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Abstract. An algorithm that uses integer arithmetic is suggested. It transforms an 
mx n matrix to a diagonal form (of the structure of Smith Normal Form). Then it 
computes a reflexive generalized inverse of the matrix exactly and hence solves a 
system of linear equations error-free. 
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1. Introduction 

Whether a matrix A over a complex field is singular square, or rectangular, it has 
always a generalized inverse (g-inverse) over the (complex) field. The true inverse 
exists only when ,4 is nonsingular (i.e., a square matrix whose determinant is not 
zero). However, a g-inverse of an m x n matrix of  rank r involves considerable 
errors if the rth order submatrices are near-singular. Further, the rank shown by the 
g-inverse may be less than the actual rank. In fact, identical are the pitfalls when a 
(square) near-singular matrix is inverted. 

We present here a method that uses integer arithmetic to 
(i) transform an m x n integral matrix to a Smith Diagonal Form (defined later) 

without requiring to compute the greatest common divisors (GCDs) of the 
matrix elements as required in computing certain g-inverses (Hurt and Waid 
[4], Ben-Israel and Greville [2]), 

(ii) compute a reflexive g-inverse (Bowman and Burdet [3], Ben-Israel and Gre- 
ville [2], Krishnamurthy and Sen [5]), 

(iii) obtain a solution vector x of  Ax=b,  b being 0 (null column vector) or not. 
Since any computing system can represent only the rational numbers, we can, without 
any loss of generality, assume the inputs (here the matrix A and the right-hand-side 
column vector b) integral. 

2. Definitions 

2.1. Integral vector and integral matrix 

Let (a) K ---- the ring of  integers 0, 4 - I ,  q,-2 . . . . .  
(b) K m ----- the m dimensional vector space over K, 
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(e) K m• : the m x n  matrices over K, and 
(d) Kr m• : the m / n matrices with rank r over K. 

Any element of K m is an integral vector. Any element of K m• is an integral 
matrix, and any element of K7 ~• is an integral matrix of rank r. 

2.2. Elementary row and column operations 

A sequence of elementary row and column operations used here consists of 
(a) Type 1. Interchanging two rows (columns), 
(b) Type 2. Subtracting an integral multiple of one row (column) from another 

row (column), and 
(c) Type 3. Replacing a row (column) by an integral multiple of the row 

(column). 

2.3. Elementary integral matrix 

Any nonsingular matrix P E K m;'~ (any nonsingular matrix Q E K "x") which 
when pre- (post-) multiply a given matrix A E K, rex", produces a combination of 
types 1, 2, and 3 operations. 

2.4. Equivalent matrices 

Two matrices A, S ~ K ~~" are equivalent over K if there exist two elementary 
integral matrices P E g m• and Q E K "'x" such that P A Q  : S. 

2.5. Smith diagonal form 

A matrix S=(so)  E K, "x" is the Smith Diagonal Form (SDF) ofA E Kr ~x" if 

(a) sit #0 ,  i :  l(1)r; (b) s t j=0  otherwise, and (c) s~ t divides sl+l, ~+1, i=l(1)r--1.  

2.6. Generalized inverse of  Smith diagonal form 

The g-inverse of SDF S is the matrix S+:(s~a +) E Kr "xm if 

(a) sis + = s ,  -1, i : l ( l ) r ,  and (b) st j + : 0  otherwise. 

3. The method 

Let A ~ K, mxn do not have any zero row or zero column. 

Step 1. Computing SDF S~(st j )  E K, ~xn 

(i) Make the elements at positions (1, 1), (2,2) . . . . .  nonzero using type 1 operations if 
any element at any of the positions (1,1), (2, 2) . . . . .  is zero. Otherwise go to step l(ii). 
(ii) Multiply (type 3 operations) secotidz third,.:., mth rows bY Pl, PiPz . . . . .  PlP2;"Pm-I, 
respectively, where p~ is the element at  position (i, i) or p ( i s  a number so that the 
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elementary matrices Pa, P2 . . . . .  where P=. . .P~P1,  are integral (see step 2, and exam- 
ples in section 6) or p~ is a number so that P is integral and the remainder in any 
division is zero. 
(iii) Make zeros of all the elements below position (1, 1) in the first column using 
type 2 operations. 
(iv) If  the element at position (2, 2) is not zero then make zeros of  all the elements 
below position (2, 2) in the second column using type 2 operations. Otherwise inter- 
change P2Pa...P~-I times the second row and 1/(p~p3...P~-O times the sth row whose 
second element is nonzero (types 1 and 3 operations). 

