussion on this can be
found in [16]. Let μd−1 be the (d − 1)-dimensional Hausdorff measure restricted to
∂K . We let μ be a probability measure on ∂K such that

dμ = ρdμd−1, (1)

where ρ : ∂K → R+ is a positive, continuous function with
∫
∂K

ρdμd−1 = 1.
Note that the assumption ρ > 0 is essential, as otherwise we might have a measure

that causes Kn to always lie in at most half (or any portion) of K with probability 1.
With the boundary measure properly defined, we can choose n random points on

the boundary of K independently according to μρ on ∂K . Denote the convex hull
of these n points by Kn and we call it random inscribed polytope. For this model,
the volume is perhaps the most interesting functional (as the number of vertices is
always n), and it will be the focus of the present work. For notational convenience,
we denote Z for Vold(Kn) throughout this paper.

The inscribing model is somewhat more difficult to analyze than the model where
points are chosen inside K . Indeed, sharp estimates on the volume were obtained
only recently, thanks to the tremendous effort of Schütt and Werner, in a long and
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highly technical paper [16]. We have

EZ = 1 − (cK + o(1))n− 2
d−1 (2)

where cK is a constant depending on K (the 1 here represents the volume of K).
It is worth recalling that in the model where points are chosen uniformly inside K

it is known that EVold(K − Kn) = O(n− 2
d+1 ). Observe that by inserting n

d+1
d−1 for n

in this result we obtain a function O(n− 2
d−1 ), which is the correct growth rate found

in (2). We can explain this (at least intuitively) by noting that in the uniform model,

the expected number of vertices is Θ(n
d−1
d+1 ). However, in the inscribing model all

points are vertices. Thus we may view the uniform model on n points as yielding the

same type of behavior as the inscribing model on n
d−1
d+1 points. Further evidence for

this behavior is given by Reitzner in [12] where he obtains estimates (which are sharp
up to a constant factor) for all intrinsic volumes.

Reitzner gives an upper bound on the variance [11]:

VarZ = O(n− d+3
d−1 ).

The first result we show in this paper is that the variance estimate is sharp, up to a
constant factor.

Theorem 1.1 (Variance) Given K ∈ K2+,

VarZ = Ω(n− d+3
d−1 ),

where the implicit constant depends on dimension d and the convex body K only.

The next result in this paper shows that the volume has exponential tail.

Theorem 1.2 (Concentration) For a given convex body K ∈ K2+, there are positive
constants α and c such that the following holds. For any constant 0 < η < d−1

3d+1 and

0 < λ ≤ α
4 n

d−1
3d+1 + 2(d+1)η

d−1 < α
4 n, we have

P(|Z − EZ| ≥ √
λV0) ≤ 2 exp(−λ/4) + exp(−cn

d−1
3d+1 −η), (3)

where V0 = αn− d+3
d−1 .

It is easy to deduce from this theorem the following:

Corollary 1.3 (Moments) For any given convex body K and k ≥ 2, the kth moments
of Z satisfies

Mk = O((n− d+3
d−1 )k/2).

To emphasize the dependence of Z = VoldKn on n, we write Zn instead of Z in
the following result:
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Corollary 1.4 (Rate of convergence)

lim
n→∞

∣∣∣∣
(

Zn

EZn

− 1

)
f (n)

∣∣∣∣ = 0

almost surely, for

f (n) = δ(n)(n− d+3
d−1 lnn)−1/2

where δ(n) is a function tending to zero arbitrarily slowly as n → ∞.

Finally, we obtain the central limit theorem for the Poisson model. Let K ∈ K2+,
and let Pois(n) be a Poisson point process with intensity n. Then the intersection of
Pois(n) and ∂K consists of random points {t1, . . . , tN } where the number of points N

is Poisson distributed with mean nμ(∂K) = n. We write Πn = [x1, . . . , xN ].

Theorem 1.5 Given K ∈ K2+, we have

∣∣∣∣P
(

Vold(Πn) − EVold(Πn)√
Var Vold(Πn)

≤ x

)
− Φ(x)

∣∣∣∣ = o(1),

where the o(1) term is of order O(n− 1
4 ln

d+2
d−1 n) as n → ∞.

We hope this result will infer a central limit theorem for Kn, which indeed is the
case for random polytopes where the points are chosen inside K , as mentioned earlier
(see [10, 19]). However, for random inscribing polytopes, some difficulties remain.
We are, however, able to prove that the two models are very close in the sense that
the expectations of volume for the two models are asymptotically equivalent, and the
variances are only off by constant multiplicative factor (see Theorem 5.5).

In the rest of the paper, we present the proof of the above theorems in Sects. 3, 4,
and 5, respectively; Sect. 2 is devoted to notations; we also present proofs of some
crucial technical lemmas in the appendix, along with statements of many other lem-
mas whose proofs can either be found or deduced relatively easily from the literature
(see, e.g., [5, 10–12, 18]).

2 Notations

2.1 Geometry

The vectors e1, . . . , ed always represent a fixed orthonormal basis of R
d . The dis-

cussions in this paper, unless otherwise specified, are all based on this basis. For a
vector x, we denote its coordinate by x1, . . . , xd , i.e. x = (x1, . . . , xd). By Bi(x, r)

we indicate the i-dimensional Euclidean closed ball of radius r centered at x, i.e.

Bi(x, r) = {y ∈ R
i | ‖x − y‖ ≤ r}.

The norm ‖·‖ is the Euclidean norm. When the dimension is d , we sometimes simply
write B(x, r).
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For points t1, . . . , tn ∈ R
d , the convex hull of them is defined by

[t1, . . . , tn] =
{

λ1t1 + · · · + λntn

∣∣∣0 ≤ λi ≤ 1, 1 ≤ i ≤ n,

n∑
i=1

λi = 1

}
.

In particular, the closed line segment between two points x and y is

[x, y] = {λx + (1 − λ)y | 0 ≤ λ ≤ 1}.
To analyze the geometry, it is necessary to introduce the following. For any y ∈ R

d

write y = (y1, . . . , yd) for the coordinates with respect to some fixed basis e1, . . . , ed .
For unit vector u ∈ R

d , let H(u,h) = {x ∈ R
d | 〈x,u〉 = h}, where here 〈, 〉 denotes

the standard inner product on R
d . Further, the halfspace associated to this hyperplane

we denote by H+(u,h) = {x ∈ R
d | 〈x,u〉 ≥ h}. Since K is smooth, for each point

y ∈ ∂K , there is some unique outward normal uy . We thus may define the cap C =
C(y,h) of K to be H+(uy,hK(y)−h)∩K , where hK(y) is the support function such
that H+(uy,hK(y)) intersects K in the point y only. In general, one should think of a
cap as K ∩ H+ where H+ is some closed half space. Throughout this paper, we also
use the notion of ε-cap to emphasize that Vold(C) = Vold(K ∩ H+) = ε. Similarly,
we call C = K ∩ H+ an ε-boundary cap to emphasize that μ(∂K ∩ H+) = ε.

We define the ε-wet part of K to be the union of all caps that are ε-boundary caps
of K and we denote it by Fc

ε . The complement of the ε-wet part in K is said to be
the ε-floating body of K , which we denote by Fε . This notion comes from the mental
picture that when K is a three dimensional convex body containing ε units of water,
the floating body is the part that floats above water (see [6]). Finally, consider the
floating body Fε and a point x ∈ Fc

ε . We say that x sees y if the chord [x, y] does not
intersect Fε . Set Sx,ε to be the set of those y ∈ K seen by x. We then define

g(ε) = sup
x∈Fc

ε

Vold(Sx,ε).

In particular, we note that Sx,ε is the union of all ε-boundary caps containing x.
Since K is smooth, it is well known that g(ε) = Θ(Vold(ε-boundary cap))

(see [6]).

2.2 Asymptotic Notation

We shall always assume n is sufficiently large, without comment. We use the notation
Ω,O,Θ etc. with respect to n → ∞, unless otherwise indicated. All constants are
assumed to depend on at most the dimension d , the body K , and ρ.

3 Variance

In this section, we provide a proof of Theorem 1.1. It follows an argument first used
by Reitzner in [10], which has also been utilized by Bárány and Reitzner [4] to prove
a lower bound of the variance in the case where the convex body is a polytope. Es-
sentially, we condition on arrangements of our vertices where they can be perturbed



Discrete Comput Geom (2008) 39: 469–499 475

in such a way that the resulting change in volume is independent for each vertex in
question.

