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INSURANCE RISK MODELS WITH PARISIAN IMPLEMENTATION

DELAYS

DAVID LANDRIAULT, JEAN-FRANÇOIS RENAUD, AND XIAOWEN ZHOU

Abstract. Inspired by Parisian barrier options in finance (see e.g. Chesney et al. (1997)), a
new definition of the event ruin for an insurance risk model is considered. As in Dassios and Wu
(2009), the surplus process is allowed to spend time under a pre-specified default level before
ruin is recognized. In this paper, we capitalize on the idea of Erlangian horizons (see Asmussen
et al. (2002) and Kyprianou and Pistorius (2003)) and, thus assume an implementation delay
of a mixed Erlang nature. Using the modern language of scale functions, we study the Laplace
transform of this Parisian time to default in an insurance risk model driven by a spectrally
negative Lévy process of bounded variation. In the process, a generalization of the two-sided
exit problem for this class of processes is further obtained.

1. Introduction

Historically, in actuarial risk theory, a lot of attention has been given to the analysis of events
related to the time of default which is assumed to occur if and when the surplus process falls
below a certain threshold level for the first time (see, e.g., Gerber and Shiu (1998), Li and Garrido
(2005) and Willmot (2007)). Without loss of generality, which is due to the spatial homogeneity
of most risk processes, this threshold level has commonly been assumed to be the artificial level
0. For solvency purposes, it is more appropriate to view this threshold level as the insurer’s
minimum capital requirement set by the regulatory body to ensure adequate capital levels are
maintained by insurers (e.g., Solvency II, MCCSR). In this context, the existing literature in
ruin theory can heavily be relied on to gather important risk management information as to the
timing and the severity of a capital shortfall.

From a practical standpoint, it seems rather unlikely that the regulator and/or the insurer
monitor the corresponding surplus level on a continuous basis and be immediately notified of the
occurrence of a capital shortfall event. Therefore, Dassios and Wu (2009) consider the application
of an implementation delay in the recognition of an insurer’s capital insufficiency. More precisely,
they assume that the event ruin occurs if the excursion below the critical threshold level is longer
than a deterministic time. In the aforementioned article, the analysis of the ruin probability is
done in the context of the classical compound Poisson risk model. It is worth pointing out that
this new definition of ruin is also referred to as ’Parisian ruin’ due to its ties with the concept
of Parisian options (see Chesney et al. (1997)).

In the present paper, we also introduce the idea of Parisian ruin but now in the rich class of
Lévy insurance risk models; see, e.g., Biffis and Kyprianou (2010) for an overview of this family
of models. Furthermore, we assume that the deterministic delay is replaced by a stochastic grace

Date: January 20, 2011.
Key words and phrases. Insurance risk theory, implementation delays, Parisian ruin, Lévy processes, scale

functions.

1



Electronic copy available at: http://ssrn.com/abstract=1744193Electronic copy available at: http://ssrn.com/abstract=1744193

2 LANDRIAULT, RENAUD AND ZHOU

period with a pre-specified distribution. We show that the specification of this implementation
delay to be of mixed Erlang nature improves the tractability of the resulting expression for the
Laplace transform of the Parisian ruin time. In nature, this is similar to the use of Erlangian
horizons (rather than a deterministic horizon) for the calculation of finite-time ruin probabilities
in various risk models (see Asmussen et al. (2002) and Ramaswami et al. (2008)). As will be
shown, all our results are expressed in terms of scale functions for which many explicit examples
are known; see, e.g., Hubalek and Kyprianou (2010), Kyprianou and Rivero (2008), as well as the
numerical algorithm developed by Surya (2008). Furthermore, mixed Erlang distributions are
known to be a very large and flexible class of distributions for modelling purposes (see Willmot
and Woo (2007)). Among others, it is well known that a sequence of Erlang distributions can be
used to approximate the deterministic implementation delay strategy, as illustrated in the final
section of this paper.

The rest of the paper is organized as follows. Next, we introduce Lévy insurance risk models
and state some important properties of scale functions. In Section 2, a generalized version of
the two-sided exit problem is studied when the first passage time below level 0 is substituted
by the Parisian ruin time. These results are further particularized under the assumption that
implementation delays are exponentially distributed and later, mixed Erlang distributed. Finally,
in Section 3, explicit expressions for the Laplace transform of the Parisian ruin time are obtained
under the same distributional assumptions for the implementation delays.

1.1. Lévy insurance risk processes. A modern approach in ruin theory is to work with a
spectrally negative Lévy process to describe the (free) surplus of an insurance company/portfolio.
In the actuarial literature, these Lévy processes with no positive jumps are also called Lévy
insurance risk processes. Such a process X = (Xt)t≥0 is defined on a filtered probability space
(Ω,F , (Ft)t≥0, P ), has independent and stationary increments, and has càdlàg paths (right-
continuous with left limits). Its law when X0 = x is denoted by Px and the expectation by Ex.
To avoid trivialities, it is implicitly assumed that X does not have monotone sample paths, that
is X is not a negative subordinator, as for example a compound Poisson process with a negative
drift, or just a deterministic drift.

It is well known that the Laplace transform of X is given by

E0

[
eθXt

]
= etψ(θ),

for θ ≥ 0 and t ≥ 0, where

ψ(θ) = γθ +
1

2
σ2θ2 +

∫ 0

−∞

(
eθz − 1 − θzI(−1,0)(z)

)
Π(dz),

for γ ∈ R and σ ≥ 0. Also, Π is a measure on (−∞, 0) such that

∫ 0

−∞
(1 ∧ z2)Π(dz) <∞.

When X has paths of bounded variation, we may write

(1) ψ(θ) = cθ −

∫ 0

−∞

(
1 − eθz

)
Π(dz),
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where c = γ−
∫ 0
−1 zΠ(dz) is strictly positive. Therefore, Xt = X0 + ct−St, where c > 0 denotes

the constant premium intensity, and S is a pure-jump subordinator representing the aggregate
claims. Note that the compound Poisson risk process corresponds to the case

St =

Nt∑

i=1

Ci,

whereN = (Nt)t≥0 is a Poisson process and the claim amounts (Ci)i≥1 form a sequence of positive
independent and identically distributed (iid) random variables. Equivalently, this corresponds
to Π(dz) = λF (−dz), where λ is the jump intensity of N and F is the distribution of the Ci’s.

