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An Integer Programming Model for the Sudoku Problem

Andrew C. Bartlett∗ Amy N. Langville†

March 18, 2006

Abstract

Sudoku is the new craze in logic puzzles. Players must fill in an n × n matrix, which contains

some given entries, so that each row, column, and m ×m submatrix contains each integer 1 through

n exactly once. Two issues associated with these puzzles interest us mathematically: puzzle solution

and puzzle creation. A Sudoku puzzle can be solved by creating a feasibility problem where the goal

is to find at least one feasible solution to the puzzle. We present a binary integer linear program

to solve this feasibility problem. In addition, we speculate as to how Sudoku puzzles are created, and

provide several theorems for generating many new puzzles from one given original puzzle. Exercises and

challenges problems that use principles from optimization, combinatorics, linear algebra, and computer

science are presented for students.

1 Introduction

Sudoku, pronounced suh-DOE-koo, is a logic-based puzzle that first appeared in the U.S. in 1979. The
game was designed by Howard Garns, an architect who upon retirement turned to puzzle creation. In the
1980s, the game grew in popularity in Japan, and by 1997 an entrepreneur named Wayne Gould saw the
financial potential available in the game. Gould spent six years refining his computer program so that it
could quickly generate puzzles of varying levels of difficulty, which his company Pappocom then sold and
now continues to sell to various publication outlets. In the last year, Sudoku’s fame spread to the U.S.,
where the puzzles now appear alongside the long-time staple of linguistic games, the crossword puzzle, in
national newspapers, such as The Los Angeles Times and The Washington Post. The word Sudoku is a
Japanese abbreviation for the phrase, “suji wa dokushin ni kagiru,” which translates as the “the digits must
remain single.”

Sudoku most commonly appears in its 9 × 9 matrix form. The rules are simple: fill in the matrix so
that every row, column, and 3 × 3 submatrix contains the digits 1 through 9 exactly once. Each puzzle
appears with a certain number of “givens.” The number and location of these determines the game’s level
of difficulty. Figure 1 is an example of a 9 × 9 Sudoku puzzle.

This puzzle idea can accommodate games of other sizes. Of course, a 4 × 4 puzzle would be easier
and a 16 × 16 puzzle, harder. In general, any n × n game can be created, where n = m2 and m is any
positive integer. In fact, the 25 × 25 puzzle is sometimes called Samurai Sudoku, because it is much more
challenging and time-consuming. And there are numerous other variants of the game; see [2].

Sudoku puzzles elicit the following two interesting mathematical questions:

• How can these puzzles be solved efficiently mathematically?

• What mathematical techniques can be used to create these puzzles?
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Figure 1: An example Sudoku puzzle

2 Question 1: Solving the Puzzle

2.1 The Mathematical Model

An assignment for a graduate class in Optimization at the College of Charleston challenged students
to mathematically model a Sudoku puzzle. As a result, we formulated the following binary integer linear
program (BILP) for general n × n puzzles.

Define:

xijk =

{

1, if element (i, j) of the n × n Sudoku matrix contains the integer k

0, otherwise.

min 0Tx

s.t.

n
∑

i=1

xijk = 1, j=1:n, k=1:n (only one k in each column) (1)

n
∑

j=1

xijk = 1, i=1:n, k=1:n (only one k in each row) (2)

mq
∑

j=mq−m+1

mp
∑

i=mp−m+1

xijk = 1, k=1:n, p=1:m, q=1:m (only one k in each submatrix) (3)

n
∑

k=1

xijk = 1 i=1:n, j=1:n (every position in matrix must be filled) (4)

xijk = 1 ∀ (i, j, k) ∈ G (given elements G in matrix are set “on”) (5)

xijk ∈ {0, 1} (6)

This could also be formulated as an integer linear program (ILP), letting the integer variables take on
values from 1 to 9. However, in order to use the available class software (Matlab’s Optimization Toolbox), we
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used a BILP, and therefore, Matlab’s bintprog command. The Sudoku problem is actually a satisfiability
problem or feasibility problem (also known as a constraint programming problem). The goal is to find at
least one feasible solution satisfying constraints (1)-(5). A more difficult and interesting problem, which we
briefly mention in Section 3, is to find all feasible solutions, without knowledge of the givens in the opening
Sudoku matrix (i.e., solving the satisfiability problem without the objective and constraint (5)). In theory,
because this is a satisfiability problem, no objective function is needed. However, in order to use Matlab’s
bintprog command, an objective function is required, so we chose 0T as the vector of objective function
coefficients.

