Division of Research December 1982
Graduate School of Business Administration
The University of Michigan

An Integer Programming Algorithm
With Network Cuts for Solving the
Assembly Line Balancing Problem

Working Paper No. 321

F. Brian Talbot
The University of Michigan

James H. Patterson
The University of Missouri-Columbia

FOR DISCUSSION PURPOSES ONLY

None of this material is to be quoted or
reproduced without the express permission
of the Division of Research.

Abstract

In this paper, we describe an integer programming algorithm for assigning
tasks on an assembly line to work statioms in such a way that the number of
work statlions is minimal for the rate of production desired. The procedure
insures that no task is assigned to a work station before all tasks which
technologically must be performed before it have been assigned (precedence
restrictions are not violated), and that the total time required at each work
station performing the tasks assigned to it does not exceed the time available
(cycle time restrictions are not violated). The procedure is based on a
systematic evaluation (enumeration) of all possible task assignments to work
stations. Significant portions of the enumeration process are performed
implicitly, however, by utilizing tests described in the paper which are
based on the specific structure of the line balancing problem. An artifice
termed a network cut is also developed which eliminates from explicit con-
sideration the assignment of tasks to work stations where such assignments
would not lead to improved line balances. Results reported demonstrate that
the procedure can obtain optimal balances for assembly lines with between fifty
and one-hundred tasks in a reasonable amount of computation time and with

modest computer storage requirements.

1. Introduction

An integer programming algorithm is presented for determining the minimum
number of work stations required to balance a paced assembly line, subject to
constraints on the sequence in which tasks may be performed, and subject to a
limit (the cycle time) on the time which can be expended in performing tasks at
each work station. The cycle time in these problems is based on a production
plan or an output rate specified to meet forecasted demand. If the demand is
120 units per hour, for example, then the‘cycle time is thirty seconds, or
one-half minute per work station. A related balancing problem, which is not
considered in this paper, involves the detérmination of a minimal cycle time
(or maximum output rate) for a fixed line length or number of work stations.
In this problem, precedence constraints must not be violated, and the given
numberlof work stations must not be exceeded in determining the minimum cycle
t ime balance. Heuristic techniques for solving the first problem can be
generalized to solve the second by successively increasing the cycle time
until a balance is achieved for the stipulated number of work stations. Our
procedure can also Se applied in an analogous fashion to solve this latter
problem.

Indicative of the type of problem encountered in balancing an assembly
line is the one given in Figure I, adapted from [3]. In this network repre-
sentation of the assembly line balancing (ALB) problem, nodes indicate tasks to
be performed, and arcs denote the order in which the tasks must be performed.
For example, in Figure I, task six cannot be begun until tasks three and four
have both been completed. Associated with each task is the time required for

its performance, T The cycle time C gives the maximum amount of time allowed

L
at a work station to perform the tasks assigned to it. We will assume in the

development of the procedure that the nodes of the network are numbered such

-1-

Figure T

Precedence Diagram of Bowman's [3] Problem
with Dummy Terminal Node Appended

Key @ = Task Number
T; = Time Required For Performance

of Task i

that if task m precedes task n, m < n. PFurthermore, we will assume that a
unique terminal dummy task with label N and time zero is appended to the
network as shown in Figure I (task 9). We assume that this is the only task
with zero time. Such node numbering schemes in a network are not unique, and
in fact determine the order in which tasks are considered for assignment to a
work station.

As 1is the case with many of the recent attempts to solve this problem with
the use of integer programming, our approach is based on the Balas implicit
enumeration algorithm [2]. Our procedure differs from these other approaches,
however, in that we use integer variables rather than 0-1 (binary) variables.
This results in a significant reduction in computer storage requirements
vis~-d-vis these other methods. Other optimization approaches for solving
this problem are described in [5, 6, 8, and 13].

Notation which will be used to describe the procedure is given in Table I.
In Section 2 of the paper, we state the integer programming formulation of this
problem, and contrast it to the existing binary programming formulations. In
Section 3 the basic solution procedure is presented, and in Section 4 we des-—
cribe several techniques for exﬁloiting problem structure and accelerating the
convergence of our approach. Computational experience in solving a series of
test problems found in the open literature is found in Section 5. Concluding

remarks are given in Section 6.

Symbol
(Listed Alphabetically)

Aj

Py (S)

p¥ (sD)

U; (L;)

lym
~Table I
Definition of Terms

Definition

A nonnegative integer variable which is equal to
the number of the work station in which task i is
assigned. (A;=0 indicates that task i has not
been assigned to a work station.)

The station assignment for task i in the current
best solution. Initially, By is set equal .to H.

Cycle time.

The number of stations in a heuristic solution
to the ALB problem. (H equals N if a heuristic
solution is not known.)

Idle time at station j: i.e., C minus the sum of
the task times for tasks currently assigned to
station j.

Task number: (1 < i < N).

Station number: (1 < j < H).

-A lower bound on the number of work stations

required.
Number of tasks to be assigned. (Also equal to the
identifying number of the unique dummy terminal

task without successors.)

The set of tasks which must precede (succeed)
task i.

The set of tasks which must immediately
precede (succeed) task i.

Time required to perform task i.

" Maximum task time in a given problem.

T* = max {Ti}'
i

An upper (lower) bound specifying the highest
(lowest) numbered station into which task i may
be assigned based on cycle time and precedence
restrictions.

The set of all tasks which can be assigned to
station j by virtue of task precedence constraints.

The subset of tasks in Wj that are actually
assigned to station j.