Finally, note that the net profit condition for a general Lévy insurance risk process is given
by E0[X1] = ψ′(0+) > 0, which agrees with the classical formulation. In the sequel, we assume
that this condition is satisfied.

1.2. Scale functions. As the Laplace exponent ψ is strictly convex and limθ→∞ ψ(θ) = ∞,
there exists a function Φ: [0,∞) → [0,∞) defined by Φ(θ) = sup{ξ ≥ 0 | ψ(ξ) = θ} (its
right-inverse) and such that ψ(Φ(θ)) = θ, for θ ≥ 0.

We now define the scale functions associated with the process X. For q ≥ 0, the q-scale
function W (q) is defined as the unique continuous function with Laplace transform

(2)

∫ ∞

0
e−θzW (q)(z)dz =

1

ψ(θ) − q
, for θ > Φ(q).

We shall mention that W (q) is positive and strictly increasing. If X has bounded variation, the
initial value ofW (q) is given byW (q)(0+) = 1/c. In general, although we primarily regardW (q) as

a function on (0,∞), if needed, we extend it to the entire real line by setting W (q)(0) = W (q)(0+)

and W (q)(x) = 0 for x < 0. Also, we define

Z(q)(x) = 1 + qW
(q)

(x),

where

W
(q)

(x) =

∫ x

0
W (q)(z)dz.

Finally, it is known that W (q)(x) = e−Φ(q)xWΦ(q)(x), where Wζ is the 0-scale function of X

under P ζ given by

(3)
dP ζ

dP

∣∣∣∣
Ft

= eζXt−ψ(ζ)t,

for ζ ≥ 0.

1.3. Standard fluctuation identities. If we denote the standard time of default/ruin, i.e.,
absorption in (−∞, 0), by

(4) τ−0 = inf{t > 0: Xt < 0},

with the convention inf ∅ = ∞, then, for x ≥ 0,

(5) Ex

[
e−qτ

−

0 ; τ−0 <∞
]

= Z(q)(x) −
q

Φ(q)
W (q)(x).
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More generally, it is also known that

(6) Ex

[
e
−qτ−0 +rX

τ
−

0 ; τ−0 <∞

]
= erx + (q − ψ(r))erx

∫ x

0
e−rzW (q)(z)dz −

q − ψ(r)

Φ(q) − r
W (q)(x).

Now, define the first passage above a given level b by

τ+
b = inf{t > 0: Xt > b}.

It is known that, for 0 ≤ x ≤ b,

(7) Ex

[
e−qτ

+
b ; τ+

b < τ−0

]
=
W (q)(x)

W (q)(b)
.

As I{τ−0 <τ
+
b
} = I{τ−0 <∞} − I{τ+

b
<τ−0 }, the strong Markov property of the process X together with

(7) and (6) yield

(8) Ex

[
e
−qτ−0 +rX

τ
−

0 ; τ−0 < τ+
b

]

= erx + (q − ψ(r))erx
∫ x

0
e−rzW (q)(z)dz

−
W (q)(x)

W (q)(b)

{
erb + (q − ψ(r))erb

∫ b

0
e−rzW (q)(z)dz

}
.

In particular,

(9) Ex

[
e−qτ

−

0 ; τ−0 < τ+
b

]
= Z(q)(x) −

W (q)(x)

W (q)(b)
Z(q)(b).

For more details on Lévy insurance risk processes and their scale functions, we refer the reader
to the monograph of Kyprianou (2006).

In the sequel, the following representation of the bivariate Laplace transform of (τ−0 , Xτ−0
) in

terms of the Dickson-Hipp operator of the scale function W (q) will be particularly useful.

Remark 1.1. Using (2), simple manipulations of (6) result in

Ex

[
e
−qτ−0 +rX

τ
−

0 ; τ−0 <∞

]
= erx + (q − ψ (r)) erx

(∫ ∞

0
e−rzW (q) (z) dz −

∫ ∞

x

e−rzW (q) (z) dz

)

−
q − ψ (r)

Φ (q) − r
W (q) (x)

= (ψ (r) − q) erx
∫ ∞

x

e−rzW (q) (z) dz −
q − ψ (r)

Φ (q) − r
W (q) (x)

= (ψ (r) − q)

(
TrW

(q) (x) +
1

Φ (q) − r
W (q) (x)

)
,(10)

for r > Φ (q), where Tr is the well-known Dickson-Hipp operator defined as

Trf (x) =

∫ ∞

0
e−ryf (y + x) dy,
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for any r such that the integral converges. Using (10), it is clear that

Ex

[
e
−qτ−0 +rX

τ
−

0 ; τ−0 < τ+
b

]
= Ex

[
e
−qτ−0 +rX

τ
−

0 ; τ−0 <∞

]
−
W (q) (x)

W (q) (b)
Eb

[
e
−qτ−0 +rX

τ
−

0 ; τ−0 <∞

]

= (ψ (r) − q)

(
TrW

(q) (x) −
W (q) (x)

W (q) (b)
TrW

(q) (b)

)
,(11)

for r > Φ (q).

2. Risk models with Parisian implementation delays

In this paper, we assume that the (underlying) Lévy insurance risk process X has bounded
variation and satisfies the net profit condition. We first give a descriptive definition of the time
to ruin τd. We assume that each excursion below the critical level 0 is accompanied by an
iid copy of an independent (of X) and positive random variable ed. We will refer to it as the
implementation clock. If the duration of a given excursion below 0 is less than its associated
implementation clock, then the ’short’ excursion below 0 process is neglected as far as ruin is
concerned. More precisely, we assume that ruin occurs at the first time that an implementation
clock rings before the end of its corresponding excursion below 0. It is worth pointing out that
the time to ruin τd is properly defined when there are countably many drops below 0 which
explains our restriction to Lévy insurance risk processes of bounded variation in this paper.