Exercise 1: Prove or disprove the following statement. Any uniform vector would work as the objective
function of coefficients in the above BILP.

2.2 Testing the Model in Matlab

Consider once again the 9×9 Sudoku puzzle of Figure 1. To solve this, and any other n×n Sudoku puzzle,
we created a Matlab program called sudoku.m, which executes the above BILP model. This program can
be downloaded from http://math.cofc.edu/~langvillea/Sudoku/sudoku.m. It requires that the user
input the elements, called givens, provided at the start of the puzzle. The matrix of givens for our example
is

Givens =





































1 3 7
1 4 8
1 6 5
1 7 2
2 1 8
2 4 6

...
9 3 2
9 4 5
9 6 8
9 7 1





































,

where each line in this matrix gives the row index, column index, and integer value of each element appearing
in the initial Sudoku matrix. The m-file sudoku.m calls the built-in Matlab function, bintprog. On a Mac
G5 with dual 2.7 GHz processors and 8 GB of memory, our program found the feasible solution, presented
in Figure 2.2, in 16.08 seconds.

2.3 The Integer Programming Technique

Matlab’s bintprog uses the classic branch and bound method to determine the optimal solution. In
this case, each additional constraint enforced by a given element of the opening Sudoku matrix greatly
reduces the search space of the branch and bound procedure, and makes the problem tractable. (When
we asked Matlab to find at least one feasible solution to the related problem, which ignores constraint
(5), the procedure terminated because the maximum number of iterations for the LP relaxation (which we
increased to half a million) was exhausted before a solution was found.) It’s easy to understand why each
given element of the matrix helps the branch and bound procedure. Because the (1,3) element in our 9× 9
Sudoku example from Section 1 is 7, this means that x137 = 1, which implies that

• x13k = 0, ∀k 6= 7 (there can be no other integer in the (1,3) position)

• xi37 = 0, ∀i 6= 1 (there can be no other 7 in the third column)
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Figure 2: Solution for example Sudoku puzzle

• x1j7 = 0, ∀j 6= 3 (there can be no other 7 in the first row)

• x217 = 0, x227 = 0, x317 = 0, x327 = 0 (there can be no other 7 in the (1,1) submatrix)

Thus, for each given element, at most 29 (in general, 3(n − 1) + (m − 1)2 + 1) of the n3 = 729 decision
variables are determined.

Exercise 2: Why can’t we say 29 exactly?

Without considering the constraints, the total search space for our model is 2n3

because each decision
variable can take on two values, and there are n3 decision variables. For n = 9, 2729 ≈ 2.82 × 10219!
Fortunately, constraint (5) supplies many givens (at least 17, see Section 3.1), each of which drastically
reduces the search space. Suppose only 9 givens are provided, where each given appears in its own row,
column, and submatrix (so that there is no double counting), then 9∗29 = 261 of the 729 decision variables
are determined, leaving a search space of 2468 ≈ 7.62 × 10140. Of course, considering the remaining givens
further reduces the search space, and makes the problem tractable for the IP technique.

2.4 One vs. Many Solutions

Our BILP finds at least one feasible solution, if it exists. Originally, we assumed each Sudoku puzzle
has one unique solution since usually an answer is provided with each puzzle. However, after playing a few
games, we discovered that uniqueness is not a requirement for puzzle creators. Some puzzles have multiple
solutions. In such cases, our solution was correct but distinct from the solution provided by the puzzle
creators.

Example. The n = 4 Sudoku puzzle below has two solutions.

Puzzle =









2
3

4 3
3









, Solution =









1 2 3 4
3 4 2 1

2 1 4 3
4 3 1 2









or









1 2 3 4
3 4 1 2

2 1 4 3
4 3 2 1









.
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Exercise 3: Find all solutions to the Sudoku puzzle below. (Hint: there are 6.)

Puzzle =









2 4
3

4









.