-5-

2. Integer Programming Formulation

Conceptually, the. assembly line balancing (ALB) problem is formulated as

follows:
Minimize: AN
Subject to:) Ty < C for j=1,...,H (1)

ieW!
]

Ay <Ay meP,
for n=1,...,N (2)

The objective is to minimize the number of work stations, or equivalently,
AN’ which is the station to which the unique terminal task N is assigned. Con-
straints (1) insure that the sum of the task times for tasks assigned to a par-
ticular station does not exceed the cycle time, C. Constraints (2) insure that
all technological predecessors of a given task are performed before it is
performed.

The pfimary obstacle to implementing this formulation directly is the
difficulty in operationally specifying (1). Prior integer programming attempts
[3, 15, 20, 22] bave led to formulations using 0-1 variables, which do permit
the explicit representation of cycle, occurfence, and precedence constraints.
ihe consequence of using 0-1 variables, however, is that the resulting for-
mulation contains a large number of variables and constraints. This is demon-
strate& in [15], where four 0-1 formulations of the ALB problem are compared by
means of an eight~task example problem. "The approach involving the fewest
number of variables and constraints requires 29 variables and 23 constraints
for the given eight-task problem. For much larger industrial size problems——
say, 50 to 100 tasks——this conservatively translates into formulations in-

volving literally hundreds of variables and constraints. Furthermore, if the

6o

search procedure for problem solution works "down"” from a heuristic line
length, H, both the number of variables and the number of constraints needed
in these formulations are a function of the best known heuristic solution. The
larger H is relafive to the lowér bound number of work stations,.M, the larger
is the resulting formulation.

The proposed solution method eiiminates the need to explicitly formulate
(1) and (2), which significantly reduces the computer storage requirements
relative to prior integer programming approaches. The number of variables,
Aj, is simply equal to the number of assembly tasks, N. Constraints are not
explicitly formulated at all in our procedure. Precedence relétionships are
maintained by directly testing an immediate predecessor array, Pz. Further-
more, cycle time restrictions are invoked through the evaluation of an idle
time vector, I. Unique task assignment to a work station is insured by
assigning tasks in numerical order, starting with task one and terminating with
task N. Thus, the basic proposed formulation requires computer storage of only
four vectors, each of dimension no greater than 1xN, and one NxK matrix, where
K is the numbef of Iﬁmediate predecessbrs for the task with the maximum number
of immediate predecessors. The vectors are A, I, T, and U, and the matrix is
P*. Depending upon the type of heuristic rﬁles employed, a few additional

1xN vectors may also be required.

3. The Solutioﬁ Procedure
The basic solution methodoloéy will now be described. First, upper (U;)
and lower (L;j) bounds on the stations into which a task may be assigned are
determined. The problem is then solved by using our modified Balas algorithm,

which guarantees that an optimal solution will be found.

~7-

The Determination of Upper and Lower Bounds on Task Assignment
In order to restrict the enumeration of possible work task assignments, an
upper bound on the latest feasible station into which a task can be assigned is

determined as follows:

Uy =H-[(Ty+) T /ClT for is=l,...,N-1 (3)
'kESi
H~1

and, UN
+ . .

where [x] denotes the smallest integer > x. This states that the upper bound

on the terminal task is one station less than the current best known solution

H. .
Analogously, (4) identifies the earliest possible station to which a task

can be assigned by virtue of cycle time and precedence restrictions:

L= [T+ § 10 /¢t fFor i=1,...,N 4 (4)
kEPl

.The bounds‘provided by (3) and (4) are similar to those given in [15]. We
use the bounds somewhat differently, however. 1In [15], the bounds are used to
reduce the number of 0-1 vafiables required in problem formulation. We use
these bounds directly to specify the range of integer values Aj can assume in
assigning task i to a work station.

Stronger bounds than those given by (3) and (4) may be found when the mag-—
nitude of C approaches the maximum task time, T*. This is fortunate, since our
exberience indicates that a problem becomes increasingly difficult to solve
when the number of stations in which assignments can be made increases. This,
of course, is precisely what happens whén C decreases, approaching T*.

When C approaches T*, many of the tasks with performance times in magni-
tude close to T# typically must be assigned to a station alone. To identify
such tasks, calculate Uj and L; using (3) and (4). Then, taking each task i
in order, from 1 to N, determine if there exiéts a task k with T > 0 such

that Ty + Ty SJC, where i # k. ©Note that the only k's that need to be

—§-

cons idered are those where Lk.ﬁ Ui or Uk Z.Li’ and either {k £ P? or k € S?},

or {k ¢ P; and k ¢ Si}. If k does not exist, then set T; = C. When all tasks
have been evaluated in this fashion, recalculate U; and L; using (3) and (4).
For the example problem in Figure I, the sets of lower and upper bounds as
calculated by (4) and (3) are {1,2,2,2,3,3,3,3,4} andA{4,4,5,7,7,7,7,7,7},

When H = 8. The.cbrresponding improved lgwer and upper bounds obtained by using
"the procedure described are {1,2,3,3,3,4,4,4,5} and {3,4,5,7,7,7,7,7,7}.

It is intéresting to note that for the example problem, use of this
improved procedure increases the lower bound number of work stations from
four to five. 'Since a heuristic solution of AN = 5 is easily obtained, the
revised lower bound verifies that the heuristic solution is optimal. This
improved bbunding method can thus aid the solution procedure by providing an
improved bound on the minimum number of work stations required, as.well as
by reducing the number of station assignments which hévé to be.explicitly

evaluated for tasks when'C approaches T*.

Optimiziﬁg Procedure
Qur adaptation of the Balas algorithm éan be summarized as follows:
(1) nonnegative integer vériables A; are used, rather than 0-1 variables;
(2) the order in which variables are considered for augmentation is prespecified
by the node numbering scheme, rather than by using binary inféasibility tests;
(3) we exploit problem structure to expedite fathoming and backtracking.
Initially, a unique terminal dummy task with TN = 0 is appended to the
network. Lower and upper bounds are then computed, and the idle time. vector,
I, is initialized to C for all stations j, j = 1,2,...,(H-1). 1In developing

the upper bounds, Uj, H is set equal to N if a heuristic solution is not

known. BN is initialized to H regafdless of how H is determined.