Let (ekd)k≥1 be a sequence of iid copies of ed. Recall that the convention inf ∅ = ∞ is used.
Also, let

τ−0,1 = τ−0 ≡ inf {t > 0: Xt < 0} ,

be the first time that the process X enters (−∞, 0), and, correspondingly,

τ+
0,1 = inf

{
t > τ−0,1 : Xt > 0

}
,

be the first time (after τ−0,1) that the processX enters (0,∞). Recursively, we define two sequences

of stopping times (τ−0,k)k≥1 and (τ+
0,k)k≥1 as follows: for k ≥ 2, let

τ−0,k = inf
{
t > τ+

0,k−1 : Xt < 0
}
,

and

τ+
0,k = inf

{
t > τ−0,k : Xt > 0

}
.

Thus, the Parisian ruin time τd is defined as follows:

τd = τ−0,kd
+ ekd

d ,

where

kd = inf
{
k ≥ 1: τ−0,k + ekd < τ+

0,k

}
.

In this section, we propose a generalization of the two-sided exit problem in Kyprianou (2006)
(see Eqs. (8.8) and (8.9)) when the first passage time below 0, namely τ−0 , is substituted by the
Parisian ruin time τd.
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2.1. General implementation delays. Let us consider implementation delays with an arbi-
trary distribution to begin with. A general structure for the Laplace transform of the two exit
times will be identified in the following two lemmas. For an initial surplus x < 0, we silently
assume that the distribution of the first implementation delay has an identical distribution as
the others.

Lemma 2.1. In the context of a Lévy insurance risk model with paths of bounded variation,

(12) Ex

[
e−qτ

+
b ; τ+

b < τd

]
=
H

(q)
d (x)

H
(q)
d (b)

, x ≤ b,

where

(13) H
(q)
d (x) =





W (q)(x)

W (q)(0)

(
1 − E0

[
e−qτ

−

0 EX
τ
−

0

[
e−qτ

+
0 ; τ+

0 < ed

]
; τ−0 < τ+

x

])
, x ≥ 0,

Ex

[
e−qτ

+
0 ; τ+

0 < ed

]
, x < 0.

Proof: For 0 ≤ x ≤ b, we condition on whether the process reaches level b or level 0 first (as
well as the relevant characteristics associated to this first passage). Capitalizing on the strong
Markov property of the underlying Lévy process, we have
(14)

Ex

[
e−qτ

+
b ; τ+

b < τd

]
=
W (q) (x)

W (q) (b)
+Ex

[
e−qτ

−

0 EX
τ
−

0

[
e−qτ

+
0 ; τ+

0 < ed

]
; τ−0 < τ+

b

]
E0

[
e−qτ

+
b ; τ+

b < τd

]
,

for 0 ≤ x ≤ b. In particular, for x = 0, Eq. (14) together with (13) yields

(15) E0

[
e−qτ

+
b ; τ+

b < τd

]
=

1

H
(q)
d (b)

.

Substituting (15) into (14) leads to

Ex

[
e−qτ

+
b ; τ+

b < τd

]
=
W (q) (x)

W (q) (b)
+

Ex

[
e−qτ

−

0 EX
τ
−

0

[
e−qτ

+
0 ; τ+

0 < ed

]
; τ−0 < τ+

b

]

H
(q)
d (b)

.
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Utilizing once again the strong Markov property of the underlying Lévy insurance risk process,

Ex

[
e−qτ

−

0 EX
τ
−

0

[
e−qτ

+
0 ; τ+

0 < ed

]
; τ−0 < τ+

b

]

=
W (q) (x)

W (q) (0)
E0

[
e−qτ

−

0 EX
τ
−

0

[
e−qτ

+
0 ; τ+

0 < ed

]
; τ−0 < τ+

b

]

−
W (q) (x)

W (q) (0)
E0

[
e−qτ

−

0 EX
τ
−

0

[
e−qτ

+
0 ; τ+

0 < ed

]
; τ−0 < τ+

x

]

=
W (q) (x)

W (q) (0)

(
1 − E0

[
e−qτ

−

0 EX
τ
−

0

[
e−qτ

+
0 ; τ+

0 < ed

]
; τ−0 < τ+

x

])

−
W (q) (x)

W (q) (0)

(
1 − E0

[
e−qτ

−

0 EX
τ
−

0

[
e−qτ

+
0 ; τ+

0 < ed

]
; τ−0 < τ+

b

])

= H
(q)
d (x) −

W (q) (x)

W (q) (b)
H

(q)
d (b) ,(16)

which implies that

Ex

[
e−qτ

+
b ; τ+

b < τd

]
=
W (q) (x)

W (q) (b)
+

1

H
(q)
d (b)

(
H

(q)
d (x) −

W (q) (x)

W (q) (b)
H

(q)
d (b)

)

=
H

(q)
d (x)

H
(q)
d (b)

,

for 0 ≤ x ≤ b.
For x < 0, it is immediate that

(17) Ex

[
e−qτ

+
b ; τ+

b < τd

]
= Ex

[
e−qτ

+
0 ; τ+

0 < ed

]
E0

[
e−qτ

+
b ; τ+

b < τd

]
.

Combining (17) and (15) completes the proof of (12). �

Remark 2.1. When ed is a random variable with a degenerate distribution at 0, i.e., when

ed = 0, it is immediate that H
(q)
d (x) = W (q)(x)

W (q)(0)
for x ≥ 0 which yields

(18) Ex

[
e−qτ

+
b ; τ+

b < τd

]
=
W (q) (x)

W (q) (b)
, 0 ≤ x ≤ b,

which is Eq. (8.8) of Kyprianou (2006).

Remark 2.2. Given that the spectrally negative Lévy insurance risk model is skip-free upwards
and possesses the strong Markov property, a passage from level x to level b shall occur with (at
least) one visit to an intermediate level y ∈ (x, b) in the interim. As a result, it can be argued
probabilistically that Lq (x; b) shall be of the form (12) (see Gerber et al. (2006)).