Challenge Competition: Create a program to find all solutions to a Sudoku puzzle. One way to do this
is to modify the sudoku.m file to find all optimal solutions to our BILP. (Yato and Seta have shown that this
problem is something they define as ASP-complete [6], which implies NP-completeness and demonstrates
the challenge and complexity of the all solutions problem.)

Challenge Competition: Often the givens provided create “forces.” These are entries which can be
determined from the givens in the initial matrix. Identifying these forces would greatly help the BILP, as
in effect the number of givens would increase. Write an algorithm that locates forces and insert this as a
preprocessing step in the sudoku.m file so that the matrix of Givens is appended. Compare the computation
time required with and without this preprocessing step.

Challenge Competition: Although it is a fun application for Optimization classes, it is not necessary
to use a BILP or even optimization techniques to solve Sudoku puzzles. Can you use other mathematical
or computational techniques to solve these puzzles? Write your own algorithm.

Exercise 4: Experiment with some 4 × 4 puzzles. How do you know when your solution is unique?

Exercise 5: Can you create a 4×4 puzzle with a unique solution using only 5 givens? 4 givens? 3 givens?
Which is more important, the position or the value of the givens? State and prove a theorem (or theorems)
that summarizes your findings. For example, “any 4 × 4 puzzle whose 5 givens satisfy . . . has a unique
solution.”

3 Question 2: Creating the Puzzles

The Sudoku class assignment also asked: how do you think Sudoku puzzles are created? We originally
assumed that puzzle creators are interested in creating puzzles with unique solutions because an answer is
usually provided with each puzzle. However, as mentioned above, after playing a few games, we stumbled
across a few puzzles that had multiple solutions. In such cases, our solution was correct, but distinct, from
the solution provided by the puzzle creators.

3.1 Creating Puzzles by Brute Force

A first approach to creating Sudoku puzzles is to use brute force. One simple idea fills each element
of the 9 × 9 matrix with a randomly chosen integer from 1 to 9, then checks to see if the resulting matrix
satisfies the three Sudoku properties concerning rows, columns, and submatrices. This approach creates
981 ≈ 1.97 × 1077 different matrices that require checking. Just how many of these would satisfy the
Sudoku properties and deserve the title of “Sudoku matrix”? In other words, how many feasible 9 × 9
Sudoku matrices are there (i.e., matrices satisfying constraints (1)-(4) of the BILP of Section 2.1)?

The answer to this question was provided by Felgenhauer and Jarvis in 2005. The number of Sudoku
matrices for the standard 9×9 game was calculated to be 6, 670, 903, 752, 021, 072, 936, 960 ≈ 6.67×1021 [1].
This number is equal to 9!×722×27×27, 704, 267, 971, the last factor being prime. The result was derived
through logic and brute force computation. This figure has been confirmed independently by numerous
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others [5]. Later Russell and Jarvis [4] showed that when symmetries were taken into account, there were,
of course, many fewer solutions; 5,472,730,538 to be exact.

Given that Sudoku matrices can be created by a brute force technique, we proposed to stop as soon as
we found one. With a full Sudoku matrix in hand, we could then simply omit entries to create a puzzle.
But the question was how to do the omitting. Specifically, we posed the following mathematical questions.

1. What is the minimum number of givens required to create a puzzle with a unique solution?

2. How does this relate to the positions of the givens?

3. Given a puzzle with a unique solution, is there a way to create other related puzzles with unique
solutions?

A literature review led us to some answers.

1. In general, the problem of the minimum number of givens required to create a puzzle with a unique
solution is unsolved—at least, theoretically. Experimentally, however, much progress has been made.
Algebraic graph theorist Gordon Royle has created a solvable 9 × 9 puzzle with as few as 17 givens.
(In fact, he has found 35396 distinct such puzzles [3].) To date, no puzzle with 16 or less givens,
which in turn produces a unique solution, has been discovered.

2. This question is very difficult to answer. Clearly, it is not solely the number of givens that determines
a puzzle’s difficulty. The position and values of the givens must also be considered. For this reason,
question two quickly becomes untractable. There are too many factors to consider at once.

3. We provide several answers to this question in the next section.

3.2 Creating New Puzzles from Old Puzzles

Our goal in this section is to create as many new Sudoku puzzles S̄ from one original puzzle S. A new
Sudoku matrix is simply one such that S̄− S 6= 0.