Choosing the vertices along the boundary according to a given distribution, as
opposed to uniformly in the body, adds technical complication and requires greater
use of the boundary structure. The key to the study is the boundary approximation
mentioned both in this section and in Appendix 1.

3.1 Small Local Perturbations

We begin by establishing some notation. Define the standard paraboloid E to be

E = {z ∈ R
d | zd ≥ (z1)2 + · · · + (zd−1)2}.

Hence we have 2E = {z ∈ R
d | zd ≥ 1

2 ((z1)2 + · · · + (zd−1)2)} and observe that we
have the inclusion

E ⊂ 2E.

We now choose a simplex S in the cap C(0,1) of E. Choose the base of the
simplex to be a regular simplex with vertices in ∂E ∩H(ed,hd) and the origin (hd to
be determined later). We shall denote by v0, v1, . . . , vd the vertices of this simplex,
singling out v0 to be the apex of S (i.e. the origin). The important point here is that
for sufficiently small hd , the cone {λx ∈ R

d | λ ≥ 0, x ∈ S} contains 2E ∩ H(ed,1).
Indeed, as the radius of E ∩ H(ed,hd) is

√
hd , the inradius of base of the simplex is√

hd/d2, hence for hd < 1/2d2 our above inclusion holds.
Now, look at the orthogonal projection of the vertices of the simplex to the plane

spanned by {e1, . . . , ed−1}, which we think of as R
d−1 and denote the relevant oper-

ator as

proj : R
d → R

d−1.

Around the origin we center a ball B0 of radius r , and around each projected point
(except the origin) we can center a ball in R

d−1 of radius r ′, both to be chosen later.
We label these balls B1, . . . ,Bd , where Bi is the ball about proj(vi). We can form the
corresponding sets B ′

i to be the inverse image of these sets on ∂E under the projection
operator. In other words, if b : R

d−1 → R is the quadratic form whose graph defines
E, b̃ : R

d−1 → ∂E the map induced by b, then

B ′
i = b̃(Bi), i = 0, . . . , d.

We note that if we choose r sufficiently small, then for any choice of random points
Y ∈ B ′

0 and xi ∈ B ′
i , i = 1, . . . , d the cone on these points is close to the cone on the

simplex in the sense that

{λx | x ∈ [Y,x1, . . . , xd ], λ ≥ 0} ⊃ 2E ∩ H(ed,1).

We may also think of Y being chosen randomly, according to the distribution in-
duced from the (d − 1)-dimensional Hausdorff measure on E, say. Then, passing to
a smaller r if necessary, we see that for any choice of xi ∈ B ′

i , i = 1, . . . , d, we have

VarY (Vold([Y,x1, . . . , xd ])) ≥ c0 > 0.
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All the above follows from continuity. We hope results of this type to be true for
arbitrary caps of ∂K , and indeed our current construction will serve both model and
computational tool for similar constructions on arbitrary caps.

We now consider the general paraboloid

Q =
{
z ∈ R

d
∣∣∣ zd ≥ 1

2
(k1(z

1)2 + · · · + kd−1(z
d−1)2)

}
,

where here ki > 0 for all i and let the curvature be κ = ∏
ki . We now transform

the cap C(0,1) of E to the cap C(0, h) of Q by the (unique) linear map A which
preserves the coordinate axes. Let Di be the image of Bi under this affinity. We find
that the volume of the Di scales to give

μ(Di) = c1h
d−1

2 , i = 1, . . . , d, (4)

where here c1 is some positive constant only depending on the curvature κ = ∏
ki

and our choice of r and r ′.
Next, for each point x ∈ ∂K we identify our general paraboloid Q with the ap-

proximating paraboloid Qx of K at x (in particular, we identify R
d−1 with the tan-

gent hyperplane at x and the origin with x). We thus write Di(x) to indicate the set
Di, i = 1, . . . , d, corresponding to Qx . Analogously to the construction of the {B ′

i}
we can construct the {D′

i (x)} as follows. Let f x : R
d−1 → R be the function whose

graph locally defines ∂K at x (this exists for h sufficiently small, see Lemma 6.1),
f̃ : R

d−1 → ∂K the induced function. Let

D′
i (x) = f̃ (Di(x)).

We note here that in general the sets D′
i (x) are not the images of B ′

i under A as A(B ′
i )

may not lie on the boundary ∂K in general.
Because the curvature is bounded above and below by positive constants, as is ρ,

we see that the volume of Di(x) is given by

c3h
d−1

2 ≤ μ(Di(x)) ≤ c4h
d−1

2 , (5)

where c3, c4 are constants depending only on K .
We now wish to get bounds for VarY (Vold([Y,x1, . . . , xd ])) where xi ∈ D′

i (x), i =
1, . . . , d , and we choose Y randomly in D′

0(x) according to the distribution on the
boundary. To begin with, we’ll need the following technical lemma.

Lemma 3.1 There exists a r0 > 0 and r ′
0 such that for all r0 > r > 0 and r ′

0 >

r ′ > 0 we have an hr > 0 such that for any choice of xi ∈ D′
i (x), i = 1, . . . , d, and

hr > h > 0:

c5h
d+1 ≤ VarY ([Y,x1, . . . , xd ]) ≤ c6h

d+1, (6)

where c5, c6 are positive constants depending only on K and r .

The proof of this lemma is given in Appendix 1. Assuming this lemma is true, we
proceed with our analysis as follows.
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Fix some choice for hd < 1/2d2. Let v0, . . . , vd denote the vertices of the sim-
plex S. Then by continuity we know that there is some η > 0 such that choosing xi

in η-balls B(vi, η) centered at the vertices preserves our desired inclusion, namely

{λx | x ∈ [x0, x1, . . . , xd ], λ ≥ 0} ⊃ 2E ∩ H(ed,1). (7)

We now desire to set r ′ > 0 such that D′
i (x) ⊂ A(B(vi, η)) for all x ∈ ∂K . As a

consequence, we will obtain the inclusion, for xi ∈ D′
i (x),

{λx | x ∈ [x0, x1, . . . , xd ], λ ≥ 0} ⊃ 2Qx ∩ H(ux,h) ⊃ K ∩ H(ux,h).

Choose ε > 0 such that

Ui = {(x, y) ∈ R
d | x ∈ B(projvi, η/2) ⊂ R

d−1 and

(1 + ε)−1bE(x) ≤ y ≤ (1 + ε)bE(x)} ⊂ B(vi, η) (8)

for each i, where bE is the quadratic form defining our standard paraboloid E. Ap-
pealing to Lemma 6.1 we take h sufficiently small such that for all x ∈ ∂K ,

(1 + ε)−1bx(y) ≤ fx(y) ≤ (1 + ε)bx(y).

Choosing r ′ < η/2 forces the Bi to be balls of radius r ′ about projvi , which by the
above causes D′

i (x) ⊂ A(Ui) ⊂ A(B(vi, η)).
With these choices for r, r ′ and some constant h0 > 0 to enforce the condition that

h is sufficiently small above, we now proceed to the body of our argument.

3.2 Proof of Lower Bound on Variance

Choose n points t1, . . . , tn randomly in ∂K according to the probability induced by
the distribution. Choose n points y1, . . . , yn ∈ ∂K and corresponding disjoint caps
according to Lemma 6.6. In each cap C(yj ,hn) (of K) establish sets {Di(yj )} and
{D′

i (yj )} for i = 0, . . . , d and j = 1, . . . , n as in the above discussion.
We let Aj , j = 1, . . . , n be the event that exactly one random point is contained in

each of the Di(yj ), i = 0, . . . , d and every other point is outside C(yj ,hn)∩ ∂K . We
calculate the probability as

P(Aj ) = n(n − 1) · · · (n − d)P(ti ∈ D′
i (yj ), i = 0, . . . , d)

× P(ti /∈ C(yj ,hn) ∩ ∂K, i ≥ d + 1)

= n(n − 1) · · · (n − d)

d∏
i=0

μ(D′
i (yj ))

n∏
k=d+1

(1 − μ(C(yj ,hn) ∩ ∂K)).

We can give a lower bound for this quantity with (5) and Lemma 6.6 , and noting
specifically that hn = Θ(n−2/(d−1)):

P(Aj ) ≥ c7n
d+1n−d−1(1 − c8n

−1)n−d−1 ≥ c9 > 0, (9)
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where c7, c8, c9 are positive constants. In particular, denoting by 1A the indicator
function of event A. We obtain that

E

(
n∑

j=1

1Aj

)
=

n∑
j=1

P(Aj ) ≥ c9n. (10)

Now we denote by F the position of all points of {t1, . . . , tn} except those which are
contained in D′

0(yj ) with 1Aj
= 1. We then use the conditional variance formula to

obtain a lower bound:

VarZ = E Var(Z |F) + VarE(Z |F) ≥ E Var(Z | F).