We now consider the Laplace transform of the time of a Parisian exit below 0 before reaching
level b.
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Lemma 2.2. For the Lévy insurance risk model with paths of bounded variation,

(19) Ex
[
e−qτd ; τd < τ+

b

]
= P

(q)
d (x) −

H
(q)
d (x)

H
(q)
d (b)

P
(q)
d (b) , x ≤ b,

where

(20) P
(q)
d (x) =





−W (q)(x)

W (q)(0)
E0

[
e−qτ

−

0 EX
τ
−

0

[
e−qed ; ed < τ+

0

]
; τ−0 < τ+

x

]
, x ≥ 0,

Ex
[
e−qed ; ed < τ+

0

]
, x < 0.

Proof: For 0 ≤ x ≤ b, one capitalizes on the strong Markov property of the Lévy insurance
risk model at the time of the first passage to level b or 0 to obtain

Ex
[
e−qτd ; τd < τ+

b

]
= Ex

[
e−qτ

−

0 EX
τ
−

0

[
e−qed ; ed < τ+

0

]
; τ−0 < τ+

b

]

+ Ex

[
e−qτ

−

0 EX
τ
−

0

[
e−qτ

+
0 ; τ+

0 < ed

]
; τ−0 < τ+

b

]
E0

[
e−qτd ; τd < τ+

b

]
.(21)

In particular, for x = 0, we have

E0

[
e−qτd ; τd < τ+

b

]
=

E0

[
e−qτ

−

0 EX
τ
−

0

[
e−qed ; ed < τ+

0

]
; τ−0 < τ+

b

]

1 − E0

[
e−qτ

−

0 EX
τ
−

0

[
e−qτ

+
0 ; τ+

0 < ed

]
; τ−0 < τ+

b

]

=

W (q)(b)

W (q)(0)
E0

[
e−qτ

−

0 EX
τ
−

0

[
e−qed ; ed < τ+

0

]
; τ−0 < τ+

b

]

W (q)(b)

W (q)(0)

(
1 − E0

[
e−qτ

−

0 EX
τ
−

0

[
e−qτ

+
0 ; τ+

0 < ed

]
; τ−0 < τ+

b

]) .

Using (13) and (20), one concludes that

(22) E0

[
e−qτd ; τd < τ+

b

]
= −

P
(q)
d (b)

H
(q)
d (b)

.

Substituting (22) into (21) yields

Ex
[
e−qτd ; τd < τ+

b

]
= Ex

[
e−qτ

−

0 EX
τ
−

0

[
e−qed ; ed < τ+

0

]
; τ−0 < τ+

b

]

− Ex

[
e−qτ

−

0 EX
τ
−

0

[
e−qτ

+
0 ; τ+

0 < ed

]
; τ−0 < τ+

b

]
P

(q)
d (b)

H
(q)
d (b)

.(23)
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Using sample path arguments, it can be shown that

Ex

[
e−qτ

−

0 EX
τ
−

0

[
e−qed ; ed < τ+

0

]
; τ−0 < τ+

b

]
=
W (q) (x)

W (q) (0)
E0

[
e−qτ

−

0 EX
τ
−

0

[
e−qed ; ed < τ+

0

]
; τ−0 < τ+

b

]

−
W (q) (x)

W (q) (0)
E0

[
e−qτ

−

0 EX
τ
−

0

[
e−qed ; ed < τ+

0

]
; τ−0 < τ+

x

]

= P
(q)
d (x) −

W (q) (x)

W (q) (b)
P

(q)
d (b) .(24)

Using (16) and (24), (23) becomes

Ex
[
e−qτd ; τd < τ+

b

]
= P

(q)
d (x) −

W (q) (x)

W (q) (b)
P

(q)
d (b) −

(
H

(q)
d (x)

H
(q)
d (b)

−
W (q) (x)

W (q) (b)

)
P

(q)
d (b)

= P
(q)
d (x) −

H
(q)
d (x)

H
(q)
d (b)

P
(q)
d (b) .(25)

For x < 0, we condition on whether the implementation clock or the first passage to level 0
will occur first. It follows that

(26) Ex
[
e−qτd ; τd < τ+

b

]
= Ex

[
e−qed ; ed < τ+

0

]
+ Ex

[
e−qτ

+
0 ; τ+

0 < ed

]
E0

[
e−qτd ; τd < τ+

b

]
.

Using (22) and (13), (26) becomes

Ex
[
e−qτd ; τd < τ+

b

]
= Ex

[
e−qed ; ed < τ+

0

]
−H

(q)
d (x)

P
(q)
d (b)

H
(q)
d (b)

.

From the definition of P
(q)
d (x) for x < 0, the proof is now complete. �

Remark 2.3. Assuming that ed is a random variable with a degenerate distribution at 0, we
have

(27) P
(q)
d (x) = −

W (q) (x)

W (q) (0)
E0

[
e−qτ

−

0 ; τ−0 < τ+
x

]
, x > 0.

With the help of (9), (27) can be rewritten as

(28) P
(q)
d (x) = Z(q) (x) −

W (q) (x)

W (q) (0)
.

Substituting (28) and (18) into (19)

Ex
[
e−qτd ; τd < τ+

b

]
= Z(q) (x) −

W (q) (x)

W (q) (0)
−
W (q) (x)

W (q) (b)

(
Z(q) (b) −

W (q) (b)

W (q) (0)

)

= Z(q) (x) −
W (q) (x)

W (q) (b)
Z(q) (b) ,

for x ≥ 0, which is Eq. (8.9) of Kyprianou (2006).
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In what follows, we characterize H
(q)
d and P

(q)
d in the representation of the two-sided exit

problem when implementation delays are exponentially distributed and mixed Erlang distributed
respectively.

