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INTRODUCTION

In this paper an investigation of asymptotically efficient estimators

for linear and nonlinear simultaneous equation econometric models is under-

taken. By using an instrumental variable approach the equivalence of pre-

viously proposed linear estimators to full information maximum likelihood

(FIML) follows in a straightforward manner, and a class of new estimators

which includes a nonlinear three stage least squares estimator (NL3SLS)

and nonlinear full-information instrumental variables estimator are pro-

posed and shown to be asymptotically equivalent to FIML.

First, an instrumental variable interpretation of FIML is developed

by investigating the first order conditions for the maximum of the likeli-

hood function without first concentrating the likelihood function. The

essential difference between 3SLS and FIML then becomes evident. The dif-

ference between the two estimators is that FIML uses all over-identifying

restrictions in forming the instruments while 3SLS ignores some of these

restrictions. While this difference in forming the instruments is of no

importance asymptotically as is known by the earlier results of Sargan [9]

and Rothenberg and Leenders [8], in finite samples there seems no reason

not to use all known prior information. The a priori restrictions give

a more useful criterion than Dhrymes' [3] recent interpretation of a dif-

ference in 'purging' the endogenous variables since all other proposed

estimators can be shown to be equivalent by simply proving asymptotic

equivalence of the instruments used to those instruments used by FIML

estimator.

The next result is to derive the necessary conditions on the number

of observations to permit computation of the FIML estimate. The FIML esti-

mate can be computed in a class of cases where all efficient limited infor-
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mation estimators such as two stage least squares (2SLS) and limited

information maximum likelihood (LIML) are infeasible. 3SLS is also

infeasible in this class of cases. The reason that the FIML estimate

exists is again that all a priori restrictions are used while the other

estimators neglect some over-identifying restrictions in forming the

instruments. Thus a partial solution to the much studied problem of

simultaneous equation estimation with undersized samples is given. Pre-

vious authors in their almost exclusive attempts to extend limited infor-

mation methods failed to realize that an appropriate full information

method, by using all prior information, could make estimation possible.

Also, I point out an error of Klein [4] on degrees of freedom restrictions

for FIML estimation. I establish that FIML has less stringent degrees of

freedom requirements than other estimators rather than more stringent

requirements as he asserted.

Then using the instrumental variable interpretation, a relation

between FIML and the class estimators recently proposed by Dhrymes [2],

Lyttkens [5], and Brundy and Jorgenson [1] is established. The full

information instrumental variable estimators are shown to be special cases

of the basic FIML iteration. Furthermore, if they are iterated and con-

verge, the resulting estimates are the FIML estimates.

Lastly, FIML is considered in the nonlinear case; arid it is shown

that in the special case of nonlinearity in the parameters the instru-

mental variable interpretation can be extended to provide an asymptotically

efficient estimator with less computation needed than the FIML estimator.

In a similar way a nonlinear three state least squares estimator is pro-

posed and demonstrated to be asymptotically equivalent to FIML. NL3SLS

again neglects some over-identifying restrictions in forming the instru-

ments so that in finite sample the instrumental variable estimator which

uses all the restrictions seems preferable.
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2. Specification and Assumptions for the Linear Case

The standard linear simultaneous equations model is considered first,

where all identities are assumed to have been substituted out of the system

of equations:

(1) YB + zr = U.

where Y is the T x M matrix of jointly dependent variables, Z is the T x K

matrix of predetermined variables, and U is a T x M matrix of the structural

disturbances of the system. The model thus has M equations and T observations.

It is assumed that B is nonsingular, rk(Z) = K, and that all equations satisfy

the rank condition for identification. Also if lagged endogenous variables

are included as predetermined variables, the system is assumed to be stable.

Lastly, an orthogonality assumption, E(Z'U) 0, between the predetermined

variables and structural errors is required; and the second order moment

matrices of the current predetermined and endogenous variables are assumed

to have non-singular probability limits.