Make zeros of all the elements below position (2, 2) in the second column (if these 
are not all zero). Continue the process for the elements at positions (3, 3), (4, 4), 
etc. 
Note. Steps l ( i ) - l ( iv )  make the first r rows non-null with all the elements below 
positions (1, 1), (2, 2), . . . .  etc. zero an:t other rows ( ( r + l ) s t  to ruth rows) null. 
(v) Multiply second, third . . . . .  rth columns by ql, q~q2 .... .  qlq2.., qr-1, respectively, 
where q~ is the element at position (i, i) or q~ is a number so that the elementary 
matrices Q1, Q2 . . . . .  where Q = Q1 Q2 . . . . .  are integral (see step 2 and examples 
in section 6) or q~ is a number so that Q is integral and the remainder in any 
division is zero. Multiply each of (r + 1)st, (r + 2)nd . . . . .  nth columns by 
qlq~. . .q,-v 
(vi) Make zeros of  all the elements after position (1, 1) in the first row using type 2 
operations. 
(vii) If  the element at position (2, 2) is not zero then make zeros of all the elements 
after position (2, 2) in the second row using type 2 operations. Otherwise interchange 
q2qa...qs-t times the second column and 1/(q2qz...q~-O times the sth column 
whose second element is nonzero (types 1 and 3 operations) and then make zeros 
of  all the elements after position (2, 2) in second row (if these are not all zero). 
Continue the process for the elements at positions (3, 3), (4, 4), etc. 
Note. Steps l(i)-l(vii) give the SDF S. Also, in any divide operation denominator 
divides the numerator. 

Step 2. Computing A-. 

(i) Compute the elementary matrix P(Q) defined in see. 2(iv), which is the product 
of all the elementary row (column) matrices, in the right order. Thus PA Q =s.  
(ii) To obtain A - = Q S  + P, compute 

r 
(i ,  j ) th  element of a A - =  ~,k=l  q~k PkJ (~/Skk), 

i = 1 (1)n,j = l(1)m where ~ = s,r. 

Step 3. Computing solution vectors. To solve Ax =b, x being rational, 
(i) compute Ao~A-b. If  it is equal to ~b, then solution exists. Otherwise, the system 
has no solution. 
(ii) If  AaA-b = ~b, then compute c~A-b. 

Obtain ax = aA-b -b ay--aATAy for any y ~ K". 
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Remarks 

(i) Computing g-inverse of a rational matrix. Let B be an m • n nonintegral rational 
matrix. Then A : fib is integral. Hence B- : flA-. 
(ii) Computing solution vector of  a rational system. Let C x : d  be the nonintegral 
rational system. Then E x : f ,  where E : ~ C  a n d f = y d ,  is an integral system. 

4. Results 

The method follows from the theorem and corollary below. 

Theorem. Let A E gr mXn. Then A is equivalent over K to an SDF S E K, "• 
The proof follows from the construction of S described in step 1 of the method 
(See. 3). 

Corollary. Let P and Q be elementary integral matrices and P A Q = S  be an SDF 
of .4 E K "• Also, let A- =:- QS+P. Then 

AA-A : .4, A-AA-  : A-. 

Proof. PAQ=S=SS§  Hence A = A A - A .  A-AA-  is 
proved similarly. 

Note. 

(i) Integrality condition. The A- does not satisfy 

A-A E K n• and AA- E K m• 

if (nontrivial) type 3 operations are used. 
(ii) Triangular matrices. If  type 1 operations are not needed then P and Q will be 
lower and upper triangular matrices, respectively. In such a case step 2(ii) can be 
written as 

To obtain A- = QS+P, compute 

r 
(i, j ) th  element of aA- = ~ k = i  qik Pk~ (a/s~), i >1 j 

~k -~ j  q,k Pk~ (a/Skk), i < j 

i = l(1)r, j = l(1)r where a = s,,. 

5. Use of modular arithmetic 

For exact computation the modular arithmetic (Adegbeyeni and Krishnamurthy [1], 
Rao et al [6]) can be used only when the integer arithmetic (Sen and Shamim [7]), 
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in a general purpose computing system, demands too long precision operands. The 
modular arithmetic offers the parallelism in computation but the total computation 
is about u times the computation needed by the integer arithmetic, u being the num- 
ber of prime bases used. 