2.2. Exponentially distributed implementation delays. Let ed be an exponentially dis-
tributed random variable with mean 1/β. From Theorem 3.12 of Kyprianou (2006), it is clear
that, for x < 0,

(29) Ex

[
e−qτ

+
0 ; τ+

0 < ed

]
= eΦ(q+β)x.

Substituting (29) into (13) yields

(30) H
(q)
d (x) =





W (q)(x)

W (q)(0)

(
1 − E0

[
e
−qτ−0 +Φ(q+β)X

τ
−

0 ; τ−0 < τ+
x

])
, x ≥ 0,

eΦ(q+β)x, x < 0.

Using (11) and (2), it is well known that

E0

[
e
−qτ−0 +Φ(q+β)X

τ
−

0 ; τ−0 < τ+
x

]
= β

{
TΦ(q+β)W

(q) (0) −
W (q) (0)

W (q) (x)
TΦ(q+β)W

(q) (x)

}

= 1 − β
W (q) (0)

W (q) (x)
TΦ(q+β)W

(q) (x) ,(31)

for x ≥ 0. Combining (30) and (31) results in

(32) H
(q)
d (x) =

{
βTΦ(q+β)W

(q) (x), x ≥ 0,

eΦ(q+β)x, x < 0.

As for P
(q)
d , it is easy to show that, for x > 0,

Ex
[
e−qed ; ed < τ+

0

]
= E

[
e−qed

]
− Ex

[
e−qτ

+
0 ; τ+

0 < ed

]
E
[
e−qed

]

=
β

β + q

(
1 − eΦ(q+β)x

)
.(33)

Substituting (33) into (20) yields

(34) P
(q)
d (x) =





− β
β+q

W (q)(x)

W (q)(0)
E0

[
e−qτ

−

0

(
1 − e

Φ(q+β)X
τ
−

0

)
; τ−0 < τ+

x

]
, x ≥ 0,

β
β+q

(
1 − eΦ(q+β)x

)
, x < 0.

With the help of (9) and (31),

E0

[
e−qτ

−

0

(
1 − e

Φ(q+β)X
τ
−

0

)
; τ−0 < τ+

x

]
=

(
1 −

W (q) (0)

W (q) (x)
Z(q) (x)

)
−

(
1 − β

W (q) (0)

W (q) (x)
TΦ(q+β)W

(q) (x)

)

=
W (q) (0)

W (q) (x)

(
βTΦ(q+β)W

(q) (x) − Z(q) (x)
)

,
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which implies that (34) becomes

(35) P
(q)
d (x) =

{
β
β+q

(
Z(q) (x) − βTΦ(q+β)W

(q) (x)
)
, x ≥ 0,

β
β+q

(
1 − eΦ(q+β)x

)
, x < 0.

By extending the domain of definition of Z(q) such that Z(q) (x) = 1 for x < 0, one concludes,
by comparing (32) and (35), that

P
(q)
d (x) =

β

β + q

(
Z(q) (x) −H

(q)
d (x)

)
,

which, in turn, yields

Ex
[
e−qτd ; τd < τ+

b

]
=

β

β + q

(
Z(q) (x) −

H
(q)
d (x)

H
(q)
d (b)

Z(q) (b)

)
.

2.3. Mixed Erlang implementation delays. We now generalize the results of Section 2.2 by
assuming that ed is mixed Erlang distributed with Laplace transform

(36) f̃ (s) = C

(
β

β + s

)
,

where

C (z) =
r∑

n=1

cnz
n,

with cn ≥ 0 for n = 1, ..., r and
∑r

n=1 cn = 1. Its survival function is given by

(37) F (x) =

r−1∑

n=0

Cn
(βx)n

n!
e−βx, x > 0,

where Cn =
∑r

j=n+1 cj . We point out that the integer-valued parameter r can either be finite

or infinite. The reader is referred to Tijms (1994) for a proof that any positive and continuous
random variable can be approximated arbitrary accurately by a mixed Erlang density and to
Willmot and Woo (2007) for an extensive treatment of this class of distributions.

The following lemma will be helpful to characterize both H
(q)
d and P

(q)
d in our generalization

of the two-sided exit problem. The proof is provided in the Appendix. In order to state these
results, we first present a combinatorial identity known as di Bruno’s formula (see e.g. Riordan
(1980)).

Proposition 2.1. (di Bruno’s formula) For two functions f and g sufficiently differentiable,

(38)
dn

dθn
f (g (θ)) =

n∑

i=0

f (i) (g (θ))Bi,n

(
g(1) (θ) , g(2) (θ) , ..., g(n−i+1) (θ)

)
,

where Bi,n (x1, ..., xn−i+1) is the Bell polynomial

Bi,n (x1, ..., xn−i+1) =
∑ n!

k1! k2! ... kn−i+1!

(x1

1!

)k1 (x2

2!

)k2
...

(
xn−i+1

(n− i+ 1)!

)kn−i+1

,
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with the sum extends over all sequences k1, k2, ..., kn−i+1 of non-negative integers such that k1 +
k2 + ...+ kn−i+1 = i and k1 + 2k2 + ...+ (n− i+ 1) kn−i+1 = n. By definition, let B0,0 (x1) = 1
for all x1.

Lemma 2.3. For ed a mixed Erlang random variable with Laplace transform (36),

(39) Ex

[
e−qτ

+
0 ; τ+

0 < ed

]
=

r−1∑

i=0

ζi

{
xieΦ(q+β)x

}
, x < 0,

and

(40) Ex
[
e−qed ; ed < τ+

0

]
= C

(
β

β + q

)
−

r−1∑

i=0

χi

{
xieΦ(q+β)x

}
, x < 0,

where

ζi =
r−1∑

n=i

Cnϑi,n,

χi =

r−1∑

j=i

ϑi,j

r∑

n=j+1

cn

(
β

β + q

)n−j
,

and

ϑi,n =
βn

n!
(−1)nBi,n

(
Φ(1) (q + β) , ...,Φ(n−i+1) (q + β)

)
.

Let

br,l,i = q1{l=i} −

(
i

l

)
ψ(i−l) (r) .