Now we look at the case where 1Aj
and 1Ak

are both 1 for some j, k ∈ {1, . . . , n}.
Assume without loss of generality that tj and tk are the points in D′

0(yj ) and D′
0(yk),

respectively. We note that by construction there can be no edge between tj and tk ,
so the volume change affected by moving tj within D′

0(yj ) is independent of the
volume change of moving tk within D′

0(yk). This independence allows us to write
the conditional variance as the sum

Var(Z|F) =
n∑

j=1

Vartj (Z)1Aj
,

where here each variance is taken over tj ∈ D′
0(yj ). We now invoke Lemma 3.1,

equation (10), and the bound hn ≈ n−2/(d−1) to compute

E Var(Z | F) = E

(
n∑

j=1

Vartj (Z)1Aj

)
≥ c5h

d+1
E

(
n∑

j=1

1Aj

)

≥ c10(n
−2/(d−1))d+1c6n = c11n

−(d+3)/(d−1).

Thus, the above provides the promised lower bound on VarZ.

4 Concentration

Our concentration result shows that Vold(Kn) is highly concentrated about its mean.
Namely, we obtain a bound of the form

P(|Z − EZ| ≥ √
λVarZ ) ≤ c1 exp(−c2λ) (11)

for positive constants c1, c2. Such an inequality indicates that Z has an exponential
tail, which proves sufficient to provide information about the higher moments of Z

and the rate of convergence of Z to its mean.
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4.1 Discrete Geometry

We now set up some basic geometry which will be the subject of our analysis. Let L

be a finite collection of points. For a point x ∈ K , define

�x,L = Vold([L ∪ x]) − Vold([L]).
A key property is the following observation.

Lemma 4.1 Let L be a set whose convex hull contains the floating body Fε . Then for
any x ∈ K ,

�x,L ≤ g(ε).

The major geometry result which allows for our analysis is the following lemma
quantifying the fact that Kn contains the floating body Fε with high probability.

Lemma 4.2 There are positive constants c and c′ such that the following holds for
every sufficiently large n. For any ε ≥ c′ lnn/n, the probability that Kn does not
contain Fε is at most exp(−cεn).

The proof of this result can be done using the notion of VC-dimension, similar
details of which can be found in [18].

4.2 A Slightly Weaker Result

The proof of Theorem 1.2 is rather technical. So we will first attempt a simpler one
of a slightly weaker result, which represents one of the main methodology used in
this paper.

Put G0 = 3g(ε) and V0 = 36ng(ε)2, where g(ε) is as defined in the previous
subsection. We show:

Theorem 4.3 For a given K ∈K2+ there are positive constants α, c, and ε0 such that
the following holds: for any α lnn/n < ε ≤ ε0 and 0 < λ ≤ V0/4G2

0, we have

P(|Z − EZ| ≥ √
λV0 ) ≤ 2 exp(−λ/4) + exp(−cεn).

We note that the constants used in the definition of G0 and V0 are chosen for conve-
nience and can be optimized, though we make no effort to do so.

To compare Theorem 4.3 with Theorem 1.2, we first compute V0.
V0 = 36ng(ε)2 = Θ(ε(d+1)/(d−1)), from definition of g(ε) and by Lemma 6.2. So,
setting ε = α lnn/n for some positive constant c satisfying Lemma 6.2 and greater
than a given α gives

V0 = 36ng(ε)2 = 36nΘ(ε(d+1)/(d−1))2 = Θ(nn−2(d+1)/(d−1)(lnn)2(d+1)/(d−1))

= Θ(n−(d+3)/(d−1)(lnn)2(d+1)/(d−1)). (12)

So, up to a logarithmic factor V0 is comparable to VarZ.
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To obtain Theorem 1.2 we utilize a martingale inequality (Lemma 4.4). This in-
equality, which is a generalization of an earlier result of Kim and Vu [9], appears to
be a new and powerful tool in the study of random polytopes. It was first used by Vu
in [18], and seems to provide a very general framework for the study of key function-
als. The reader who is familiar with other martingale inequalities, most notably that
of Azuma [2], will be familiar with the general technique (see also [1]).

Recall Kn = [t1, . . . , tn], where ti , i = 1, . . . , n, are independent random points
in ∂K . Let the sample space be Ω = {t | t = (t1, . . . , tn), ti ∈ ∂K} and let Z =
Z(t1, . . . , tn) = Vold(Kn) a function of these points, we may define the (absolute)
martingale difference sequence

Gi(t) = |E(Z | t1, . . . , ti−1, ti) − E(Z | t1, . . . , ti−1)|.
Thus, Gi(t) is a function of t = (t1, . . . , tn) that only depends on the first i points. We
then set

Vi(t) =
∫

G2
i (t)∂ti , V (t) =

n∑
i=1

Vi(t),

G′
i (t) = sup

ti

Gi(t) and G(t) = max
i

G′
i (t).

Note also that |Z − EZ| ≤ ∑
i Gi . The key to our proof is the following concentra-

tion lemma, which was derived using the so-called divide-and-conquer martingale
technique (see [18]).

Lemma 4.4 For any positive λ,G0 and V0 satisfying λ ≤ V0/4G2
0, we have

P(|Z − EZ| ≥ √
λV0 ) ≤ 2 exp(−λ/4) + P(V (t) ≥ V0 or G(t) ≥ G0). (13)

The proof of this lemma can be found in [18].
Comparing Lemma 4.4 to Theorem 4.3 we find that the technical difficulty comes

in bounding the term P(V (t) ≥ V0 or G(t) ≥ G0), which corresponds to the error
term pNT .

Set V ′ = n−1V0 = 36g(ε)2. We find that we can replace exp(−cεn) with
n exp(−c′εn) by adjusting the relevant constant c′ so that n exp(−c′εn)< exp(−cεn).
Thus, we’re going to prove that

P(G(t) ≥ G0 or V (t) ≥ V0) ≤ n exp(−cεn)

for some positive constant c.
To do this, we’ll prove the following claim.

Claim 4.5 There is a positive constant c such that for any 1 ≤ i ≤ n,

P(G′
i (t) ≥ G0 or Vi(t) ≥ V ′) ≤ exp(−cεn).

From this claim the trivial union bound gives

P(G(t) ≥ G0 or V (t) ≥ V0) ≤ n exp(−cεn),

hence quoting Lemma 4.4 finishes our proof of Theorem 4.3.
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4.3 Proof of Claim 4.5

Recall that Z = Z(t1, . . . , tn) = Vold(Kn) for points ti ∈ ∂K .
The triangle inequality gives us

Gi(t) = |E(Z | t1, . . . , ti−1, ti ) − E(Z | t1, . . . , ti−1)|
≤ Ex

∣∣E(Z | t1, . . . , ti−1, ti ) − E(Z | t1, . . . , ti−1, x)
∣∣,

where Ex denotes the expectation over a random point x. The analysis for the two
terms in the last inequality is similar, so we will estimate the first one. Let us fix
(arbitrarily) t1, . . . , ti−1. Let L be the union of {t1, . . . , ti−1} and the random set of
points {ti+1, . . . , tn}. Since

Vold([L ∪ ti]) = Vold([L]) + �ti,L,

we have

E(Z | t1, . . . , ti−1, ti ) = E(Vold([L]) | t1, . . . , ti−1) + E(�ti ,L | t1, . . . , ti−1).

The key inequality of the analysis is the following:

E(�ti ,L | t1, . . . , ti−1) ≤ P(Fε � [L] | t1, . . . , ti−1) + g(ε). (14)

The inequality (14) follows from two observations:

• If Fε � [L], �ti,L is at most 1.
• If [L] contains Fε , �ti,L ≤ g(ε) by Lemma 4.1.

We denote by Ω(j) and Ω<j> the spaces spanned by {t1, . . . , tj } and {tj , . . . , tn},
respectively.

Set δ = n−4. We say that the set {t1, . . . , ti−1} is typical if

PΩ〈i+1〉(Fε ⊆ [L] | t1, . . . , ti−1) ≥ 1 − δ.

The rest of the proof has two steps. In the first step, we show that if {t1, . . . , ti−1} is
typical then G′

i (t) ≤ G0 and Vi(t) ≤ V ′. In the second step, we bound the probability
that {t1, . . . , ti−1} is not typical.