The structural errors are assumed to be mutually independent and

identically distributed (iid) as a nonsingular M-variate normal (Guassian)

distribution:

(2) U % N(0, Z®I
T

)

where T. is positive definite almost surely, and no restrictions are placed

on Z. Thus for the present we assume the presence of contemporaneous

correlation but no intertemporal correlation. The (column) vectors of U

are thus distributed as univariate normal, U. ^ N(0, Z)

.
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Now the identification assumptions will exclude some variables from

each equation so let r and s denote the number of included jointly de-

pendent and predetermined variables, respectively, in the i equation.

Then rewriting (1) after choice of a normalization rule:

(3) y - X
±

6. + U, (± = 1, 2 M)

where

X
i = tY

i
Z
i

]

6
i

=
i

so that X, contains the t. r. + s. - 1 variables whose coefficients are
i l i i

not known a priori to be zero. It will prove convenient to stack these M

equations into a system:

(4) y = X6 + u

where y =

7 M

, X x
x

, <5
=

*M M

u =

M
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3. An Instrumental Variable Interpretation of FIML

The technique used to derive an instrumental variable interpretation

of FIML is similar to, but not identical with, a proposal by Durbin in an

unpublished paper. While not deriving Durbin' s result from the likelihood

function, Malinvaud states the estimator which he calls 'Durbin' s Method'

[7, pp. 686-7]. However, the resulting estimator differs from the es-

timator proposed here by not making full use of the identifying restric-

tions and being identical only in the case of a just-identified system.

The instrumental variable interpretation of a maximum likelihood estimator

while known in the case of non-simultaneous equation models is here ex-

tended to the case of FIML thus giving an integrated method in which to

interpret the many estimators proposed for econometric models.

Given assumption (2) the likelihood function of the sample is

% -MT/2 -T/2 T
(5) L(B, r, Z) = (211) ' det(Z)

i/Z
det(B)

exp [- -| tr(YB + Zf) ' Z
1

(YB + Zf) ]

Taking logs and rearranging, we derive the function to be maximized

(6) L(B, T, Z) = C + | log det(Z)"
1
+ T log det(B)

- | tr [| Z'
1

(YB + Zf)' (YB + ZD ]

where the constant, C may be disregarded in maximizing the likelihood

function. Since no restrictions have been placed on the elements of Z,

the usual procedure is to 'concentrate' the likelihood function by partially
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maximizing the function with respect to E. This procedure sets E =

T~ (YB + ZT)' (YB + ZT) and thus eliminates E from the likelihood function,

leaving a function L (B, V) to be maximized. Our procedure instead concen-

trates on the presence of the Jacobian det(B) in the likelihood function

which differentiates the simultaneous equation problem from the Zellner

[10] multivariate least squares problem. For if the Jacobian of the trans-

formation from U to Y, /^v j were an identity matrix, the maximum likelihood
oY

estimator would be the generalized least squares estimator. Also it will

be seen in a later section that the Jacobian is crucial in the development

of a non-linear FIML estimator.

To maximize the log likelihood function L(B, T, E) , the necessary condi-

tions for a maximum are the first order conditions obtained by differentiating

(6) using the relation
81og det(A)

/ 9A
= (A')'

1
. Note that the a priori re-

strictions have been imposed so that only elements corresponding to non-zero

elements of B and T are set equal to zero:

3T —1 —1
(7) -^ : T(B') - Y (YB + zr) E

x
=

3T —1
(8) |^ : - Z' (YB + Zr) E

X
=

3L
(9) -r=- : TE - (YB + ZO' (YB + Zr) =

OL

Concentration of the likelihood function follows from solving for E in

equation (9); here we solve for T using equation (9). Since the M-variate

distribution has been assumed non-singular, from equation (2) E is positive

definite almost surely so from equation (9),

(10) T'i = (yb + zr)' (YB + zr) e
-1
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Substituting this result for the first term in equation (7) yields

(11) (B')
X

(YB + ZT)' (YB + zr) Z
l

- Y' (YB + ZT) E
_1

= 0.