.9.

Augmentation then begins. Task 1 is assigned to station 1: Al = 1, and
I; is reduced by T{. Next, task 2 is assigned to its earliest precedent and
cycle-time feasible station. The earliest precedent feasible station is
% = max{AiIiEPS}; or j* =1, if P§ = {¢}. The earliest cycle-time feasible
station is determined by scanning I from j* to Up for the lowest numbered station
j' such that fju > T9. Task 2 is then assigned to station j' by setting
A2.= j' and subtracting Ty from Ij|. Tasks 3 through N are assigned in similar
fashion.

If augmentation proceeds to assign task N to a work station (i.e., an
improved solutionAis found), U; are redefined by subtracting (BN - AN) from
U;, for i = 1,...,N. The incumbent best solution then becomes B; = A,

i=l,---,N- I'

i is initialized to C, j = 1,...,AN—1 and augmentation again

begins with task 1.

However, augméntation may not proceed to task N. As augmentat ion
progresses, for some task i there may not exist a station j in the interval
' [max{Ak|k€P§},Ui] where Ij 2 Ty because of the tightened upper bounds.

Consequently, backtracking occurs: I is increased by T;_1, and stations

Aj-1
(Aj—1 * 1) to U;_; are scanned for the lowest numbered station j* such that
Ti-1 S.Ij*' If j* doesn't exist, backtracking proceeds to task i-2, and so on.
If j* exists, then Aj_q = j* and Ij* is reduced by T;_j. Optimality is then

assured either when AN = L_, or when an attempt is made to backtrack below job

N
one. In the terminology of implicit enumeration, the latter is equivalent to

failing to complete a partial solution in which the left-most variable has been

complemented and underlined [4].

4. Exploiting Problem Structure
The ALB prohlem has a well-defined structure which can be exploited to im-

prove the performance of the basic algorithm. 1In addition, our formulation of

~10-

the problem imposes further structure which can lead to Improvements. We now
describe four such improvements which reduce the computation time required -to

solve a given problem.

Backtracking Using Chains

ﬁacktracking can be expedited when chains exist in an assembly network.
A chain is an ordered set of consecutively numbered tasks such that each task
is an immediate predecessor of the task which follows it in the set. As an
example, Figure I has two chains, {1,2,3} and {8,9}. If the search for
a feasible,station assignment fails for task n, ordinarily backtracking
proceeds to task n - 1: task n - 1 is reassigned to a station beyond
An_l,'aﬁd the searchyfor a feasible assignment forln'begins anew. But if
(n - 1)€P§, thén the reassignment of ﬁ -1 tb a station later than An1
only reduces the search interval for task n. Task n, in this case, can only
fail again to be assigned earlier than Aj.

When chains exist, a considerable amount of searching can be avoided
by directly backtracking to the highest numbered task not in the chain. Us ing
the chain from Figure I, it can be seen that if task 3 fails to be assigned,
then backtracking can proceed Immediately to the fictitious task number 0;

i.e., if task 3 cannot be assigned, then the incumbent solution BN is optimal.

Backtracking Using Network Cuts

In order to describe additional means for improving algoriﬁhm efficiency,
an artifice éalled a network cut will be introduced. This is a notion that has
proven to bg useful in resource-constrained project scheduling [18, 19], and
draws its name from the manner in which a problem is portrayed on a Gantt

chart. The notation used in describing a cut is given iIn Table II.

Symbol

K&

-11-

Table II

Notation Used to Describe Network Cuts
Description
The current partial schedule of task assignments.

A {A1,A9, ..+ ,A;]}, when task i + 1 is being
considered for station assignment.

ig = max{i|Li S_s}.
ig = max{i|ier and where A; was < s at least

once since task i - 1 was last asgigned}.

The ordered set of all tasks 1 through i,. That 1is,
Qs = {1,2,3,.-.,ig}

Cut s: a station number in the interval [1,LN), which
which meets conditions Cl and C2, as specified.

The zth saved partial schedule at cut s, where
z =1,2,...,Z.
(ig)

That is, Yg(z) = A , for some z.

-12-

A cut s is a station number that (a) is used to identify when certain
fathoming and backtracking rules may be applied; and (b) is a parameter used
in the application ofythe rules themselves. Station s is a cut if there
exists a task i such that:

Ci. Ly=s + 1L

C2. For all k > i, Ly > s.

Figure II illustrates the application of Cl and C2 to the example problem.

Open bars extend from L; to U; for each task i, representing all possible

station assignments as defined by the improved bounds. Cuts are identified: by

the dashed lines at stations 1, 2, 3, and 4.

Figure 11 also illustrates ;he cémputation of ig and Q. For each s,
s=1,2,3,4, the set Qg consists of all tasks 1 through is'where i; 1s the
largest task numbep such'tha£ the earliest station into whicﬁ the task can
be assigned is less than or equal to s. For example, iy = L, Q = {1};
ip =2, @ =1{1,2,}; i3 = 5, Q3 = {1,2,3,4,5}; i4 = 8, Qg = {1,2,3,4,5,6,7,8}.
Although not shown in Figure II, it is possible that some task k in the
intérval [1,ig] will not have the earliest.station into which it can be
assigned less than or equal to s. That is, L > s. BSuch tasks are included
in Qg even though their earliest station assignments are greater than s.
Including all tasks 1 through ig in Qg is required so that optimuﬁ solgtions
are not excluded when employing the cut rules for fathoming partiél solutions.