First step. Assume that {t1, . . . , ti−1} is typical, so PΩ<i+1>(Fε � [L] |
t1, . . . , ti−1) ≤ δ = n−4. We first bound G′

i (t). Observe that

Gi(t) ≤ Ex |E(Z | t1, . . . , ti−1, ti) − E(Z | t1, . . . , ti−1, x)|
≤ Ex |E(�ti ,L | t1, . . . , ti−1) − E(�x,L | t1, . . . , ti−1)|
≤ E(�ti ,L | t1, . . . , ti−1) + ExE(�x,L | t1, . . . , ti−1)

≤ 2g(ε) + 2n−4 ≤ 3g(ε) = G0 (by (14)).

In the last inequality we use the fact that ε = Ω(lnn/n), g(ε) = Ω(ε(d+1)/(d−1)) �
n−4. Thus it follows that

G′
i (t) = max

ti
Gi(t) ≤ G0.
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Calculating Vi(t) using the above bound on Gi(t) it follows that

Vi(t) =
∫

Gi(t)
2dμ(ti) ≤

∫
9g(ε)2dμ(ti) = 9g(ε)2 < V ′.

Second step. In this step, we bound the probability that {t1, . . . , ti−1} is not typical.
First of all, we will need a technical lemma as follows. Let Ω ′ and Ω ′′ be probability
spaces and set Ω ′′′ to be their product. Let A be an event in Ω ′′′ which occurs with
probability at least 1 − δ′, for some 0 < δ′ < 1.

Lemma 4.6 For any 1 > δ > δ′

PΩ ′(PΩ ′′(A | x) ≤ 1 − δ) ≤ δ′/δ,

where x is a random point in Ω ′ and PΩ ′ and PΩ ′′ are the probabilities over Ω ′ and
Ω ′′, respectively.

Proof Recall that PΩ ′′′(A) ≥ 1 − δ′. However,

PΩ ′′′(A) =
∫

Ω ′
PΩ ′′(A | x)∂x ≤ 1 − δPΩ ′(PΩ ′′(A | x) ≤ 1 − δ).

The claim follows. �

Recall that L = {t1, . . . , ti−1, ti+1, . . . , tn}. Lemma 4.2 yields

P(Fε � [L]) ≤ exp(−c0εn),

for some positive constant c0 depending only on K . Applying Lemma 4.6 with Ω ′ =
Ω(i−1), Ω ′′ = Ω〈i+1〉, δ′ = exp(−cεn) and δ = n−4, we have

PΩ(i−1)
({t1, . . . , ti−1} is not typical)

= PΩ(i−1)
(PΩ〈i+1〉(Fε � [L] | t1, . . . , ti−1) ≤ 1 − δ)

≤ δ′/δ = n4 exp(−c0εn) ≤ exp(−cεn)

for c = c0/2, given c0εn ≥ 8 lnn. This final condition can be satisfied by setting
the α involved in the lower bound of ε to be sufficiently large. Thus, our proof is
complete.

4.4 A Better Bound on Deviation

By using more of the smooth boundary structure, we can obtain a better result. As we
shall see at the end of the proof, this result implies Theorem 1.2.

Theorem 4.7 For any smooth convex body K with distribution μ along the bound-
ary, there are constants c, c′, α, ε0 such that the following holds. For any V0 ≥
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αn−(d+3)/(d−1), ε0 ≥ ε > α lnn/n, G0 ≥ 3ε(d+1)/(d−1), and 0 < λ ≤ V0/4G2
0, we

have

P(|Z − EZ| ≥ √
λV0 ) ≤ 2 exp(−λ/4) + pNT ,

where

pNT = exp(−cεn) + exp(−c′n
d−1
3d+1 −η),

and η is any small positive constant less than d−1
3d+1 .

The proof of Theorem 4.7 follows from more careful estimates concerning �x,L.
An analogous result for random polytopes can be found in Sect. 2.5 of [18].

The key difference between this result and Theorem 4.3 is that here V0 is in-
dependent of ε, so we can set V0 = αn−(d+3)/(d−1) without affecting the tail es-

timate. If we also set ε = n− 2d+2
3d+1 −η , then the two error terms in pNT are the

same (up to a constant factor). Since G0 = 3g(ε) = 3Θ(ε(d+1)/(d−1)), we have

λ < V0/4G2
0 ≤ c′′n

d−1
3d+1 + 2(d+1)η

d−1 for some constant c′′. Hence Theorem 1.2.

5 Central Limit Theorem

5.1 Poisson Central Limit Theorem

Before we prove the theorem, we should give a brief review of the Poisson point
process. Let K ∈ K2+, and let Pois(n) be a Poisson point process with intensity n

concentrated on K . Then applying Pois(n) on K gives us random points {x1, . . . , xN }
where the number of points N is Poisson distributed with intensity nμ(∂K) = n.
We write Πn = [x1, . . . , xN ]. Conditioning on N , the points x1, . . . , xN are inde-
pendently uniformly distributed in ∂K . For two disjoint subsets A and B of ∂K ,
their intersections with Pois(n), i.e. the point sets A ∩ Pois(n) = {x1, . . . , xN } and
B ∩ Pois(n) = {y1, . . . , yM}, are independent. This means N and M are indepen-
dently Poisson distributed with intensity nμ(A) and nμ(B) respectively, and xi and
yj are chosen independently.

The following standard estimates of the tail of Poisson distribution will be used
repeatedly throughout this section. Let X be a Poisson random variable with mean λ.
Then

P

(
X ≤ λ

2

)
=

λ/2∑
k=0

e−λ λk

k! ≤ e−λ +
λ/2∑
k=1

e−λ

(
eλ

k

)k

≤ λ + 1

2
e−λ(2e)λ/2 ≤ λ + 1

2

(
e

2

)−λ/2

= Θ

((
e

2

)−λ/2)
, (15)

where the last equality holds when λ is large. Similarly,

P(X ≥ 3λ) ≤
∞∑

k=3λ

e−λ

(
eλ

k

)k

≤
∞∑

k=0

e−λ

(
e

3

)k

= ce−λ, (16)

where c is a small constant.
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The key ingredient of the proof is the following theorem:

Theorem 5.1 (Baldi and Rinott [3]) Let G be the dependency graph of random vari-
ables Yi ’s, i = 1, . . . ,m, and let Y = ∑

i Yi . Suppose the maximal degree of G is D

and |Yi | ≤ B a.s., then
∣∣∣∣P

(
Y − EY√

VarY
≤ x

)
− Φ(x)

∣∣∣∣ = O(
√

S),

where Φ(x) is the standard normal distribution and S = mD2B3

(
√

VarY)3 .

Here the dependency graph of random variables Yi ’s is a graph on m vertices such
that there is no edge between any two disjoint subsets, A1 and A2, of {Yi}mi=1 if these
two sets of random variables are independent.

Because we can divide the convex body K into Voronoi cells according to the cap
covering Lemma 6.6, we will study Vold(Πn) as a sum of random variables which
are volumes of the intersection of Πn with each of the Voronoi cell. And the theorem
above allows us to prove central limit theorem for sums of random variables that may
have small dependency on each other.

First we let

m =
⌊

n

4d lnn

⌋
.

By Lemma 6.6, given K ∈ K2+, we can choose m points, namely y1, . . . , ym, on ∂K .
And the Voronoi cells Vor(yi) of these points dissect K into m parts. Let

Yi = Vold(Vor(yi) ∩ K) − Vold(Vor(yi) ∩ Πn),

i = 1, . . . ,m. So

Y =
∑

i

Yi = Vold(K) − Vold(Πn). (17)

Moreover, these Voronoi cells also dissect the boundary of K into m parts, and each
contains a cap Ci with d-dimensional volume

Vold(Ci) = Θ(m− d+1
d−1 ),

by Lemma 6.6. Now by Lemma 6.2 it is a boundary cap with (d − 1)-dimensional
volume

μ(Ci ∩ ∂K) = Θ(m−1) = Θ

(
4d lnn

n

)
.

Denote by Ai (i = 1, . . . ,m) the number of points generated by the Poisson point
process of intensity n contained in Ci ∩ ∂K , hence Ai is Poisson distributed with
mean λ = nμ(Ci ∩ ∂K) = Θ(4d lnn). Then

P(Ai = 0) = e−λ = O(n−4d).
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And by (15),

P(Ai ≥ 3λ) = P(Ai ≥ 12d lnn) = O(n−4d).