The first term in (11) represents the presence of the non-identity Jacobian,

but this term can be simplified by rearranging to get

(12) [(B')
L

B'Y' + (B')
X

r'Z'][YB + ZT] Z
*

- y' (yb + zr) Z
1

= 0.

Noting that in equation (12) the first and last terms are identical with

opposite sign, we have the desired first order condition

(13) (B')
1

F'Z' (YB + Zr) Z
_1

=

Therefore equations (8) and (13) must be solved and 'stacking' them together

yields the final form of the necessary conditions

(14) [-1'
\ (YB + ZT) I

1
- 0.

(B')
_1

r'z-

Rewriting equation (14) in the form of equation (4), the FIML estimator 6

of the unknown elements of 6 in instrumental variable form is:

(is) 6 = (wx)
-1

VT

where the instruments are
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(16) W = X (Sg)^)"1 .

The elements of W are then

(17) X = diagO^, X
2

, Xjj), X
±

= [Z(TB
1
)
±

Z
±

]

and from equation (9)

(18) S = T
_1

(YB + Z?)' (YB + ZT)

The instrumental variable interpretation of equations (15) and (16) is

immediate since the second order moment matrices exist and are non-singular,

and by the orthogonality assumption E(Z'U) =0. In the instrumental vari-

able interpretation of generalized least squares where only predetermined

variables appear in X, the instruments are al L the predetermined variables

W = Z (S x I) while here the included endogenous variables are replaced

by consistent estimates which are then used as the instruments.

Equation (15) is non-linear since both X and S depends on B, r which

are elements of 6 and would therefore be solved by an iterative process

('Durbin's Method') where subscripts here denote iteration number:

(l9) K+i - (*k
x)_1 v-

The limit of the iterative process, if it converges, 6*, is the FIML estimate

* " —1 —1
with asymptotic covariance matrix (X* (S*(^> I„) X) since asymptotically

-1
N

(20) /f (6 - 6) * N (0, V )
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i ;)

2
l

where V = - plim E[—
^asa.S'-'"

T^us equation (15) extends the concept of

instrumental variables to the maximum likelihood estimation of simultaneous

equation models so that very simple comparisons with other proposed estima-

tors are possible.
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4. Equivalence of FIML and 3SLS

An instrumental variable interpretation of 3SLS was first advanced

by Madansky [6]. In this interpretation the 3SLS estimator has the form

< 21> «3SLS = ®' X)_1 "' y

where here the instruments are

(22) W = Z (Si(£>Z' Z)
1

Z' X

a,

The elements of W are

(23) X = diag (Xr ..... X
M), X

±
- [Y

i
Z
1
].

A/
and S is the consistent estimate of E derived from the residuals of the

structural equations estimated by 2SLS. The essential differences between

FIML and 3SLS may be discovered by an examination of the difference in

instruments between equation (16) and equation (22). The first difference

is the consistent estimation of the variance covariance matrix E. They

are asymptotically equivalent in probability limit since by consistency

(24) plim S = plim s( = S.

The second difference is that the FIML estimator uses all a priori

restrictions in computing the instruments, while as seen from equation

(22), 3SLS uses an unrestricted estimate in computing the instruments.

Again asymptotic equivalence follows since
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(25) plim f plim B
1

= plim (Z'Z)
1

Z' Y

-_1
since plim Z'U = and T, B have finite probability limits by assumption.