We shall now explore seﬁeral wéys in which cuts may be used to expedite
backtracking and fathoming. First, we will consider backtracking. Suppose

backtracking has progressed to task i; for some s. It is then possible to

S

immediately backtrack to task 1i' = max{i|i€QS and Ay > s}, because backtracking

-13-

Figure TI

Gantt Chart of Bowman's
Problem Illustrating Network Cutg

w
u
N .
(&3]
S SN . Y

TASK i
WO ~NO DN -

|

123 4567 8

o s e s —
e e o — e — e —

STATION J

~14-

to any task i"eQg, where i" > i', could only result in reassignments for

iv,i” + 1,...,ig4, that either have no effect on idle time Ij for j>s, or

else decrease Ij for j > s, from that which was available before backtfacking
to ig. (See Appendix for proofs.)

We note that this backtracking procedure is a function of the current par-—

tial schedule of task assignments A(l), whereas backtracking utilizing chains

is dependent only on the task numbering scheme. Hence, these procedures com-—

plement one another.

Fathoming Using Cuts

Fathoming rules are considered next. Ordinarily, A(l) is fathomed when task

i + 1 fails to find an Ij Z.Ti+l’ where j is in the interval [maX{Ak|k€P§+1},
Ujgp]e If i =iy, then two additional fathoming.techniques may be applied.
' (1)

The first makes use of the fact that if A is to lead to an improved solution,

AN < BN’ then (5) must hold.

I b~

N
I, <Cy - § Ty ()
1 m=1

J
This simply states that the idle time incurred prior to cut s cannot exceed the
total idle time permitted by the current upper bound on the problem.

Rule (5) is applied immediateiy following the feasible assignment of task
ig. If it fails, A(is) is fathomed and backtracking proceedé to ig - 1,
since the reassignment of ig to a later station will not satisfy (5). 1If (5)
is satisfied, then augmentation continues with ig + 1. 1In either event, the

computational cost of invoking (5) is minimal, since the right-hand side of (5)

is a constant, and the left is a simple sum.

15.

A second fathoming technique relies on the generation and comparison of
partial schedules in a manner analogous to their use in [19].. Basically, the
AL

current schedule is compared to a previously saved schedule at i,

Y (z) for some z, z=l,...,Z. 1If it is determined that A(ls) could potentially

(ig)

result in an improved solution for the problem, then A is saved in Yg(z),
for some z, and augmentation continues with i + 1. 1In this case, A(iS) is
called a good partial schedule. However, in many casés it can be shown that
A(is) cannot lead to an improved solution. When this occurs, A(is) is called
an inferior partial schedule: backtracking progresses to task ig.
.Following ;he development in {19], a partial schedule A(is) is inferior
to a saved schedule Yg(z), if (6) holds.
A, = A} for all meQsDA; > s
where A ealls) and Atev (z). (6)
This simply indicates that if the only difference between the partial
schedule A(is) and the saved schedule Yg(z) is that tasks in Yg(z) that were
(ig)

assigned to stations s' < s are now assigned in A to stations s' where

5'

{ s or s' > s, then an improved solution to the problem cannot result. The
reason is that the rearrangement of task assignments to stations s and before
cannot provide improved assignment opportunities for tasks igt+l, igt+2,...,N
over those which were available when Ys(z) was fathomed. And, reassignments
later than- s merely reduce the station time that tasks i +l, etc., compete
for.

The number of good partial schedules generated for most problems is very
large. Hence, there is a need to find a mechanism for specifying Z for each
cut s. The larger Z is, the more likely it is to find inferior schedules.

But storage can become a limiting factor, and there is a computational expense

involved in evaluating many schedules. On the basis of experience gained with

-16-

project scheduling problems, we have set Z = 10 for all s. Operationally, the
ten most recently generated good schedules are saved.

Rule (6) is invoked immediately following the feasible assigmment of task
ige If~A(iS) is inferior, backtracking commences with i . TIf A(is) is good,

it is saved in Yg(z), and augmentation continues with ig + 1.

(i)

When a schedule A is found where A; < s for all ieQg, the ALB

problem may be partitioned. We call A(ls) a perfeﬁt partial schedule in this

instance since it is impossible to find an improved schedule for tasks ieQg,
in the sense that it could lead to an improved solution for the problem.
Hencé, when a perfect partial schedule is found, optimality is assured.when an
attempt is madé to backtrack to task ig. Thus, the problem has been parti-
tioned into two subproblems: a solved problem for tasks ieQs, and én
unsolved problem for tasks ifQg-.

Figure III illustrates partitioning for the example problem. Here,
A(13) = {l}, and A(23) = {1,2}. Once A(23) is specified, for example, enumera-
tion is.restricted to tasks 3,...,9. If aﬁ attempt is m;de to backtraék to
task 2, optimality is assured. V(For this trivial problem, optimality-is actu-

ally verified by comparison to the improved 1ower'bound, i.e., when Ag = Lg = 5.)

Additional Tests ﬁsing Idle Time

In this section we introduce two additional expediting rules which are
based on a knowledge of the minimum amount of idle time which must be present
in each work station. The first rule discussed is a "look ahead” rule which
permits the algorithm to fathom a partial solution when it can be shown that
the idle time incurred in the partial solution A(is) exceeds permissible levels
for an overall improved solution. This rule is thus a stronger version of (5).

The second rule permits improved backtracking from a cut when it can be shown

that the maximum level for the partial solution idle time has been exceeded.

17~

Figure III

[llustration of a Perfect Partial Schedule

wn
it
™
O
-—ln

-

TASK
WO NG NN -

I
| |
—
||
||

] b
{ 23456 7 8
STATION J

-18-

By solving the following knapsack problem it is possible to determine the

minimum amount of idle time, Mj, which must be present in each station j.