Now let Am be the event that there is at least one point and at most 12d lnn points in
every Ai for i = 1, . . . ,m. Then

1 ≥ P(Am) = P(∩i{1 ≤ Ai ≤ 12d lnn}) ≥ 1 − Ω(n−4d+1). (18)

The rest of the proof is organized as follows. We first prove the central limit theo-
rem for Vold(Πn) when we condition on Am, then we show removing the condition
doesn’t affect the estimate much, as Am holds almost surely. Let P̃ denote the condi-
tional probability measure induced by the Poisson point process X(n) on ∂K given
Am, i.e.

P̃(Vold(Πn) ≤ x) = P(Vold(Πn) ≤ x|Am).

Similarly, we define the corresponding conditional expectation and variance to be Ẽ

and Ṽar, then

Lemma 5.2
∣∣∣∣̃P

(
Vold(Πn) − ẼVold(Πn)√

ṼarVold(Πn)

≤ x

)
− Φ(x)

∣∣∣∣ = O(n
− d+1

4(d−1) ln
d+2
d−1 n). (19)

Proof Note that by (17), Vold(Πn) − ẼVold(Πn) = ẼY − Y , and ṼarY =
ṼarVold(Πn) = Θ(n− d+3

d−1 ), by Theorem 5.5. Hence it suffices to show Y satisfies
the Central Limit Theorem under P̃.

Given Am, we define the dependency graph on random variables Yi, i = 1, . . . ,m

as follows: we connect Yi and Yj if Vor(yi) ∩ C(yj , c,m
− 2

d−1 ) �= ∅ for some con-
stant c which satisfies Lemma 6.8. To check dependency, we see that if Yi � Yj ,

then Vor(yi) ∩ C(yj , c,m
− 2

d−1 ) = ∅. Thus, for any point P1 ∈ Vor(yi) ∩ ∂K , P2 ∈
Vor(yj ) ∩ ∂K , the line segment [P1,P2] cannot be contained in the boundary of Πn.
Otherwise, it would be a contradiction to Lemma 6.8. Therefore, there is no edge
of Πn between vertices in Vor(yi) and Vor(yj ), hence Yi and Yj are independent
given Am.

To apply Theorem 5.1 to Y , we are left to estimate parameters D and B .

By Lemma 6.7, C(yi, c,m
− 2

d−1 ) (i = 1, . . . ,m) can intersect at most O(1) many
Vor(yi)’s. Hence D = O(1).

By Lemma 6.8, for any point xi in Ci , i = 1, . . . ,m,

δH (K,Πn) ≤ δH (K, [x1, . . . , xm]) = O(m− 2
d−1 ).

So

Vor(yi)\Πn ⊆ C(yi, h
′), (20)
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where h′ = O(m− 2
d−1 ). By Lemma 6.5 and (20),

Yi ≤ Vold(C(yi, h
′)) = O(m− d+1

d−1 ) = O

((
4d lnn

n

) d+1
d−1

)
:= B.

Hence by the Baldi–Rinott Theorem, the rate of convergence in (19) is n
− d+1

4(d−1) ×
(lnn)

d+2
d−1 , and we finish the proof. �

Now, we will remove the condition Am. First observe an easy fact.

Proposition 5.3 For any events A and B ,

|P(B | A) − P(B)| ≤ P(Ac).

Hence we can deduce:

Lemma 5.4

|̃P(Vold(Πn) ≤ x) − P(Vold(Πn) ≤ x)| = O(n−4d+1), (21)

|ẼVolkd(Πn) − EVolkd(Πn)| = O(n−4d+1), (22)

|ṼarVold(Πn)) − Var Vold(Πn)| = O(n−4d+1). (23)

The proofs of these three equations follow more or less from Proposition 5.3 with
P((Am)c) = O(n−4d+1), and can be found in [10]. As a result of Lemma 5.4, we can
remove the condition Am and obtain Theorem 1.5 as follows. For notational conve-
nience, we denote Vold(Πn) by X temporarily. For each x, let x̃ be such that

EX + x
√

VarX = ẼX + x̃
√

ṼarX,

then

|x − x̃| = O(n
−4d+1+ d+3

2(d−1) ) + |x|O(n−4d+1+ d+3
d−1 ), (24)

by (21) and Lemma 5.2. We have

FX(x) = P(X ≤ EX + x
√

VarX ) = P̃(X ≤ ẼX + x̃
√

Ṽar ) + O(n−4d+1)

= Φ(x̃) + O(n
− d+1

4(d−1) ln
d+2
d−1 n) + O(n−4d+1).

But |Φ(x) − Φ(x̃)| = O(n−1), since |Φ(x) − Φ(x̃)| ≤ |x − x̃| ≤ O(n−1) when
|x| ≤ n and by (24) |x̃| ≥ cn when |x| ≥ n which implies |Φ(x) − Φ(x̃)| ≤
Φ(n) + Φ(cn). So |FX(x) − Φ(x)| = |P(X ≤ EX + x

√
VarX) − Φ(x)| =

O(n
− d+1

4(d−1) ln
d+2
d−1 n). Hence finishes the proof of Theorem 1.5.
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5.2 Approximating Kn by Πn

As is pointed out in the introduction, Πn approximates Kn quite well, as one might
expect.

Theorem 5.5 Let Πn be the convex hull of points chosen on ∂K according to the
Poisson point process Pois(n). Then,

EVold(Πn) ≈ EVold(Kn) ≈ 1 − c(K,d)n− 2
d−1 ,

as n → ∞, and

Var Vold(Πn) = Θ(Var Vold(Kn)) = Θ(n− d+3
d−1 ).

Proof Due to the conditioning property of Poisson point process, we have

EVold(Πn) =
∑

|k−n|≤n7/8

EVold(Kk)e
−n nk

k! +
∑

|k−n|≥n7/8

EVold(Kk)e
−n nk

k! .

For Poisson distribution, the Chebyschev’s inequality gives P(|k − n| ≥ n7/8) ≤
n−3/4. Hence the second summand is bounded above by n−3/4 since EVold(Kk) is at

most 1. By 2, EVold(Kk) = 1 − k− 2
d−1 = 1 − (1 + o(1))n− 2

d−1 , when |k − n| ≤ n7/8.
For the variance, we can rewrite Var Vold(Πn) as follows:

Var Vold(Πn) = EN Var(Vold(Πn) | N) + VarN E(Vold(Πn) | N).

By (15), the second term in the above equation becomes:

VarE(Vold(Πn) | N)

= ENE
2Vold(KN) − (ENEVold(KN))2

=
∞∑

j= n
2

∞∑

k= n
2

(E2Vold(Kk) − EVold(Kk)EVold(Kj ))e
−2n nk+j

k!j ! + O

((
e

2

)−n/2)

=
∞∑

j= n
2

∞∑
k=j

(EVold(Kk) − EVold(Kj ))
2e−2n nk+j

k!j ! + O

((
e

2

)−n/2)
,

where the third equality is due to (15). By Lemma 6.9, EVold(Kj+1)−EVold(Kj ) =
c(K,d)j− d+1

d−1 when j → ∞, hence

EVold(Kk) − EVold(Kj ) =
k−1∑
i=j

EVold(Ki+1) − EVold(Ki) ≤ c(K,d)(k − j)j− d+1
d−1 ,



488 Discrete Comput Geom (2008) 39: 469–499

and

VarE(Vold(Πn) | N) ≤ c(K,d)

∞∑

j= n
2

∞∑
k=j

(k − j)2j− 2d+2
d−1 e−2n nk+j

k!j ! + O

((
e

2

)−n/2)

≤ cn− 2d+2
d−1 VarN + O

((
e

2

)−n/2)
= O(n− d+3

d−1 ).

Now, Var Vold(Kn) = Θ(n− d+3
d−1 ), so by (15) and (16), we have

E Var Vold(Πn|N) = E(Θ(N− d+3
d−1 ))

= O

(
P

(
N ≤ n

2

))
+ E(N− d+3

d−1 χ{ n
2 <N≤3n}) + O(P(3n < N))

= Θ(n− d+3
d−1 ). �
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Appendix 1 Geometric Toolkit

6.1 Boundary Approximation

We begin with some basic notions and notation. For K ∈ K2+,at each point x ∈ ∂K

there is a unique paraboloid Qx , given by a quadratic form bx , osculating ∂K at x.
We may describe Qx and bx by identifying the tangent hyperplane of ∂K at x with
R

d−1 and x with the origin. This is a well known fact, see e.g. [10]. In a neighborhood
of x, we can represent ∂K as the graph of a C2, convex function f : R

d−1 → R, i.e.
each point in ∂K near x can be written in the form (y, fx(y)), where y ∈ Rd−1 the
form (y1, . . . , yd−1). Thus, we may write

bx(y) = 1

2

∑
1≤i,j≤d−1

∂fx

∂yi∂yj
(0)yiyj and

Qx = {(y, z) | z ≥ bx(y), y ∈ R
d−1, z ∈ R},

here ∂fx

∂yi∂yj (0) denote the second partial derivative of fx at the origin with respect

to yi and yj . The main thrust of the above is that these paraboloids approximate the
boundary structure. The formulation given here is due to Reitzner, who provides a
proof in [12].