Definition 1 A square matrix S is a Sudoku matrix, if the following four conditions hold.

1. The order of the matrix n is such that n = m2, where m is any positive integer.

2. Every row in S uses the integers 1 through n exactly once.

3. Every column in S uses the integers 1 through n exactly once.

4. Every submatrix in S uses the integers 1 through n exactly once.

Theorem 3.1 If S is a Sudoku matrix, then ST is also a Sudoku matrix.

Proof. Transposition interchanges the rows and columns of a matrix, so that [ST ]ij = [S]ji. Since, S is
n × n, ST is n × n, and clearly Property 1 of the Sudoku matrix definition is satisfied. Property 2 (3) is
satisfied for ST by virtue of the fact that Property 3 (2) is satisfied by S. It remains to show that ST

satisfies Property 4. Without loss of generality (w.l.o.g.) , let m = 2. Then in block form, where each
block is 2 × 2,

S =

(

S11 S12

S21 S22

)

, and ST =

(

ST
11 ST

21

ST
12 ST

22

)

.

Each submatrix of ST satisfies Property 4 because each submatrix of ST is created from a submatrix of S,
which by assumption satisfies Property 4.

Theorem 3.1 allows just one way to create a new Sudoku matrix from an old one. Our next theorem
does much better, creating many new puzzles. Exactly how many is left as an exercise.
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Theorem 3.2 If S is a Sudoku matrix, then a new Sudoku matrix S̄ can be created by block reordering the
rows and columns of S (i.e., only rows and columns within the same submatrix block can be permuted).

Proof. Without loss of generality, let m = 2. Then the permissible block row and column reordering can
be described by the matrix operation

S̄ =

(

E1

E2

) (

S11 S12

S21 S22

) (

F1

F2

)

=

(

E1S11F1 E1S12F2

E2S21F1 E2S22F2

)

, (7)

where Ei and Fi are elementary matrices representing permutations of the 2×2 identity matrix. S̄ satisfies
Property 1 because block reordering does not affect the size of the matrix. To show S̄ satisfies Property 2,
w.l.o.g. consider the ith row of the first block row of S̄

eT
i (E1S11F1 E1S12F2 ) = eT

i E1 (S11F1 S12F2 ) .

Consider the last expression in the above equation. The matrix (S11F1 S12F2 ) is the first block row of
S with its columns permuted, and eT

i E1 corresponds to one particular row in that matrix. Because the
rows of S satisfy Property 2, then the particular row in question in S̄ satisfies Property 2. (Permutation
of a vector does not affect Properties 2 or 3.) By considering the transpose, the same argument holds for
Property 3.

It remains to show that S̄ satisfies Property 4. The block reordering restriction is required to insure
that S̄ satisfies Property 4; cross-block reorderings destroy Property 4. From Equation (7), it is easy to
see that each submatrix of S̄ satisfies Property 4 since it is a simple row and column permutation of the
corresponding submatrix of S, which satisfies Property 4 by assumption.

Exercise 6: How many new Sudoku matrices can be created from an original matrix when block reordering
is used? (Hint: Try some 4×4 examples with the allowable reordering described above and look for counting
patterns.)

Theorem 3.3 If S is a Sudoku matrix, then a new Sudoku matrix S̄ can be created by relabeling the integers
in S. That is, there is a one-to-one mapping between the integers α = (1, . . . , n) used to create S and the
permutation β of these same integers used to create S̄.

Proof. (By Contradiction.) Assume α 6= β, but S̄ is not a new Sudoku matrix. Assume w.l.o.g. that S̄

fails Property 2. Therefore, there exists a row in S̄ that repeats an integer. Thus, the mapping of integers
from α to β is not one-to-one, which contradicts the one-to-one mapping requirement. Therefore, S̄ must
be a new Sudoku matrix.

Example. The n = 4 Sudoku matrix S is used by create a new matrix S̄ under the permutation β =
( 4 1 3 2 ) of α = ( 1 2 3 4 ).

S =









1 2 3 4
4 3 2 1

3 1 4 2
2 4 1 3









and S̄ =









4 1 3 2
2 3 1 4

3 4 2 1
1 2 4 3









.

Exercise 7: How many new Sudoku matrices can be created from an original matrix when relabeling is
used?