Therefore the two differences lies in not making complete use of the identi-

— %
fying restrictions in estimating the instruments W and W and in different

estimates of the covariance matrix E. In finite samples the two methods

can be equivalent only in the just identified case since the instruments

would then be identical. Lastly the equivalence results of Sargan [9] and

Rothenberg and Leenders [8] are obtained without the necessity of an

— <\j

asymptotic expansion by the result that W and W are equivalent in the

probability limit. Furthermore, any other asymptotically efficient in-

strumental variable estimator may be proved equivalent to FIML by the

same technique.
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5. The Incorrectness of Klein's Degrees of Freedom Restrictions

In the finite sample case it is known that important restrictions

on the use of 3SLS and efficient limited information estimators such as

LIML and 2SLS are degrees of freedom restrictions. The binding restriction

is usually that the number of observations T must be no less than the total

number of predetermined variables in the system K. Evaluation of the inner

terms of the 3SLS instruments

(26) (S®Z-Z) 1
= (S

_1
(g)(Z'Z)

1
)

and use of the elementary result

(27) Lemma 1: rk (AB) < min (rk (A), rk (B))

implies that rk (Z'Z) < min (K, T) and so for Z'Z to be of full rank it

is necessary that K < T. We now show that this degrees of freedom restriction

is not binding for FIML and develop exact degrees of freedom restrictions.

Consideration of the instruments W in equation (16) implies that S must

exist. From equation (18) S = T U" U such that application of lemma 1

results in the condition that rk (S) < min (M, T) . Therefore a necessary

condition for estimability of FIML is M < T. That this condition is almost

surely sufficient follows from

(28) Lemma 2:Let X , . . . . , X be a random sample from an absolutely con-

tinuous M-variate distribution with non-singular covariance matrix E. Then

the sample covariance matrix S is positive definite with probability one

iff T > M.
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Proof: Necessity follows from straightforward application of lemma 1 (27)

and sufficiency comes from the following argument. The moment matrix is

positive semi-definite and the determinant vanishes only if the observations

are linearly dependent. But if the joint distribution of the observations

is absolutely continuous given Z non-singular, the probability of an exact

linear relationship is zero.

After insuring the nonsingularity of S, the only remaining task is to

derive conditions for the nonsingularity of (W' X). The necessary condition

here after again using Lemma 1 (27) is that

(29) T > r
±
+ s

±
- 1 for all i = 1, ..., M.

This condition is just the usual least squares condition that the number of

'right hand side 1 variables must not exceed the number of observations. It

is not often a binding restriction in FIML estimation. As 3SLS must also

satisfy the condition of Lemma 2 since S is a moment matrix, it is seen by

application of the order condition for identification that the conditions

in finite samples for the FIML estimate are weaker than those for 3SLS

estimation. The order condition of identification states that for each

equation the number of predetermined variables excluded from the equation

must be at least as great as one less than the number of endogenous

variables included in the equation

(30) K - s > r. - 1 for all i = 1, ..., M.

Rearranging gives K > s. + r. - 1 and since 3SLS requires T > K it is

seen that also for 3SLS, T > r
±
+ s

±
- 1 for all i. Thus collecting
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results we have the following:

Theorem 1: Under the assumptions for the linear simultaneous equations

model of Section 2, the following conditions are necessary and almost

surely sufficient for the estimability of the- FIML estimate: (i) the

number of observations must be at least as great as the number of endo-

genous variables, M < T (ii) . For each equation, the number of observa-

tions must be at least as great as the number of included "right hand

side" variables after normalization, T > r . + s . - 1 for all i = 1, . . . , M.
- i l '

the estimability of 3SLS requires a strengthening of condition (ii) so that

the number of observations must be at least as great as the total number of

exogenous variables, T > K. Lastly, the FIML and 3SLS estimates are identical

in the just-identified case.

These necessary conditions are in conflict with those of Professor Klein

[4, p. 175-6] who places the following "degrees of freedom" restrictions

on FIML estimation:

, M
(31) (i) K < T (ii) M < T (iii) K + M < T (iv) E (r +s.-l) < MT

i=l
X

Except for using a strong rather than weak inequality, Klein's condition (ii)'

is identical to our condition (i) . Condition (iv)' corresponds to (ii) when

both sides are summed over all equations, but it is too weak; the condition

must hold for each equation. Conditions (i)' and (iii)' would place greater

restrictions on FIML estimation than 3SLS if correct; but Professor Klein

is incorrect in claiming that the moment matrix including all endogenous

and predetermined variables must be nonsingular (his WW matrix on p. 176).
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He has neglected to impose the a priori restrictions which enter in equa-

tions (15) and (16) and this make the requirements for estimation of FIML

weaker , not stronger, than 3SLS as he implicitly asserts. Intuitively,

this result again follows from the difference in instruments for FIML

and 3SLS, W and W, respectively. FIML imposes all a priori restrictions

in computing the instruments while 3SLS neglects these restrictions. That

FIML imposes all a priori restrictions is also the reason for its es-

timability when efficient limited information methods, 2SLS and LIML, cannot

be used. Since they too treat all equations but the one being estimated

as just identified, they will have two of the restrictions of 3SLS: T > K

and T > r + s. - 1 for all equations to be estimated. Thus in many actual

cases where limited information estimation or 3SLS estimation is impossible,

the full information maximum likelihood estimate can be computed.
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6. The Relationship of FIML to Recently Proposed

Instrumental Variable Estimators

Three recent papers have proposed instrumental variable estimators

for linear simultaneous equation systems. Here these estimators are all

shown to be particular cases of the basic FIML iteration developed in

equation (19). Lyttkens [5], and Dhrymes [2], and Brundy and Jorgenson's

[1] estimators all have the form:

(i) Construct a consistent estimate of the structural parameters

(6, I) . These initial consistent estimates may be obtained by the use of

consistent, but possibly inefficient, instrumental variable estimators

using the format of equation (3). This procedure is always possible so

long as T > r. + s. - 1 for all 1=1, ..., M which is condition (ii) of

Theorem 1. In constructing the instruments for equation i, W., to insure

consistency it is necessary to include all s . predetermined variables from

equation i as instruments. The remaining r - 1 instruments can be con-

structed by regressing the r - 1 jointly dependent variables in equation

i on a subset of all the excluded predetermined variables . By the ortho-

gonality assumption, E(Z'U) = 0, the estimates 6 will be consistent but,

in general, not efficient estimates. This procedure is followed for all

M equations; and S, a consistent estimate of E, is derived from the resi-

duals of the structural equations in the usual manner.

1. Lyttken's method does not compute S, but rather uses the identity

matrix. Thus his estimator is consistent but not generally efficient.
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(ii) Construct system instrumental variables W using the form of

equation (16) , W = X (S(j$! I ) . Consistent estimates of X are provided

from the first step of the procedure since by definition 6 = [R y.
]
' and

from equation (16) X = [Z (r B ) Z ]. Note that all a priori restrictions

are being imposed to estimate the instrumental variables W rather than un-

restricted estimates as in k-class and 3SLS instruments W as shown in

equation (22).

(iii) Estimate the structural parameters as in equation (19),

-1 -
6 = (W X) W y. If desired, compute efficient estimates of £ and

the reduced form parameters.

Brundy and Jorgenson stop at this point and have efficient estimates since

their estimates converge in distribution to the FIML estimates by an

identical argument as that of equations (24) and (25). Lyttkens and

Dhrymes propose an iterative process between steps (ii) and (iii) while

unaware of the properties of the final estimates. But since this procedure

is in every way identical to equation (19) , by the earlier derivation if

the iteration converges the estimates (6*, S*) are the FIML estimates!

Thus these iterated instrumental procedures will be numerically identical

to FIML if both use identical initial consistent estimates. Thus Dhrymes'

[2] question of the effect of the initial estimates used in step (i) is

answered for small samples; and for large samples even without identical

initial estimates, under the usual regularity conditions the Cramer-Rao

theorem can be invoked to insure a unique maximum likelihood estimate

almost surely.

Also, note that the so-called limited information procedure proposed

by Brundy and Jorgenson is misnamed. The procedure is identical to Lyttkens
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in using the identity matrix as an estimate of the contemporaneous

correlation matrix E. This procedure is not limited information since

it utilizes all the a priori restrictions on the 6 in estimating the

instrumental variables of step (ii) . Thus any error of misspecification

will be propogated throughout the entire system rather than being confined

to the equation in which it occurs as in time limited information methods.