Lemma 6.1 Let K ∈ K2+ and choose δ > 0 sufficiently small. Then there exists a
λ > 0, depending only on δ and K , such that for each point x ∈ ∂K the following
holds: If we identify the tangent hyperplane to ∂K at x with R

d−1 and x with the ori-
gin, then we may define the λ−neighborhood Uλ of x ∈ ∂K by projUλ = Bd−1(0, λ).
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Uλ can be represented by a convex function fx(y) ∈ C2, for y ∈ Bd−1(0, λ). Further-
more,

(1 + δ)−1bx(y) ≤ fx(y) ≤ (1 + δ)bx(y) and (25)
√

1 + |∇fx(y)|2 ≤ (1 + δ), (26)

for y ∈ Bd−1(0, λ), where bx is defined as above and ∇fx(y) stands for the gradient
of fx(y).

This lemma proves that at each point x ∈ ∂K , the deviation of the boundary of the
approximating paraboloid ∂Qx from ∂K is uniformly bounded in a small neighbor-
hood of x.

We use this lemma to show how one can relate ε-caps to ε-boundary caps. This
relationship is used repeatedly throughout the paper as it allows us to work with
volumes of different dimensions.

Lemma 6.2 For a given K ∈K2+, there exists constants ε0, c, c
′ > 0 such that for all

0 < ε < ε0 we have that for any ε-cap C of K ,

c−1ε(d−1)/(d+1) ≤ μ(C ∩ ∂K) ≤ cε(d−1)/(d+1)

and for any ε-boundary cap C′ of K ,

c′−1ε(d+1)/(d−1) ≤ Vold(C
′) ≤ c′ε(d+1)/(d−1).

Proof We shall prove the first statement. Fix some δ > 0 for Lemma 6.1.
Consider in R

d the paraboloid given by the equation

zd ≥ (z1)2 + (z2)2 + · · · + (zd−1)2.

Intersecting this paraboloid with the halfspace defined by the equation zd ≤ 1
gives an object which we shall call the standard cap, E. We form (1 + δ)−1E and
(1 + δ)E similarly by the equations zd ≥ (1 + δ)−1((z1)2 + (z2)2 +· · · , (zd−1)2) and
zd ≥ (1 + δ)((z1)2 + (z2)2 + · · · , (zd−1)2), using the same halfspace as before. We
note the inclusions

(1 + δ)−1E ⊃ E ⊃ (1 + δ)E.

Let c1 = Vold((1 + δ)−1E) and c2 = Vold((1 + δ)E), and further set c3 =
μ(proj((1 + δ)−1E)) and c4 = μ(proj((1 + δ)E)) where here proj is the orthogo-
nal projection onto the hyperplane spanned by the first (d − 1) coordinates.

Now, let C be our ε-cap. Let x be the unique point in ∂K whose tangent hyper-
plane is parallel to the hyperplane defining C. Assuming that Lemma 6.1 applies,
we may equate the tangent hyperplane of ∂K at x with R

d−1, and view C ∩ ∂K as
being given by some convex function f : R

d−1 → R. Further, let Qx be the unique
paraboloid osculating ∂K at x. Let A be a linear transform that takes E to Qx . We
observe that Qx is the paraboloid defined by the set zd ≥ bx(z

1, . . . , zd−1) inter-
sected with the halfspace zd ≤ h, for some h > 0. We can define (1 + δ)−1Qx (resp.



490 Discrete Comput Geom (2008) 39: 469–499

(1 + δ)Qx ) to be the set defined by the intersection of this same half space and the
points given by zd ≥ (1+ δ)−1bx(z

1, . . . , zd−1) (resp. zd ≥ (1+ δ)bx(z
1, . . . , zd−1)).

Observe that A((1 + δ)−1E) = (1 + δ)−1Qx and A((1 + δ)E) = (1 + δ)Qx .
Appealing to Lemma 6.1, we see that

(1 + δ)−1Qx ⊃ C ⊃ (1 + δ)Qx.

This gives

c1|detA| ≥ ε ≥ c2|detA|. (27)

Let f̃ : R
d−1 → ∂K be the function induced by f , i.e. f̃ (y) = (y, fx(y)). Using

the inclusion

f̃ (proj((1 + δ)−1Qx)) ⊃ C ∩ ∂K ⊃ f̃ (proj((1 + δ)Qx))

and the bound

(1 + δ) ≥
√

1 + |∇f |2 ≥ 1

furnished by Lemma 6.1, if A′ represents the restriction of A to the first (d − 1)

coordinates, we obtain

c3|detA′|(1 + δ) ≥ μ(C ∩ ∂K) ≥ c4|detA′|. (28)

A simple computation shows |detA| = 2(d−1)/2κ−1/2h(d+1)/2 and |detA′| =
2(d−1)/2κ−1/2h(d−1)/2, where κ is the Gauß–Kronecker curvature of ∂K at x. Us-
ing this and (27) gives upper and lower bounds on h, and this bound with (28) gives

c5ε
(d−1)/(d+1) ≥ μ(C ∩ ∂K) ≥ c6ε

(d−1)/(d+1),

where here c5, c6 are constants depending only on κ . As K is compact and κ is always
positive we can assume we can change c5 and c6 to be independent of κ , and hence x.

Finally, we return to the issue of values of ε (hence h) for which Lemma 6.1
applies. We note that in general every quadratic form bx can be given by

bx(y) = 1

2

∑
i

ki(y
i)2,

where ki are the principal curvatures. We observe that as the Gauß–Kronecker curva-
ture is positive then there are positive constants k′ and k′′ depending only on K such
that 0 < k′ < ki < k′′. This bounds the possible geometry of Qx , and implies the ex-
istence of an ε0 such that for 0 < ε < ε0, such that proj((1 + δ)−1Qx) ⊂ B(0, λ) (λ
as given in Lemma 6.1), allowing us to apply Lemma 6.1. This completes the proof
of the first statement. The second statement is similar. Relaxing constants allows the
statement as given. �

Remark 6.3 It is important to note that the above is not true for general convex bodies.
In particular, any polytope P provides an example of a convex body with caps C such
that the quantities Vold(C) and μ(C ∩ ∂P ) are unrelated.
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6.2 Caps and Cap Covers

Lemma 6.4 through 6.8 and their proofs below can be found in [10].

Lemma 6.4 Given K ∈ K2+, there exist constants d1, d2 such that for each cap
C(x,h) with h ≤ h0, we have

∂K ∩ B(x, d1h
1
2 ) ⊂ C(x,h) ⊂ B(x, d2h

1
2 ).

Lemma 6.5 Given K ∈ K2+, there exists a constant d3 such that for each cap C(x,h)

with h ≤ h0, we have

Vold(C(x,h)) ≤ d3h
d+1

2 .

Lemma 6.6 (Cap covering) Given m ≥ m0 and K ∈ K2+, there are points y1, . . . ,

ym ∈ ∂K , and caps Ci = C(yi, hm) and Ci = C(yi, (2d2/d1)
2hm) with

Ci ⊂ B(yi, d2h
1/2
m ) ⊂ Vor(yi),

Vor(yi) ∩ ∂K ⊂ B(yi,2d2h
1/2
m ) ∩ ∂K ⊂ Ci and

hm = Θ(m− 2
d−1 ).

Here Vor(yi) is the Voronoi cell of yi in K defined by:

Vor(yi) = {x ∈ K :‖ x − yi ‖≤‖ x − yk ‖ for all k �= i},
and we have

Vold(Ci) = Θ(m− d+1
d−1 ),

for all i = 1, . . . ,m.