Challenge Competition: Can you think of other ways to create new puzzles from one original Sudoku
matrix? The longest list wins.
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4 Conclusion

This paper examined the popular Sudoku puzzles from two angles: puzzle solution and puzzle creation.
The first half of the paper presented a binary integer programming formulation that solves any n×n Sudoku
puzzle. A Matlab m-file, which executes a branch and bound solution method, is available for download.
The second half of the paper presented theorems for creating new Sudoku puzzles. We discovered that,
starting with one Sudoku puzzle, we can easily produce a daily calendar of Sudoku puzzles (enough for the
entire next century!). By adding or removing givens, we can vary the level of difficulty of the games. Since
it’s common practice among puzzle creators to not worry about the uniqueness of a puzzle’s solution, these
simple techniques are enough to enable us to compete with today’s puzzle producers, and could garner us
thousands of dollars in revenue too. Answers to the exercises are provided below, and we hope students
attempt and enjoy the challenge competitions.
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Answers

1. You could first experiment with different objective function vectors in the bintprog line of the m-file
sudoku.m. Change the objective function vector from zeros(n^3,1) to ones(n^3,1), and other
uniform vectors. You’d find that these other objective functions all give the same solution. After
these experiments, you’re ready to state a theorem and attempt the proof.

Theorem 4.1 If x∗ is the optimal solution for the BILP in Section 2.1 with objective function given
by min0Tx, then x∗ is also the optimal solution for the related problem that has the same constraints
but different objective function given by min α eTx, where e is the vector of all ones and α is a scalar.

Proof. (By Contradiction.) Assume x∗ is an optimal, and therefore feasible, solution for the original
BILP of Section 2.1 (called Problem A), but x∗ is not an optimal solution for the modified BILP
with the new objective (called Problem B). Then there exists a feasible solution y such that α eTy <

α eTx∗, which implies eT (y − x∗) < 0. Because x∗ and y are binary vectors made up of only 0s
and 1s, this means that x∗ must have more nonzero elements than y. Careful examination of the
constraint set, which is the same for both BILPs, shows that a feasible solution must contain exactly
n2 elements that are 1. Since y is a feasible solution with exactly n2 elements equal to 1, then x∗

must have n2 + 1 elements equal to 1, which implies x∗ is not feasible. This contradicts our initial
assumption that x∗ is a feasible optimal solution to Problem A.
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2. We can’t say 29 exactly, due to potential double counting as subsequent givens are considered.

3.









1 2 3 4
3 4 2 1

2 1 4 3
4 3 1 2









,









1 2 3 4
3 4 1 2

2 1 4 3
4 3 2 1









,









1 2 3 4
3 4 1 2

2 3 4 1
4 1 2 3









, and









4 2 1 3
3 1 2 4

2 3 4 1
1 4 3 2









,









4 2 1 3
3 1 2 4

1 3 4 2
2 4 3 1









,









4 2 3 1
3 1 2 4

1 3 4 2
2 4 1 3









.

4. If, when filling in a puzzle, no options appear, then the puzzle has a unique solution. This is easy to
determine for the 4 × 4 case, but very difficult to determine during the course of a 9× 9 game.

5. 5 givens, yes; 4 givens, yes; 3 givens, no. When placing givens, position is more important than the
value of the given. Some possible theorems related to this topic are below.

Theorem 4.2 Every 4×4 Sudoku puzzle whose 4 givens satisfy the condition that each given appears
in its own row, own column, own submatrix, and has its own integer value has a unique solution.

There are (16 · 8 · 4 · 1)(4!) = 12, 288 puzzles of size 4 × 4 of this type.

Theorem 4.3 Every 4 × 4 Sudoku puzzle with only 3 givens has multiple solutions.

6. There are m! possibilities to permute an m×m identity matrix and m blocks that can be permuted.
Counting both row and column permutations, this gives [(m!)m]2 different Sudoku matrices. Thus,
Theorem 3.2 leaves [(m!)m]2 − 1 new Sudoku matrices that can be created from the original matrix.
For m = 3, that’s 46,655 different puzzles!

7. Theorem 3.3 creates n!-1 new Sudoku matrices. For n = 9, that’s 362,879 new puzzles! Combining
the three theorems in Section 3.2 with strategies for varying the number and location of givens creates
an even larger number of puzzles.