Minimize: c - Z T;X; = Mj (7)
ieW .
]
Subject to: z TX; <C (8)
: ieW s : '
]
where,

il

1 If task i is assigned to station j

0 Otherwise

1

Here, Wj can be obtained by simply identifying tasks.i with Lj < j and
U; 2 j- For example, from Figure II, W3 = {1,2,3,4,5}.
Equation (5) can now be replaced with (9).

Yy

. N)
Ij<Cy- [Ty~ | My ‘ (9)
m=1 j=s+1

S
i
The stronger test provided by (9) obviously comes at some computatiénal ex-—
pense. Hoﬁever, the knapsack problem itself is highly structured and usually
yields solutions very quickly using a simple enumeratiqn procedure. (Tasks

in Wj are relabeled by nonjincreasing task time. Then X; are augmented to 1
-in order of task number. Backtracking is in reverse order of, task number.) -
On our test problems, this idle time test has been very effective in general,
but specifically when the interaction of large task times and strong precedence
relationships in a problem "force” the total idle time to be distributed into
certain work stations.

If the partial solution A(is) is fathomed due to excessive idle time by

(5) or (9), then instead of backtracking to task i; - 1, it is possible to
backtrack to 1§. The proof of this assertién follows from the observation
that it is impossible to reassign any task i'e{i|i > ig and ieQg} to a station
(i5)

before s + 1, given the partial solution A (If it were possible, it would

o

already have occurred during the enumeration process, given the convention of
assigning tasks to the lowest numbered work station that is precedent and cycle-
time feasible). Hence, backtracking to any task 1' cannot reduce the excessive

idle time occurring in stations 1 to s, which was the original reason why fathom-

ing by (5) or (9) took place. The effect of this backtracking procedure is

most pronounced when the knapsack routine identifies a relatively uniform dis-
tribution of idle time across all stations, or when total idle time is close to
zero. Under these conditions, it often eliminates from explicit evaluation
hundreds of paftial solutions which would not have led to improved solutions

to the problem.

5. Computational Experience

The algorithm described in Section 3 and each of the problem.structure
exploiting techniques described in Section 4 were programmed in FORTRAN IV and
tested on an Amdahl 470/V8 computer (H compiler, OPT = 2). The results from
applying this prégram to a series of test problems appearing in the open
literature -are given in Table IIL. The cycle times selected include both
those that have previously appeared in the open literature, and additional
times which were selected in an effort to obtain problems where the optimal
solution is not equal to the theoretical lower bound. Problems with the latter
characteristic were sought because without a proven lower bound a problem is
generally more difficult to solve optimally. It is, of course, not always
possible to seiect a cycle time which will give an optimal solution greater
than theAtheoretical minimum number of stations. The Kilbridge and Wester
problem, in fact, has an optimal solution equal to the theoretical minimum

number of stations for the complete range of cycle times, T# < C < ITj-

-20-

Table III

Computat ional Results

CPU Time*#*

Number Cycle Optimal Number
Problem* of Tasks Time of Stations With Cuts Basic Approach Heur. Start
' Without Cuts With Cuts
Merten 7 6 6+ .022 (.022) .021 021 H
7L 5 .024 .023 021 H
8 5+ +.022 .020 022 H
10 L 3 .022 .020 .019 1
15 2 .016 016 017 1
18 L 2 .017 016 015 H
Jaeschke 9 6 8+ .028 (.028) .026 025 1
7L 7+ .027 .025 024 H
8 6+ .023 (.026) .020 .022 H
10 L 4 .024 .020 .020 H
18 L 3 .020 .020 021 H
Jackson 11 7 8+ .030 .028 .026 H
9 6 .025 .022 L021 |
10 L 5 .026 .026 .026
13 4 .027 .021 .024 H
14 L 4 .022 .022 021 H
21 L 3 .025 .020 022 1
Mitchell 21 14 L 8 .055 048 .049 H
15 8+ .039 .076 038 1
21 5 .045 .044 042
26 L 5 .039 .035 .039 H
35 3 .037 .038 .039
39 L 3 .033 .033 .032 i
Heskia 28 1.38 L 8 .059 .058 046 H
2.05 5 .867 6.881 044 H
2.16 L 5 041 .058 041 H
2.56 4 .046 .050 043 H
3.24 L 4 - .041 .040 040 H
3.42 3 .039 041 .036 H
Sawyer 30 25 L4+ 1.106 > 8 1.100
27 L 13+ 524 > 8 522
30 12+ 1.555 > 8 169 H
36 10+ .048 > 8 .046 H
41 L 8 .292 6.052 .293 -
54 7+ .048 > 8 .050 H
75 L 5 043 047 042 1
Kilbridge & 45 57 L 10 5.828 > 8 .082 H
Wester 79 7 .221 > 8 .218
92 6 .216 > 8 .215
110 L 6 .063 .062 063 H
138 4 .089 473 .086
184 L 3 071 .067 .064
Tonge 70 176 L 21+ > 8 > 8 > 8
364 L 11 .100 .100 .102
410 9 .101 .099 .098 1
468 L 8 .100 .097 097 U
527 7 .098 .099 .094 U

21—

Table 111 (continued)

Computational Results

Number Cycle Optimal Number CPU Time**
Problem* of Tasks Time of Stations With Cuts Basic Approach Heur. Start
Without Cuts With Cuts
Arcus 83 50.48 lo+ 470 > 8 - .281 H
58.53 L 14 .127 122 L1251
68.42 L - 12 o .126 125 123 H
75.71. 11+ .126 (.527) .122 126 H
84.12 10+ .750 > 8 J74 H
88.98 9 .126 .118 21 1
Arcus 111 108.16 8+ «254 > 8 .251 H
: 57.55 L 27 > 8 > 8 180 H
88.47 18+ 1.921 > 8 JA71 H
100.27 16+ 6.101 > 8 3.142 H
107.43 L 15+ 2.883 > 8 2.880 H
113.78 L 14 .166 .163 160 H
170.67 L 9 .162 .161 159 H

* Problem sources are given in the references. See the Tonge reference for a description
of the Mitchell problem.