Proof The proof follows from the fact that given m, for a suitable rm, we can find
balls B(yi, rm), i = 1, . . . ,m such that they form a maximal packing of ∂K , hence
B(yi,2rm) form a covering of ∂K . Use Lemma 6.4, one can convert between the
height of cap hm and radius of the ball rm. �

Lemma 6.7 Let K,m be given, and yi, i = 1, . . . ,m be chosen as in Lemma 6.6. The

number of Voronoi cells Vor(yj ) intersecting a cap C(yi, h) is O((h
1
2 m

1
d−1 +1)d+1),

i = 1, . . . ,m.

Lemma 6.8 Let m,K and yi,Ci, i = 1, . . . ,m be chosen as in Lemma 6.6. Choose
on the boundary within each cap Ci an arbitrary point xi (i.e. xi ∈ Ci ∩ ∂K), then

δH (K, [x1, . . . , xm]) = O(m− 2
d−1 ),

and there is a constant c such that for any y ∈ ∂K with y /∈ C(yi, cm
− 2

d−1 ), the line
segment [y, xi] intersects the interior of the convex hull [x1, . . . , xm].
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Lemma 6.9 For large n,

EVold(Kn+1) − EVold(Kn) = O(n−(d+1)/(d−1)).

This lemma can be proved using techniques from integral geometry similar to that
found in [11]. Alternatively, one case use the notion of ε-floating bodies to give an
appropriate bound. We give a proof sketch below of a slightly weaker version below,
and note that through techniques similar to that used to prove Theorem 1.2 and in
[18], we can remove the logarithmic factor.

Sketch of the Proof Following the notation found in the concentration proof, let Ω ′ =
{t = (t1, . . . , tn) | ti ∈ ∂K}, and put L = {t1, . . . , tn}.

Observe that we can write

EVold(Kn+1) − EVold(Kn)

=
∫

Ω ′

∫

∂K

Vold([t1, . . . , tn, tn+1]) − Vold([t1, . . . , tn])dtn+1dt

=
∫

Ω ′

∫

∂K

�tn+1,Ldtn+1dt.

Let A be the event that Fε ⊆ [L]. The integrand can be estimated by

�tn+1,L ≤ g(ε)χA + χĀ.

Here, we use g(ε) as an upperbound for �tn+1,L when Fε ⊆ [L] and 1 otherwise.
This bound is independent of tn+1, so our integral is upper bounded by

∫

Ω ′
g(ε)χA + χĀdt ≤ g(ε) + P(Fε � [L]).

Setting ε = c lnn/n so that it satisfies Lemma 4.2 we find that g(ε) =
Θ(ε(d+1)/(d−1)) = Θ(n−(d+1)/(d−1)poly(lnn)) and P(Fε � [L]) = exp(−c′εn) =
n−cc′

. Choosing c to be sufficiently large we find that

EVold(Kn+1) − EVold(Kn) = O(n−(d+1)/(d−1)poly(lnn)). �

Appendix 2 Proof of Corollaries 1.3 and 1.4

Proof of Corollary 1.3 Let λ0 = α
4 n

d−1
3d+1 + 2(d+1)η

d−1 be the upper bound for λ given in
Theorem 1.2. So for λ > λ0, by (1.2)

P(|Z − EZ| ≥ √
λV0 ) ≤ P(|Z − EZ| ≥ √

λ0V0)

≤ 2 exp(−λ0/4) + exp(−cn
d−1
3d+1 −η).

Combining (1.2) and the above, we get for any λ > 0,

P(|Z − EZ| ≥ √
λV0 ) ≤ 2 exp(−λ/4) + 2 exp(−λ0/4) + exp(−cn

d−1
3d+1 −η). (29)
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We then compute the kth moment Mk of Z, beginning with the definition:

Mk =
∫ ∞

0
tkdP(|Z − EZ| < t).

If we set γ (t) = P(|Z − EZ| ≥ t) then we can write

Mk =
∫ ∞

0
tkdP(|Z − EZ| < t) = −

∫ ∞

0
tkdγ (t)

= (−tkγ (t))|∞0 +
∫ ∞

0
ktk−1γ (t)dt =

∫ 1

0
ktk−1γ (t)dt.

Note that the limits of integration can be limited to [0,1] because we’ve assumed the
volume of K is normalized to 1.

Setting t = √
λV0 we get

∫ 1

0
ktk−1γ (t)dt

=
∫ 1/V0

0
k(

√
λV0 )k−1

P(|Z − EZ| ≥ √
λV0 )

√
V0

2
√

λ
dλ

≤ k

2
V

k/2
0

∫ 1/V0

0
λ

k
2 −12 exp(−λ/4) + 2 exp(−λ0/4) + exp(−cn

d−1
3d+1 −η)dλ

by (29).

We may now evaluate each term separately.
For the first term we observe that

∫ 1/V0

0
2λ

k
2 −1 exp(−λ/4)dλ ≤

∫ ∞

0
2λ

k
2 −1 exp(−λ/4)dλ = ck,

where ck is a constant depending only on k.
Since

V0 = αn− d+3
d−1 � n−5,

we can compute the second term:
∫ 1/V0

0
λ

k
2 −12 exp(−λ0/4)dλ ≤ 2

k
2 exp(−λ0/4)V

− k
2

0

≤ 2

k
2 exp

(
− α

16
n

d−1
3d+1 + 2(d+1)η

d−1

)
n

5k
2 = o(1).

The last term can be computed similarly and gives o(1) again. Hence,

Mk ≤ (ck + o(1))kV
k/2
0 = O(V

k/2
0 ). �

Proof of Corollary 1.4

P

(∣∣∣∣
Zn

EZn

− 1

∣∣∣∣f (n) ≥ δ(n)

)
≤ P

(
|Zn − EZn| ≥ EZn

√
32n− d+3

d−1 lnn
)
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≤ P(|Zn − EZn| ≥
√

8 lnnV0 )

≤ 2 exp(−8 lnn/4) + exp(−cn
d−1
3d+1 −η)

≤ 3 exp(−2 lnn) ≤ 3n−2,

by Theorem 1.2. The second inequality above is due to the fact that EZn = 1 −
cKn− 2

d−1 > 1/2 when n is large. Since
∑

n−2 is convergent, by Borel–Cantelli,
| Zn

EZn
− 1|f (n) converges to 0 almost surely, hence the corollary. �

Appendix 3 Proof of Lemma 3.1

We first prove the following claim. The notation follows that found in Section 3.1

Claim 8.1 Let x ∈ ∂K . There is some h(K) > 0 such that for h(K) > h > 0 there
exists a constant c(r) > 0 depending only on r and K such that

1

2
|detA|2c(r) ≤ VarY (Vold([Y,Av1, . . . ,Avd ])) ≤ 2|detA|2c(r),

and Y is a random point chosen in D′
0(x) according to the distribution on ∂K .

Proof To prove this claim, we compute. Recall that A is the linear map which takes E

to the paraboloid Qx . We shall denote by A′ the map A restricted to R
d−1. We shall

denote by f : Tx(∂K) ≈ R
d−1 → R the function whose graph defines ∂K locally,

and f̃ : R
d−1 → ∂K the function induced by f . Thus, we have:

EY (Vold([Y,Av1, . . . ,Avd ]))

=
∫
D0

Vold([f̃ (Y ),Av1, . . . ,Avd ])ρ(f̃ (Y ))

√
1 + f 2

Y 1 + · · · + f 2
Yd−1dY

∫
A′(C0)

ρ(f ′(Y ))

√
1 + f 2

Y 1 + · · · + f 2
Yd−1 dY

=
(

|detA′|
∫

C0

Vold([f̃ (AX),Av1, . . . ,Avd ])ρ(f̃ (AX))

×
√

1 + f 2
Y 1 + · · · + f 2

Yd−1(AX)dX

)/(
|detA′|

∫

C0

ρ(f ′(AX))

×
√

1 + f 2
Y 1 + · · · + f 2

Yd−1(AX)dY

)
. (30)

Observe that if we set A−1 ◦ f̃ (AX) = f ∗ to be the pullback of f̃ under A

then Vold([f̃ (AX),Av1, . . . ,Avd ]) = |detA| · Vold([f ∗(X), v1, . . . , vd ]). Letting b :
R

d−1 → R denote the quadratic form defining E, b̃ : R
d−1 → ∂E the induced func-

tion, we then use Lemma 6.1 to get the bound

2−1b ≤ f ◦ A′ ≤ 2b, (31)
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when h is sufficiently small. Thus, we get the bound

Vold([2−1b(X), v1, . . . , vd ]) ≥ Vold([f ∗(X), v1, . . . , vd ])
≥ Vold([2b(X), v1, . . . , vd ]),

which follows from the geometry. Now, since v1, . . . , vd form a (d − 1) simplex
parallel to the plane R

d−1 we can write Vold([b(X), v1, . . . , vd ]) = cd(1 − b(X)),
where cd is some positive constant depending only on dimension. We may write
b(X) = |X|2, and this allows us to see that

Vold([2−1b̃(X), v1, . . . , vd ])
= Vold([b̃(X), v1, . . . , vd ])(1 − 2−1|X|2)/(1 − |X|2)
= Vold([b̃(X), v1, . . . , vd ])(1 − 2−1|X|2)(1 + |X|2 + |X|4 + · · ·)
= Vold([b̃(X), v1, . . . , vd ])(1 + or(1)).