An explicit expression for H
(q)
d and P

(q)
d is presented in the following proposition. The reader is

referred to the Appendix for the proof of this result.

Proposition 2.2. When ed has Laplace transform (36),

(a)

(41) H
(q)
d (x) =





r−1∑
l=0

νl

{
T l+1

Φ(q+β)W
(q) (x)

}
, x ≥ 0,

r−1∑
i=0

ζi
{
xieΦ(q+β)x

}
, x < 0,

where

(42) νl = (−1)l+1 (l!)

r−1∑

i=l

ζibΦ(q+β),l,i.

(b)

P
(q)
d (x) =





χ0−C
“

β
β+q

”

W (q)(0)
W (q) (x) + C

(
β
β+q

)
Z(q) (x) +

r−1∑
l=0

ςl

{
T l+1

Φ(q+β)W
(q) (x)

}
, x ≥ 0,

C
(

β
β+q

)
−
r−1∑
i=0

χi
{
xieΦ(q+β)x

}
, x < 0,

(43)
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where

ςl = (−1)l (l!)

r−1∑

i=l

χibΦ(q+β),l,i.

3. Laplace transform of the time to ruin

In this section, we consider the analysis of the Laplace transform of the time to ruin, namely

φq (x) = Ex
[
e−qτd ; τd <∞

]
,

in the Lévy insurance risk model with paths of bounded variation. We rely heavily on the
two-sided exit problem studied in Section 3 given that

φq (x) = lim
b→∞

Ex
[
e−qτd ; τd < τ+

b

]
.

Corollary 3.1. The Laplace transform of the Parisian ruin time can be expressed as

(44) φq (x) = P
(q)
d (x) − σqH

(q)
d (x) ,

where

(45) σq = lim
x→∞

P
(q)
d (x)

H
(q)
d (x)

.

From their definitions, we easily see that P
(q)
d (0) = 0 and H

(q)
d (0) = 1. As a consequence, we

have

φq(0) = −σq

and then the probability of Parisian ruin when starting from zero is given by

P0 {τd <∞} = −σ0.

Remark 3.1. For ed a degenerate random variable at 0, we recall that H
(q)
d (x) = W (q) (x) /W (q) (0)

and P
(q)
d (x) = Z(q) (x)−W (q) (x) /W (q) (0). From Exercise 8.5 in Kyprianou (2006), it is known

that

(46) lim
x→∞

Z(q) (x)

W (q) (x)
=

q

Φ (q)
,

which implies that

σq = W (q) (0)
q

Φ (q)
− 1.

One concludes that

φq (x) = Z(q) (x) −
q

Φ (q)
W (q) (x) ,

for x ≥ 0, therefore recovering Equation (5).

We revisit the two examples of Section 3 to identify σq under those distributional assumptions.
But first, an identity of particular interest in the sequel is proved. Indeed, it is known (see

Kyprianou (2006)) that the scale function W (q) satisfies W (q) (x) = eΦ(q)xW (x) where W (x) is
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a non-decreasing and bounded function, the latter being provided by the net profit condition.
As a result,

T l
rW

(q) (x)

W (q) (x)
=

∫ ∞

0

yl−1e−ry

(l − 1)!

W (q) (x+ y)

W (q) (x)
dy

=

∫ ∞

0

yl−1e−(r−Φ(q))y

(l − 1)!

W (x+ y)

W (x)
dy.

for l = 1, 2, ... and r > Φ (q). Letting x → ∞ and using the dominated convergence theorem,
one concludes that

lim
x→∞

T l
rW

(q) (x)

W (q) (x)
=

∫ ∞

0

yl−1e−(r−Φ(q))y

(l − 1)!
dy

=

(
1

r − Φ (q)

)l
,(47)

for l = 1, 2, ... and r > Φ (q).

3.1. Exponentially distributed implementation delays. When ed is exponentially dis-
tributed with mean 1/β, it is known from (32) and (35) that

(48) σq = lim
x→∞

β
β+q

(
Z(q) (x) − βTΦ(q+β)W

(q) (x)
)

βTΦ(q+β)W (q) (x)
.

From (46) and (47), (48) becomes

σq =

1
β+q

(
q

Φ(q) −
β

Φ(q+β)−Φ(q)

)

1
Φ(q+β)−Φ(q)

=
qΦ (q + β) − (β + q) Φ (q)

(β + q) Φ (q)
.

Therefore, we get the following expression for the probability of Parisian ruin when X0 = 0:

Corollary 3.2. If the net profit condition is satisfied, then

φq(0) = 1 −
q

β + q

(
Φ(β + q)

Φ(q)

)

and

P0 {τd <∞} = 1 − ψ′(0+)
Φ(β)

β
.

Proof. The first result follows from the previous discussion and calculations. The second result
is a consequence of the first one and the following fact:

lim
q→0

q

Φ(q)
= ψ′(0+).

�
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3.2. Mixed Erlang implementation delays. Similarly, when ed is a mixed Erlang random
variable with Laplace transform (36), it is known from Proposition 2.2 that

(49) σq = lim
x→∞

χ0−C
“

β
β+q

”

W (q)(0)
W (q) (x) + C

(
β
β+q

)
Z(q) (x) +

r−1∑
l=0

ςl

{
T l+1

Φ(q+β)W
(q) (x)

}

r−1∑
l=0

νl

{
T l+1

Φ(q+β)W
(q) (x)

} .

From (46) and (47), (49) becomes

σq =

χ0−C
“

β
β+q

”

W (q)(0)
+ C

(
β
β+q

)
q

Φ(q) +
r−1∑
l=0

ςl

(
1

Φ(q+β)−Φ(q)

)l+1

r−1∑
l=0

νl

(
1

Φ(q+β)−Φ(q)

)l+1
.

4. Numerical example

In this section, we focus on the calculation of the probability of Parisian ruin within an
infinite-time horizon (namely φ0). We consider a deterministic implementation delay (say T )
for the recognition of ruin, and approximate this deterministic time T by a sequence of Erlang
distributed implementation delays with mean T and variance T 2/n (for n a positive integer).
We show numerically the convergence of these Parisian ruin probabilities (to the Parisian ruin
probability with a deterministic implementation delay) as n goes to infinity.