*% Amdahl 470/V8 CPU time in seconds, including input and output, to find and verify the
optimal solution.

+ The optimal number of stations is greater than the theoretical minimum number of stations.
For the four problems reporting a time in parentheses, the optimal solution equals the

improved lower bound. The number in the parentheses indicates the solution time when
the improved lower is not used.

L The cycle time previously reported in the literature.

H The heuristic solution is also optimal.

22

The cycle times previously appearing din the literéture are indicated by
an "L" in Table III. Optimal solutions greater than the theoretical minimum
number of stations afe noted by a "+". Four of the sixty problems have optimal
solutions equal to our improved lower bound. These problems are ident ified as
having three solﬁtion t imes, &ith the number -in parentheses the time required -
when this improved bound is not used by the optimizing procedure. The solution
tjmes reported are total CPU times in seconds for reading the problem data,
finding and verifying the optimal solution, and printing solution results.

Each prbblem—cycle time combination was sol?ed with and without thé cut
related exploiting rules as indicated by the nomenclature "With Cuts" and

"Basic Approach Without Cuts." 1In all cases, no initializing heuristiq
solution was employed: H was initially set equal to N and the algorithm worked
"down" from this solution to the optimal solution. With the exception of the
Mitchell (C = 15) problem, there is little to differentiate the basic approach
results from the basic approach with the cut features appended for the Merten,
Jaeschke, Mitchell and Heskia problems. This is consistent with our experience
in general: The basic approach provides cost—effective optimal solutions to
problems with up to about 25 tasks. For problems in this range, the computa-
tional overhead involved in invoking the cut-related rules usually balances |
the benefits derived from the reduction in enumeration the rules afford.

Hence, the solution times with and without cuts are usually roughly equivalent
for problems of this size. (Several runs of the program on the same set of
praoblems yielded time Vafiations of * ,003 seconds. Hence, care should be
taken in inferring algorithmic efficiency differences when solution time
differences are less than .006 seconds.)

For problems containing more than 25 tasks, the power of cut-based rules

becomes more evident. TFor many of the larger test problems the optimal

[‘ —23"

solution could not be found and verified without the rules within the maximum
.CPU time permitted of 8 seconds, although they could be solved well within
this time when cut rules were invoked. The extreme example of this is the
Sawyer problem (C = 36 and C = 54).

Within the eight second imposed time limit optimal solutions could not
be found and verified for only two problems, the Tonge-70 (C = 176) and
Arcus—lli (C = 57.55). 1In the former case the optimal solution of 21 was
actually found within .072 seconds, but it cbuld not be verified as optimal
within 8 seconds. 1In the latter case, the best solution found was 29
stations before the program was terminated.

These results are very encouraging and compare favorably with results
obtained from the branch and bound algorithm recently developed by Magazine and
Wee [11, 12, 13]. 1In Table 1 of [13] they report.solution times (using an IBM
(W) 370), for 27 of the 60 problems noted by an "L" in our Table III. (They
did not solve the Arcus—83 problem.) They obtained optimal solutions to all 27
problems, but did not verify optimality for the Sawyer (C = 27) and Tonge
(C = 176) problems. They solved the Sawyef and Tonge problems heuristically
in .316 and 3.013 seconds, respectively. The Arcus-1l1 (C = 57.55), problem,
which we were not able to solve optimally in 8 seconds, was solved in .396
seconds with their branch and bound algorithm. They also solved three other
problems using heuristic rules, Mitchell (C = 14), Sawyer (C = 41) and
Kilbridge and Wester (C = 57), but were able to verify optimality in each
case, because the heuristic solution is equal to the theoretical minimum
number of stétions.‘ The total reported times for the 26 problems (i.e.,
without Arcus C = 57.55) for which both approaches obtained (but may not have

verified) optimal solutions is 7.053 seconds from [13] and is 7.824 seconds

from Table III, plus the Tonge (C = 176) time of .072.

|

24—

These time comparisons are not intended to demonstrate that one approach
is faster (better) than another. Such an inference would be unfounded since
the tiﬁes are reported for different computers and timing routines. Rather,
it is to demonstrate that both are effective procedures fér obtaining optimal
solutions for many realistically sized ALB problems. |

Other attractive features of our approach are not evident from the data
presented in Table IIL. First, our approach requires only a modest amount of
computer storage. For gxample, the program used in this péper requires less
than 140 X bytes of storage and is dimensioned to solve problems with up to
120 tasks where each task may have up to 25 immediate predecessor tasks.

(If necessary, storage requirements could further be reduced by the elimination
of such user-convenience itemsAsuch as Gantt chérts.)

Second, our procedure does not require the user to set a eritical limit or
implement other rules for eliminating portions of the search as is frequently
the case in empioying dynamic programming or branch and bound methods to solve
this problem. This is because the exact storage requirements are known in
advance with our proqedure, and this is typically not the‘case with these other
approaches. Furthermore, the performance of our approach is frequently
improved through the usé of well-known heuristics such as rank positional
weight, méximum task time first (called TIUFFD in [13]), and others [17].
Initializing our procedure with a simple heuristic solution, rather than set-
ting H = N, reduces the uppér bounds Ui’ which in turn reduces the feasible
search intervals for each task. Using a heuristic start typically results in
faster solution times because the intervals are smaller, or because the heuris-
tic solution can be verified as optimal directly through a bounds test. Also,
since a heuristic such as maximum task time first requires very little compu-
tational effort and little computer core to program, the costs of using such

a technique are negligible.