Here, or(1) indicates a function which goes to 0 as r goes to 0. Similarly, we have

Vold([2b̃(X), v1, . . . , vd ]) = Vold([b̃(X), v1, . . . , vd ])(1 + or(1)).

Thus, we may write

∫
C0

Vold([f ∗(X), v1, . . . , vd ])ρ(f̃ (AX))

√
1 + f 2

Y 1 + · · · + f 2
Yd−1(AX)dX

∫
C0

ρ(f̃ (AX))

√
1 + f 2

Y 1 + · · · + f 2
Yd−1(AX)dY

≥ (1 + or(1))

×
∫
C0

Vold([b̃(X), v1, . . . , vd ])ρ(f̃ (AX))

√
1 + f 2

Y 1 + · · · + f 2
Yd−1(AX)dX

∫
C0

ρ(f̃ (AX))

√
1 + f 2

Y 1 + · · · + f 2
Yd−1(AX)dY

.

(32)

Setting F(X) = ρ(f̃ (AX))

√
1 + f 2

Y 1 + · · · + f 2
Yd−1(AX) the above is thus

≥ (1 + or(1)) · minC0 F(X)

maxC0 F(X)
·
∫
C0

Vold([b(X), v1, . . . , vd ])dX∫
C0

dX
.

Now, if we can show that the term
minC0 F(X)

maxC0 F(X)
≥ (1 + or,h(1)), only depending on r

and h, then from our earlier observation we can conclude that (30) is bounded below
by

|detA| · (1 + or,h(1)) ·
∫
C0

Vold([b(X), v1, . . . , vd ])dX∫
C0

dX
.

Note or,h(1) denotes a function which goes to 0 as both r and h go to 0.
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Invoking Lemma 6.1, we observe that we may make the term
√

1 + f 2
Y 1 + · · · + f 2

Yd−1(AX)

sufficiently less than (1 + δ), for any δ > 0, by choosing r, h both sufficiently

small (independent of f ). Thus, we may write
√

1 + f 2
Y 1 + · · · + f 2

Yd−1(AX) =
(1 + or,h(1)).

Next, we note that ρ is a uniformly continuous function on K . It is not too hard
to see that the function minC0 ρ(f ′(AX))/maxC0 ρ(f ′(AX)) = (1 + or,h(1)), where
again the o(1) function is independent of the basepoint. Using the fact that

minρ(f ′(AX))

√
1 + f 2

Y 1 + · · · + f 2
Yd−1(AX)

≥ (minρ(f ′(AX)))(min
√

1 + f 2
Y 1 + · · · + f 2

Yd−1(AX))

(similarly for max) we thus find that

(1 + or,h(1)) ≥ minC0 F(X)

maxC0 F(X)
≥ (1 + or,h(1)),

where the functions in question are independent of basepoint.
If we let

φ1(r) =
∫
C0

Vold([b̃(X), v1, . . . , vd ])dX∫
C0

dX

then we can summarize our findings as, independent of basepoint,

lim
h→0

EY (Vold([Y,Av1, . . . ,Avd ]))
|detA|φ1(r)

= (1 + or(1)). (33)

By an identical argument, if we set φ2(r) =
∫
C0

Vol2d([b̃(X),v1,...,vd ])dX∫
C0

dX
then we have

lim
h→0

EY (Vol2d([Y,Av1, . . . ,Avd ]))
|detA|2φ2(r)

= (1 + or(1)). (34)

Using (33) and (34) we can compute:

lim
h→0

VarY ([Y,Av1, . . . ,Avd ])/|detA|2

= lim
h→0

EY (Vol2d([Y,Av1, . . . ,Avd ]))/|detA|2

− lim
h→0

E
2
Y (Vold([Y,Av1, . . . ,Avd ]))/|detA|2

= φ2(r)(1 + or(1)) − φ2
1(r)(1 + or(1))2 = (φ2(r) − φ2

1(r))(1 + or(1)). (35)

Thus, by letting r become sufficiently small so that the final (1 + or(1)) > 0 we
note that (35) is positive, since this quantity φ2(r) − φ2

1(r) is just the variance of
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Vold([b(X), v1, . . . , vd ]) where X is taken over C0, thus always positive. This proves
there exists c1 > 0 such that for h sufficiently small,

VarY ([Y,Av1, . . . ,Avd ]) ≥ c1|detA|2.
By the same arguments we also get

VarY ([Y,Av1, . . . ,Avd ]) ≤ c2|detA|2.
So the claim is proved. �

With the preceding claim, we now prove Lemma 3.1. Instead of the convex hull
of [Y,Av1, . . . ,Avd ] we shall study the convex hull [Y,x1, . . . , xd ], where xi ∈ D′

i ,
using the fact that the xi are close to the Avi when h is small. To do this, we’ll need
a second claim.

Claim 8.2 There exists a δ > 0 such that If for each i, xi ∈ B(vi, d), then

Vold([2−1b(X), x1, . . . , xd ]) = Vold([b(X), x1, . . . , xd ])(1 + or(1))

and

Vold([2b(X), x1, . . . , xd ]) = Vold([b(X), x1, . . . , xd ])(1 + or(1)),

where the hidden functions depend only on r (i.e. they are not functions of the xi ).

Proof We simply note that there exists a δ > 0 such that for any fixed choice of xi ,

Vold([2−1b(X), x1, . . . , xd ])
Vold([b(X), x1, . . . , xd ]) → 1 as X → 0.

We also note that X,x1, . . . , xd lie in C0 × B(v1, δ) × · · · × B(vd, δ), a compact
set. These two conditions guarantee that the maximum of the ratio, taken over all
x1, . . . , xd , converges to 1 as X → 0. Thus, the ratio converges to 1 independently of
the choice of x1, . . . , xd , and hence the claimed result.

The statement for Vold([2b(X), x1, . . . , xd ]) is analogous. �

With this claim, we can adapt Claim 8.1 to work for any xi ∈ B(vi, δ), by using
the above claim in place of (32). With this we can show that for h sufficiently small
we can choose r sufficiently small such that

1

2
|detA|2 VarX(Vold([b(X), x1, . . . , xd ]))
≤ VarY (Vold([Y,Ax1, . . . ,Axd ]))
≤ 2|detA|2 VarX(Vold([b(X), x1, . . . , xd ])), (36)

where here the quantity VarX(Vold([b(X), x1, . . . , xd ])) is the variance taken over
C0. But as VarX(Vold([b(X), v1, . . . , vd ])) is positive, continuity guarantees that

c′ > VarX(Vold([b(X), x1, . . . , xd ])) > c > 0
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if the xi are sufficiently close to the vi , say xi ∈ B(vi, η) for all i, for some η > 0.
Then,

1

2
|detA|2c′ ≤ VarY (Vold([Y,Ax1, . . . ,Axd ])) ≤ 2|detA|2c, (37)

if xi ∈ B(vi, η) for all i.
Now, we need to verify that we can choose Ci sufficiently small such that points

in D′
i always map into B(vi, η), which will complete the lemma. To do this, note that

if we set r ′ < η/2, then we can choose ε > 0 such that

Ui = {(x, y) ∈ R
d | x ∈ B(projvi, η/2) ⊂ R

d−1 and

(1 + ε)−1b(x) ≤ y ≤ (1 + ε)b(x)} ⊂ B(vi, η) (38)

for each i. By Lemma 6.1 we can take h to be sufficiently small such that for all
x ∈ ∂K

(1 + ε)−1bx(y) ≤ fx(y) ≤ (1 + ε)bx(y)

in all caps of height h. So if we thus choose Ci to be the η/2 ball about projvi ,
then we note that D′

i ⊂ A(Ui). Thus, any yi ∈ D′
i can be written as Axi for some

xi ∈ Ui ⊂ B(vi, η), and thus (37) holds. Hence, the lemma.
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