For illustrative purposes, we consider the classical compound Poisson risk model. We assume
that claims arrive at rate 1/3, and claim sizes are exponentially distributed with mean 9. Incom-
ing premiums are collected at a rate of 4 per unit time. In the following two tables, we display
the values of Parisian ruin probability for an initial surplus of X0 = 0 and X0 = 50 respectively.
For comparative measures, we indicate that the traditional ruin probability (i.e. Parisian ruin
probability with T = 0) is 0.7500 and 0.1870 respectively for these two initial surplus values.

Parisian Ruin Probability
n T=0 T=1 T=2 T=5
1 0.6886 0.6478 0.5676 0.4867
5 0.6767 0.6195 0.5020 0.3879
10 0.6748 0.6144 0.4910 0.3737
15 0.6741 0.6126 0.4873 0.3690
20 0.6737 0.6117 0.4854 0.3667
25 0.6735 0.6112 0.4842 0.3653
30 0.6733 0.6108 0.4835 0.3644
35 0.6732 0.6105 0.4829 0.3637
40 0.6732 0.6103 0.4825 0.3633
45 0.6731 0.6102 0.4822 0.3629
50 0.6731 0.6100 0.4820 0.3626
55 0.6730 0.6099 0.4817 0.3623
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Parisian Ruin Probability
n T=0 T=1 T=2 T=5
1 0.1717 0.1615 0.1415 0.1213
5 0.1687 0.1545 0.1252 0.0967
10 0.1683 0.1532 0.1224 0.0932
15 0.1681 0.1528 0.1215 0.0920
20 0.1680 0.1525 0.1210 0.0914
25 0.1679 0.1524 0.1207 0.0911
30 0.1679 0.1523 0.1206 0.0909
35 0.1679 0.1522 0.1204 0.0907
40 0.1679 0.1522 0.1203 0.0906
45 0.1679 0.1521 0.1202 0.0905
50 0.1678 0.1521 0.1202 0.0904
55 0.1678 0.1521 0.1201 0.0903
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5. Appendix

5.1. Proof of (39) in Lemma 2.3. Using the mixed Erlang survival function (37), one readily
finds

Ex

[
e−qτ

+
0 ; τ+

0 < ed

]
= Ex

[
e−qτ

+
0

(
r−1∑

n=0

Cn

(
βτ+

0

)n

n!
e−βτ

+
0

)
; τ+

0 <∞

]

=
r−1∑

n=0

Cn
βn

n!
Ex

[(
τ+
0

)n
e−(q+β)τ+

0 ; τ+
0 <∞

]

=
r−1∑

n=0

Cn
βn

n!
(−1)n Ex

[
dn

dξn
e−ξτ

+
0 ; τ+

0 <∞

]∣∣∣∣
ξ=q+β

,

for x ≥ 0. Interchanging the order of the expectation sign and the n-th derivative, one finds that

(50) Ex

[
e−qτ

+
0 ; τ+

0 < ed

]
=

r−1∑

n=0

Cn
βn

n!
(−1)n

dn

dξn
eΦ(ξ)x

∣∣∣∣
ξ=q+β

Using di Bruno’s formula, (50) becomes
(51)

Ex

[
e−qτ

+
0 ; τ+

0 < ed

]
= eΦ(q+β)x

r−1∑

n=0

Cn
βn

n!
(−1)n

n∑

i=0

xiBi,n

(
Φ(1) (q + β) , ...,Φ(n−i+1) (q + β)

)
,

Interchanging the order of summation in (51) leads to (39).

5.2. Proof of (40) in Lemma 2.3. Using the mixed Erlang density followed by a series of
simple manipulations, one arrives at

Ex
[
e−qed ; ed < τ+

0

]
=

r∑

n=1

cnEx
[
e−qen,β ; en,β < τ+

0

]

=

r∑

n=1

cn
(
E
[
e−qen,β

]
− Ex

[
e−qen,β ; τ+

0 < en,β
])

=

r∑

n=1

cn


E

[
e−qen,β

]
−
n−1∑

j=0

Ex
[
e−qen,β ; ej,β < τ+

0 < ej+1,β

]

 ,(52)
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where ej,β is an Erlang-j random variable with density

f (y) =
βjyj−1e−βy

(j − 1)!
, y > 0,

(with e0,β a degenerate random variable at 0). Given that the Lévy insurance risk model is
skip-free upwards and due to the memoryless property of the exponential distribution, we have

(53) Ex
[
e−qen,β ; ej,β < τ+

0 < ej+1,β

]
= Ex

[
e−qτ

+
0 E

[
e−qen−j,β

]
; ej,β < τ+

0 < ej+1,β

]
,

where

(54) E
[
e−qej,µ

]
=

(
β

β + q

)j
, j = 0, 1, 2, ...

Substituting (53) and (54) into (52) yields

Ex
[
e−qed ; ed < τ+

0

]
= C

(
β

β + q

)

−
r∑

n=1

cn

n−1∑

j=0

(
β

β + q

)n−j
Ex

[
e−qτ

+
0 ; ej,β < τ+

0 < ej+1,β

]
.

(55)

Using (39) with

Cn =

{
1, n = 0, 1, ..., j,
0, n = j + 1, j + 2, ...,

and

Cn =

{
1, n = 0, 1, ..., j − 1,
0, n = j, j + 1, ...,

respectively, one deduces that

Ex

[
e−qτ

+
0 ; ej,β < τ+

0 < ej+1,β

]
= Ex

[
e−qτ

+
0 ; τ+

0 < ej+1,β

]
− Ex

[
e−qτ

+
0 ; τ+

0 < ej,β

]

=

j∑

i=0

ϑi,j

{
xieΦ(q+β)x

}
.(56)

Substituting (56) into (55) (followed by some simple manipulations) yields (40).