—25-

In Table III under the column "Heur. Start With Cuts," total CPU solution
times are given when the procedure is initialized with a heuristic solution
provided by a rule called "upper bound first” [17]. This rule assigns pre-
cedent and cycle time feasible tasks to work stations in order of nonincreas-
ing Ui (instead of nonincreasing Ti as does maximum task time first rule).

The CPU times shown include the additional time required to obtain the
heuristic solution. Using this heuristic initializing procedure, our routine
with cut-based rules found and verified optimal solutions to 59 of the 60
problems in a total time of 12.660 seconds. The optimal solution to the Tonge
(C = 176) problem was found in .072 seconds as before, but was not verified

optimal within 8 seconds.

6. Conclusions

An integer programming algorithm for determining the minimum number of
work stations to assemble a product subject to precedence and cycle time con-
straints is degcribed. The algorithm is based on a systematic evaluation of
all possible assignments of work tasks to a work station. Network cuts, idle
time tests, and the use of network chains greatly enhance the efficacy of the
approach described. Computational results on a series of test problems found
in the open literature are reported and are quite favorable. The general con-—
clusion to be reached is that the procedure can obtain optimal balances in a
reasonable amount of time for assembly lines consisting of fifty or fewer
tasks. While the algorithm is capable in certain instances of optimally
solving assembly lines with one hundred or more tasks, such problems are
generally characterized by a large éycle time in relation to the maximum task
time. For those problems in which the cycle time is greater than 125 to 150
percent.of the maximum task time, for example, the procedure is likely to

produce an optimal solution in a reasonable amount of computation time. .

26

Acknowledgements

The authors express their appreciation to the referees for providing a
number of constructive comments on this paper. Our special thanks go to
Michael Magazine, University of Waterloo, for his careful reading of the drafts

and his insightful suggestions for improving the final manuscript.

27~

Appendix

Theorem 1

If A(ls)is inferior to any saved schedule in Y4(z), z = 1,...,Z, then

it is impossible to assign tasks ig + 1,...,N such that Ay < By.

Proof

We first note that to be saved in Ys(z), a schedule must have been
considered good earlier in the enumeration process. Following the saving
of Y(z) the enumeration brocedure continued augmenting with tasks ig + 1,
etc., until Ys(z) was fathomed either because an improved soluFion to the
problem was found or backtracking took place. Ultimately a new schedule

A(is) for tasks meQg was calculated. If (6) holds, then there are

(i) and Yg(z) for all tasks m that had assignments

identical assignments in A
Aj > s in Y (z). Thus the onlyxtasks that are of interest, that is those
that could potentially provide improved scheduling oppértunities for jobs
ig +1,..-,N, are tasks m*eQg with assignments Ajx < s. These tasks can
be reassigned to stations before (Apx < s) or after (Apx » s) station s.

In the former case, given the definitions 6f s and ig, thére does not
exist a task i > ig such that L; < s. Therefore the reassignment of any m*

to any Ayx < s cannot affect the scheduling of tasks ii + 1,...N. In the

S
latter case, the assignment of any m* to any Ajs > s would only decrease the
station time in a station s + 1, s + 2, etc. from what it was when Y5(z) was
fathomed. But this would simply make it more difficult for at least one task

. 3 i
ig + 1,«..,N to be assigned. Thus, A(s) cannot lead to a solution better

than that which was found with the completion of Yg(z).

-28~

Theorem 2

When a (perfect partial) schedule A(ls) is found where A, < s for all
meQg, optimality is assured when an attempt is made to backtrack to task

ig

Given the definitions of Li» is and s, there does not exist a task
1 > ig that can be assigned to a station less than s + 1. If all tasks
meQg have been assigned stations A, { s, their reassignments could be to
either stations < s or > s. In the former case, the reassignment of aﬁy

meQg cannot have any effect on the reassigmment of tasks i, + 1, etc.,

S
given the definitions of Lj, ig and s. 1In the latter case, the reassignment
of any meQg can oﬁly reduce the station time available in some station > s,
thus making it more difficult to reassign at least one task ig + 1, ete.,
within its upper bound. Since the reassignment of tasks meQg cannot

improve the reassignment opportunities for any task i > iy, but in particular
task N, there is no benefit to be derived from backtracking to any task

meQg- Thus when an effort is made to backtrack to iser, the incumbent

solution By is optimal.

Theorem 3
If backtracking proceeds to‘is, then it is possible to backtrack to

task i' = max {i|ieQS and A; > s}.

Proof

The reason that backtracking proceeded to 15 was because it was
impossible to feasibly assign some task 1 > ig within its upper bound Uj.

Thus to improve the assignmeﬁt opportunity for such a task i, backtracking

~29-

to 1" { ig must increase the time available for assignment in at least one

station > s. The proof follows by showing that this time cannot be increased
by backtracking to any i" > i'.
Backtracking to any task i"eQg, where i" > i' results in the reassign-

ment of i",i" + 1,...,i5 to either a station { s or a station > s. In the
former case there is no éffect on the time in stations > s. In the latter

case, the time available is actually decreased in at least one station > s.

Theorem 4

(ig)

If the partial solution A is fathomed due to (5) or (9), then it is

possible to backtrack directly to ig-

Proof

If (5) or (9) causes backtracking it is due fo excessive idle time in
stations < g, or’equivalently, it is due to too much task time being assigned
to stations > s in the current partial solution A(is). Thus, the only way
to satisfy (5) or (9) is to reassign at least one task i € Qg that currently
has an assignment A; > s to a station { s. The Theorem follows by showing
that it is impossible to reassign a task i > ig to a station < s until
backtracking progresses to iz-

The key to understanding the Theorem and the proof is to understand how
the algorithm assigns tasks and backtracks. First, tasks are considered for
assignment in increasing numerical order and are assigned to the earliest
precedent and cycle-time feasible station. By the definition of i:, this

*

means that when i’ was last assigned, tasks i: + 1, ig

. +2,...,1

g were all,

in turn, assigned to stations > s, because their earliest feasible station

assignments were > s. It will be shown now that backtracking to any

-30-

ieRg = {i: + 1, i: + 2,...,is} cannot decrease the earliest feasible
station assignments to S_S for any k € Rg.