Since the a priori restrictions are being imposed, FIML or its one iteration

special case might as well be used to provide fully efficient estimates

rather than only consistent estimates which the Brundy-Jorgenson 'limited

information' procedure gives.

Lastly, while multicollinearity often makes computation of the un-

restricted instrumental variables, W, used in 3SLS as in equation (22)

extremely difficult, since FIML and the single iteration procedures use

fully restricted estimates W an in equation (17) this problem will no

longer exist. Thus in the full information context, procedures using

principal components need not be used for the multicollinearity problem.

Also, in the finite sample case since all a priori restrictions are being

imposed these instrumental variable procedures might well be preferred to

3SLS which imposes the restrictions only in the final stage. In 3SLS the

estimates of the included right hand side endogenous variables often differs

little from the actual and presumably non-orthogonal variables due to

lack of degrees of freedom, but FIML and the instrumental variable pro-

cedures by imposing all the a priori restrictions will often have many

more degrees of freedom in estimation.
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7. FIML for Nonlinear Systems

Consider the general nonlinear simultaneous equation system

(32) F(Y, Z; a) = U.

Here F is an MT vector of functions [f , f , f ] which in a neighbor-

hood in R dimensional space of the true parameter values, a*, are assumed

uniformly bounded and three times differentiable with uniformly bounded

derivatives. Also, the f are assumed continuous with respect to Y and Z.

The system is assumed to be identified and ex to belong to a compact subset

of R dimensional space. As before the structural errors are assumed i.i.d.

and distributed as a nonsingular M-variate normal distribution.

The log of the likelihood function is

T

(33) L(a, E) = C +
T
/ log det (E)

_1
+ E log

|
J

t=l
C

| tr [i E
X

F (Y, Z; a)' F (Y, Z; a)]

where |j |
is the Jacobian of the transformation from U to Y. Note the

important complication introduced by the nonlinear structural system is

that in equation (33) the Jacobian is no longer constant as in equation

(6) but instead varies with each observation. Therefore, the first order

conditions cannot be simplified as in equations (11) and (12) to provide

a convenient iterative procedure. The log likelihood in principle can be

maximized by straightforward 'hill-climbing' algorithems but this procedure

may prove impractical unless special assumptions are made about the structural

system.
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One very special case of the general moc'el, which nevertheless is quite

common to econometric models, is that of non-linearity only in the parameters.

Here the structure is linear in the variables and nonlinear in the parameters

A which are analytic non-linear functions of an R dimensional vector of

parameters a so that

(34) U = XA(a) = YB(a) + zr(a)

where X = [Y Z]. Two important examples of such a structure are linear

simultaneous equation models with autoregressive errors and partial adjust-

ment or distributed lag models containing a 'desired' stock which is a

function of structural parameters. Writing out the log of the likelihood

function where B(a) are the parameters of the endogenous variables gives

(35) L (a, I) = C + | log det (I)
1
+ T log det (B (a))

| tr
[f

Z"
1
(XA(a)r (XA(a))]

The Jacob ian is once again constant and the irst order conditions are

(36) f : T^a))" 1
|| -

(ff
)V (XA(a)) z"

1
=

(37) f^ : TL - (XA(a)r (XA(a)) =

Noting that /_ is a submatrix of / ^ and using the same substitution
9a 9a

technique of equations (11) and (12) yields the non-linear iterative equation
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< 38 > vi =
(V x ' i)_1 V y

where the instruments are

(39) W = || • X (S(g>I
T

)

1
.