6. Examples 

(1) A :  6 
5 10 

Here p x : 2 ,  p2=6, p3:10.  

Step l(ii). Multiply second and third rows by 2 and 2• respectively (type 3): 

ViA = 2 A = 12 
0 12 36 60 120 

Step l(iii). To reduce the first column elements below position (1, 1) zero premultiply 
Pi A by P2 (type 2): 

[i P~P1A : 1 PIA : 0 --18 
18 0 6 30 

Step l(iv). The element at position (2, 2) is zero. So interchangepz times the second 
row and (1/p~) times the third row (here s : 3 )  whose second element is nonzero 
(types 1 and 3): 

PaPzPIA = [i~ [i 0 1/ P~P1A : 1 
6 0 --108 

Since the element below position (2, 2) in the second column is zero and m==3, 
we go to step l(v). 
Step l(v). q1=2, q2=l,  qa=--108. Multiply second and third columns by 2, 2 • 1, 
respectively (type 3): 

P3P2P~AQ~ : P3P2P~A 2 : 2 10 
0 0 --216 

Step 1 (vi). Make zeros of all the elements after position (1, 1) in the first row (type 2): 

PsP2P~ A QI Q2 = PsPsPI A QI = 301 [i ~ 2161~176 
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Step l(vii). Since the element at position (2, 2) is not zero, make zeros of all the 
elements (here one) after position (2, 2) in the second row (type 2): 

[ i ~  o 1 _ = [i ~ = S (SDF) 

1 0 0 ]  
P = PaP~Pl = - 3 0 2 

- 2 4  12 0 

Q = Q1Q~Q3 = [i 3 2 
0 

- 1  , P A Q = S .  

a = s33 =- --216 

~S § : 
~---108 0 O] 

0 ~108 0 
0 0 1 

[---1320 120 
aA  - t  = a A - - -  Q a S + P  = / 888 --120 

L -  48 24 

648] 

(2) 
- -!  2 3 3]  

A =  5 6 3 . 
- -  - - 8  - - 9  - - 3  

Multiply second and third rows by 1 and 1 • respectively (type 3): 

[1 0 0 ]  [--12 2 3 33] 
P1A = 0 1 .4 5 6 

0 0 5 --25 -40 45 15 

To reduce the first column elements below position (1, 1) zero pre-multiply PaA by Pz 
(type 2): 

[ i ~  [ i  2 3 P~P1A = I P1A = 9 12 
0 -90 --120 --90 

To reduce the second column element below position (2, 2) zero pre-multiply P~PIA 

by P3 (type 2): 

[i~ [i 23 i] PuP~PtA = 1 P2PtA 9 12 . 
10 0 0 
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Multiply second, third, and fourth columns by 1, 1 • 9, 1 • 9, respectively (type 3): 

llOOil 27 27 1 P3P2P1AQI=P3P2P1A 0 1 0 = 9 108 8 
0 9 0 0 
0 0 

To reduce the first row elements after position (1, 1) zero post-multiply PzP2PIA Q1 

by Q2 (type 2): 

P~P2PI A Q1 Q2 = PzP2P1A Q1 Fi 2 27 2il 1 0 := 9 108 8 
0 1 0 0 
0 0 

To reduce the second row elements after position (2, 2) zero post-multiply 
PaP2P1 A QIQ~ by Qa (type 2): 

Ll~ ~ i] pap2p~AQIQ2Q ~ = pzpeP1AQiQ z 0 1 --12 -- 
0 0 1 
0 0 0 

1 
p = p~p~p~ = 2 

--5 

= 9 0 = S  
0 0 

Ii 1 , Q =  Q I Q z Q s =  
10 

oi l I 

0 
0 

--9 
0 

a = s22 = 9 ,  aS + = 0 

0 

23 !] 
1 - - 1 2  - -  

0 9 
0 0 

152il ~A__= QaS+p = 2 1 
0 0 
0 0 

Note that PA Q =S,  and P and Q are lower and upper triangular matrices, respectively 
since type 1 operations are not used. 

A~A- = 9 
--18 
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I f  b = (7 16 - -25) '  then A ~ A - b =  ab and  hence solut ions exist. I f  b = ( 8  16 - -25) '  
then AaA-b  # ~b and  hence solut ions do no t  exist. Fo r  b = ( 7  16 - -25)  t the solution 
vector  ax = ( - -3  30 0 0y.  
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