In general, backtracking proceeds in reverse numerical order and since
assignment is in increasing numerical order, backtracking to any task i can
only affect the reassignments of tasks > i. When the algorithm backtracks
to any task i, it attempts to reassign this task from A;, its current
assignment, to Ai, where Ai < Ai S_Ui. Assuming the assignment is made,
the time available in station A; is increased by T; units and decreased
by Ti units in Ai. Of particular interest is that the reassignment of i
has no impact on the time available for task assignments in stations < Ai'
Specifically, it does not increase the time available in stations < Ai for
tasks > i.

s) has been fathomed due to (5)

Assume now that the partial solution A(i
or (9) and that we backtrack directly to' any i'e RS. Further assume that it is
possible to reassign i' to Ai where‘Ai, < Ai, S_Ui,. (If it is not possible to
reassign i', then we backtrack to 1i' - 1, i' - 2, etc., until we find a task
that can be reassigned, or backtracking proceeds to i:. In the latter case
the theorem is trivial. So we assume that a task is found that can be
reassigned. We will still call it i', to keep the notation simple.)

Because Ai' > s, the discussion on backtracking makes it clear that i'
cannot be reassigned to a station < s, nor does its reassignment have any
impact on the time available in station { s. Because there has been no
increase in the time available in station < s, and since the previous earliest
station assignment for i' + L was > s, i' + 1 cannot now be reassigned to a
station < s. By induction neither can i' + 2, i' + 3, ...,is be reassigned to
stations { s. Hence, the task time assigned to statioﬁs > s cannot be reduced

without backtracking to i* or lower, which proves the Theorem.

s’

[1]

[2]

[3]

[4]

(5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

._31_
REFERENCES
Arcus, A. L. "An Analysis of a Computer Method of Sequencing Assembly

Line Operations.” Ph.D. Dissertation, University of California, 1963.

Balas, E. "“An Additive Algorithm for Solving linear Programs with Zero-
One Variables." Operations Research 13, no. 3 (July-August 1965):
517-546.

Bowman, E. H. "Assembly Line Balancing by Linear Programming."
Operations Research 8, no. 3 (May-June 1960): 385-389.

Goeffrion, A. M. "An Improved Implicit Enumeration Approach for Integer
Programming." Operations Research 17, no. 3 (May-June 1969): 137-151.

Gut jahr, A. L. and Nemhauser, G. L. "An Algorithm for the Line Balancing
Problem.” Management Science 2, no. 2 (November 1964): 308-315,

Held, M.; Karp, R. M.; and Sharaeshian, R. "Assembly Line Balancing—-
Dynamic Programming with Precedence Constraints.” Operations Research

10, no. 3 (May-June 1963): 442-460.

Heskia, Heskiaoff. "An Heuristic Method for Balancing Assembly Lines."”
Western Electric Fngineer 12, no. 3 (October 1968): 9-16.

Jackson, J. R. "A Computing Procedure for a Line Balancing Problem.’
Management Science 2, no. 3 (April 1956): 261-272.

Jaeschke, G. "FEine allgemaine Methode Zur Losung Kombinatorisher
Probleme.” Ablauf-und planungforschung 5 (1964): 133-153.

Kilbridge, M. D., and Wester, L. "A Heuristic Method of Assembly Line
Balancing."” Journal of Industrial Engineering 12, no. 4 (July-August
1961): 292-298.

Magazine, M. J. and Wee, T. 5. "An Iterative Improvement Heuristic for
Bin Packing and Assembly Line Balancing Problems.” Working Paper,
Department of Management Sciences, University of Waterloo, 1979.

, Generalization of Bin Packing Heuristic to the Assembly Line
Balancing Problem.” Working Paper, Department of Management Sciences,
University of Waterloo, 1979.

» "An Efficient Branch and Bound Algorithm for the Assembly
Line Balancing Problem.” Working Paper, Department of Management
Science, University of Waterloo, 1979.

Merten, P. "Assembly Line Balancing by Partial Enumeration.” Ablaufund
Planungforschung 8 (1967): 429-433,

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

~372-

Patterson, James H., and Albracht; Joseph J. "Assembly Line Balancing:
Zero-One Programming with Fibonacci Search.” Operations Research 23,
no. 1 (January-February 1975): 166-172.

Sawyer, J. F. H. Line Balancing. Washington, D.C.: Machinery and
Allied Products Institute, 1970.

Talbot, F. Brian. "An Integer Programming Algorithm for the Single Model
Assembly lLine Balancing Problem.” Working Paper 171, Division of
Research, Graduate School of Business Administration, The University of
Michigan, 1978.

, An Integer Programming Algorithm for the Resource-
Constrained Project Scheduling Problem,"” Ph.D. Dissertation, Pennsylvan a
State University, 1976.

, and Patterson, James H. "An Efficient Integer Programming
Algorithm with Network Cuts for Solving Resource Constrained Scheduling
Problems " Management Science 24, no. 11 (July 1978): 1163~1174.

Thangavelu, S. R., and Shetty, C. M. "Assembly Line Balancing by Zero~-
One Integer Programming."” AIIE Transactions 3, no. 1 (March 1971):

61~68.

Tonge, F. M. A Heuristic Program of Assembly Line Balancing. New York:
Prentice-Hall, 1961.

White, W. W. "“Comments on a Paper by Bowman."” Operations Research 9,
no. 2 (March-April 1961): 274-276.