The elements of W are

(40) X = dlag (Xr X
2

XM),
X
±

= [Z (f(a) B(a)
1
)
±

Z
±

]

and from equation (37)

:

(41) S = T
X

(XA(a))' (XA(a))

The limit of the iterative process a* is the FIML estimate with asymptotic

covariance matrix (

3A
/„ • X*' (.S*®!-)'

1
• X

8V )

_1

oCt 1 OCX

In Section 4 the instrumental variable interpretation of 3SLS was

given and its asymptotic equivalence to FIML shown. In a similar manner

for the non-linear in parameters system of equation (34) a non-linear

3SLS estimator (NL3SLS) may be defined

% 3A -1 %

with the instruments

(43) W = Z (S®Z'Z) 1
Z' X |^

da
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where S is a consistent estimate of Z. Note that the NL3SLS estimator is

9A
nonlinear due to the presence of the — matrix and will therefore require

cm

an iterative procedure. However, it will require less computation than

the FIML estimator since the large block Z (S(x) Z'Z) Z' X remains

constant while FIML revises X on each iteration. The asymptotic equiv-

alence of NL3SLS and FIML follows from application of equation (25) with

the asymptotic covariance matrix of NL3SLS being Or- X' Z (S^Z'Z)" Z' X —

)

For asymptotic efficiency there is no need to define a non-linear 2SLS

estimator for the computation of S. Any consistent estimate will do; and in

particular, the estimate derived by not imposing the across-parameter con-

straints is easily shown to be consistent. For example in the autoregressive

case, a parameter from the autoregressive specification will usually multiply

more than one of the other parameters. An unconstrained estimate which treats

each of the terms as different will yield consistent estimates of the dis-

turbances from which a consistent estimate of E follows in the usual way.

Another estimator which is asymptotically efficient and uses more re-

strictions in the estimation of the instruments than does 3SLS is the non-

linear analogue of the Lyttkens, Dhrymes, and Brundy and Jorgenson procedures.

It corresponds to one step of the FIML iteration:

(i) Construct a consistent estimate of the structural parameters

(A(a) , Z). A consistent, but inefficient, instrumental variables procedure

on each of the M equations in which the nonlinear constraints are not im-

posed is the most simple procedure. A consistent estimate S follows in

the usual manner.

(ii) Use these consistent estimates to form instruments with equation
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(40) defining X and the iterative procedure

(44) a = (W X ~) 1 W y.
da

Here the instruments W remain constant with respect to the X term while

the — matrix changes on each iteration until convergence is achieved.
<3ot

Thus the iterative procedure differs from FIML where X is also changing

with each iteration.

Thus three instrumental variable estimators have been proposed to

treat the non-linear in parameters case: FIML, NL3SLS, non-linear instru-

mental variables. Each provides asymptotically efficient estimates with

FIML requiring the most computation since both X and — are changing
aO,

across iterations. The other two procedures keep X constant and iterate

only over — . As before, on a consideration of degrees of freedom the

non-linear instrumental variables procedure might be preferred to NL3SLS.
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8. Conclusions

The conceptual framework of instrumental variables has been used to

demonstrate the close relation of FIML, 3SLS, and recently proposed in-

strumental variable procedures. While Madansky had established an in-

strumental variable interpretation of 3SLS, the instrumental variable

interpretation of FIML is new and leads to an extremely simple asymptotic

equivalence by showing convergence in distribution of the two estimators.

The other instrumental variable procedures are shown to be one step of

the FIML iteration, and therefore if they are iterated, will yield the

FIML estimate.

Exact degrees of freedom requirements for estimability of FIML are

calculated and are weaker, not stronger than those for 3SLS as Professor

Klein implied. Thus FIML is a possible estimator when 3SLS, 2SLS, LIML,

and other k-class estimators cannot be used. This result follows since

FIML imposes all a priori restrictions in forming the instruments while

the other estimators use unrestricted estimates as instruments. Thus the

multicollinearity problem present in computing 3SLS will be lessened by

using the a priori restrictions.

Lastly, FIML and two new estimators, NL3SLS and non- linear instru-

mental variables, are developed for the important case of a structural

system which is nonlinear in the parameters. All three procedures require

an iterative method and are asymptotically efficient. Again, FIML re-

quires the most computation while NL3SLS does not impose a priori re-

strictions in forming the instruments.
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