5.3. Proof of Proposition 2.2. For x < 0, (41) and (43) follows immediately from Lemma 2.3
together with (13) and (20) respectively. For x ≥ 0, the results of Lemma 2.3 allows to rewrite
(13) and (20) respectively as

(57) H
(q)
d (x) =

W (q) (x)

W (q) (0)

(
1 −

r−1∑

i=0

ζi E0

[(
X
τ−0

)i
e
−qτ−0 +Φ(q+β)X

τ
−

0 ; τ−0 < τ+
x

])
,
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and

P
(q)
d (x) =

W (q) (x)

W (q) (0)

r−1∑

i=0

χiE0

[(
X
τ−0

)i{
e
−qτ−0 +Φ(β+q)X

τ
−

0

}
; τ−0 < τ+

x

]

−
W (q) (x)

W (q) (0)
C

(
β

β + q

)
E0

[
e−qτ

−

0 ; τ−0 < τ+
x

]
.(58)

An expression for E0

[(
X
τ−0

)i
e
−qτ−0 +rX

τ
−

0 ; τ−0 < τ+
x

]
for r > Φ (q) is needed to further explicit

(57) and (58).
For i = 0, (11) immediately yields

(59) E0

[
e
−qτ−0 +rX

τ
−

0 ; τ−0 < τ+
x

]
= 1 −W (q) (0) (ψ (r) − q)

TrW
(q) (x)

W (q) (x)
.

Otherwise, for i = 1, 2, ...,

E0

[(
X
τ−0

)i
e
−qτ−0 +rX

τ
−

0 ; τ−0 < τ+
x

]
=

di

dξi
E0

[
e
−qτ−0 +ξX

τ
−

0 ; τ−0 < τ+
x

]∣∣∣∣
ξ=r

= W (q) (0)
di

dξi

(
(q − ψ (ξ))

TξW
(q) (x)

W (q) (x)

)∣∣∣∣∣
ξ=r

.(60)

From Property 5 of the Dickson-Hipp operator on page 393 of Li and Garrido (2004), namely

dl

dξl
TξW

(q) (x) = (−1)l (l!) T l+1
ξ W (q) (x) , l = 0, 1, ...,

(60) becomes

(61) E0

[(
X
τ−0

)i
e
−qτ−0 +rX

τ
−

0 ; τ−0 < τ+
x

]
= W (q) (0)

i∑

l=0

br,l,i
(−1)l (l!) T l+1

r W (q) (x)

W (q) (x)
,

for r > Φ (q) where

br,l,i = q1{l=i} −

(
i

l

)
ψ(i−l) (r) .

Then, substituting (59) and (61) into (57) and using the fact that ζ0 = 1, one concludes that

H
(q)
d (x) =

W (q) (x)

W (q) (0)

(
1 − ζ0

(
1 − βW (q) (0)

TΦ(q+β)W
(q) (x)

W (q) (x)

))

−
r−1∑

i=1

ζi

i∑

l=0

bΦ(q+β),l,i

{
(−1)l (l!) T l+1

Φ(q+β)W
(q) (x)

}

= βTΦ(q+β)W
(q) (x) +

r−1∑

i=1

ζi

i∑

l=0

bΦ(q+β),l,i

{
(−1)l+1 (l!) T l+1

Φ(q+β)W
(q) (x)

}

=
r−1∑

i=0

ζi

i∑

l=0

bΦ(q+β),l,i

{
(−1)l+1 (l!) T l+1

Φ(q+β)W
(q) (x)

}
.(62)
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Interchanging the order of summation, (62) has the equivalent representation given in (41). Using
a similar line of logic, (43) can be obtained from (58) through (59), (61) and (9). The proof is
therefore omitted.

5.4. Derivatives of Φ (θ). In this section, we propose a recursive formula for the calculation of
the derivatives of the inverse of the Laplace exponent, namely Φ (θ). Under the positive security
loading condition, we have

(63) θ = ψ (Φ (θ)) .

Using the chain rule, the differentiation of (63) w.r.t. θ yields

1 = ψ′ (Φ (θ)) Φ′ (θ) ,

or equivalently

Φ′ (θ) =
1

ψ′ (Φ (θ))
.

In general, the same procedure can be repeated to obtain the higher-order derivatives of Φ (θ).
Indeed, using di Bruno’s formula (see Eq. (38)), we have

(64)
dn

dθn
ψ (Φ (θ)) =

n∑

i=1

ψ(i) (Φ (θ))Bi,n

(
Φ(1) (θ) ,Φ(2) (θ) , ...,Φ(n−i+1) (θ)

)
,

where Bi,n is the Bell polynomial. It is easy to show that B1,n (x1, ..., xn) = xn which permits
to re-write (64) as
(65)

dn

dθn
ψ (Φ (θ)) = ψ(1) (Φ (θ)) Φ(n) (θ) +

n∑

i=2

ψ(i) (Φ (θ))Bi,n

(
Φ(1) (θ) ,Φ(2) (θ) , ...,Φ(n−i+1) (θ)

)
,

where it is worth pointing out that the second term on the right-hand side of (65) is a function
of the first (n− 1) derivatives of Φ (θ). For n ≥ 2, an application of the n-th derivative operator
on each side of (63) results in

0 = ψ(1) (Φ (θ)) Φ(n) (θ) +
n∑

i=2

ψ(i) (Φ (θ))Bi,n

(
Φ(1) (θ) ,Φ(2) (θ) , ...,Φ(n−i+1) (θ)

)
,

or equivalently

Φ(n) (θ) =
−1

ψ(1) (Φ (θ))

(
n∑

i=2

ψ(i) (Φ (θ))Bi,n

(
Φ(1) (θ) ,Φ(2) (θ) , ...,Φ(n−i+1) (θ)

))

=
(
−Φ′ (θ)

) n∑

i=2

ψ(i) (Φ (θ))Bi,n

(
Φ(1) (θ) ,Φ(2) (θ) , ...,Φ(n−i+1) (θ)

)
.(66)
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