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Abstract

An integral equation for the normal velocity of the interface between two immiscible
fluids flowing in a two-dimensional porous medium or Hele-Shaw cell (one fluid displaces
the other) is derived in terms of the physical parameters (including interfacial tension), a
Green's function and the given interface. When the displacement is unstable, 'fingering'
of the interface occurs. The Saffman-Taylor interface solutions for the steady advance of a
single parallel-sided finger in the absence of interfacial tension are seen to satisfy the
integral equation, and the error incurred in that equation by the corresponding Pitts
approximating profile, when interfacial tension is included, is shown. In addition, the
numerical solution of the integral equation is illustrated for a sinusoidal and a semicir-
cular interface and, in each case, the amplitude behaviour inferred from the velocity
distribution is consistent with conclusions based on the stability of an initially flat
interface.

1. Introduction

When the displacement of one fluid by another in a porous medium is unstable, it
is characterised by the development of long fingers of displacing fluid which
penetrate the displaced fluid region. This phenomenon is of particular interest in
the oil industry where it reduces the efficiency of oil recovery (e.g. during water or
gas drive). Other fields in which the phenomenon may be encountered include
groundwater hydrology (saltwater-freshwater interface in coastal aquifers) and
soil sciences (infiltration flows).
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[21 Immiscible fluid displacement 15

Fingering can occur, for example, when the flow is directed from a less viscous
to a more viscous fluid, provided that the velocity is large enough. In laboratory
studies of this phenomenon carried out in linear Hele-Shaw models (the thickness
averaged flow equations for a Hele-Shaw cell are mathematically analogous to
two-dimensional flow in a porous medium) it is observed that, following the
formation of a number of fingers, one of them tends to dominate, suppressing the
growth of the others until finally a single parallel-sided finger, whose nose shape
is independent of time, has developed (Saffman and Taylor [9], Gupta et al. [5],
Pitts [8]). Similar behaviour has been observed in a bead-packed porous medium
model (Gupta and Greenkorn [6]). Although the steady finger remains stable over
a large range of speeds, Saffman and Taylor [9] report that, at very high speeds, it
divides into smaller fingers.

Conditions governing the onset of instability from an initially plane interface
have been derived by Saffman and Taylor [9] and Chouke et al. [2] and include
viscous, gravitational and interfacial parameters. Saffman and Taylor [9] describe
solutions for the profiles of fully developed fingers of arbitrary width when
interfacial tension is ignored and Saffman [10] gives similar solutions for the
growth of fingers from an approximately sinusoidal perturbation of a flat
interface. McLean and Saffman [7] derive fully developed finger shapes, which
include interfacial tension effects, as numerical solutions of a nonlinear integro-
differential equation.

De Josselin de Jong [3] describes an approach in which the two different fluids
are replaced by a single hypothetical fluid with vortices along the interface to
account for the change in fluid properties. Attention was focused on the case of
fluids with equal viscosity but different density in the absence of interfacial
tension; however it was noted that vortex strength must depend on the unknown
solution to account for viscosity differences. This suggests a Green's function
approach to the general problem, culminating in an integral equation describing
the flow.

In this paper an integral equation for the normal velocity of the interface,
which includes interfacial tension, is derived in terms of the physical parameters,
a Green's function and the given interface. The primary objective is to extend the
theoretical basis for the modelling of unstable displacements.

2. The problem

Consider an infinitely long, thin vertical porous layer of width L (Figure 1) in
which one fluid (density p,, viscosity /t,) is being displaced upwards by another
(density p2, viscosity /i2). The interface (denoted by C) separating the two fluids

https://doi.org/10.1017/S0334270000004306 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004306


16 M. R. Davidson [31

is assumed to be sharp and the motion at large distances upstream and down-
stream of the interface is taken to be uniform with velocity V. The densities p,
and p2 are assumed to be constant.

The flow can be considered as two-dimensional for which Darcy's Law gives,
for each fluid (i = 1,2),

-k 9/J, -k [ dpi
Ht dx • ju,,. \ dy (1)

and hence, from the continuity equation,

V2/>, = 0 (2)

where (x, y) are the usual rectangular coordinates with y being the upward
vertical, k is the permeability, g is the acceleration due to gravity, pt is the
pressure and ut, u, are the velocity components in the x, y directions, respectively.
The effect of immobile residual fluid can be incorporated simply by changing the
mobility k/nt of each fluid in equations (1). Equations (1) also hold for flow
between two closely spaced parallel plates (Hele-Shaw cell) where «,, u, now
correspond to mean velocities over the spacing b and k = b2/\2.

At the interface, the normal velocity («„) is continuous, hence

on C where the normal n is directed from the lower to the upper fluid, and 6 is the
angle made between the normal and positive y axis.

Fluid 2

Figure 1. Schematic representation of the vertical displacement of fluid 1 (density p^ and viscosity /H|)
by fluid 2 (density p2 and viscosity n2)

 ia a two-dimensional porous medium or Hele-Shaw cell of
width L, the velocity at infinity being V.
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[4] Immiscible fluid displacement 17

In general, there is also a jump in the pressure at the interface the magnitude of
which depends, at the microscopic level, on the interfacial tension (y), micro-
scopic curvature and the normal viscous stress. The latter is usually ignored when
pore-to-pore variations are smoothed out (it can also be ignored on a pore scale
when fiV/y « 1 [13]) and it is commonly assumed that the pressure jump across
the macroscopic interface C is given by

p1-pl = yH(x,y) + Pc (4)

where y is now an effective interfacial tension which may be much larger than the
ordinary bulk interfacial tension, H is the macroscopic curvature of the interface
and Pc is a constant 'capillary' pressure associated with the microscopic interfaces
underlying C. Physically, Pc is much greater than the pressure difference due to
the macroscopic curvature H; however the term yH cannot then be ignored since
the flow is independent of a constant Pc, regardless of its magnitude.

Condition (4), with 7 taken to be the bulk interfacial tension, has also been
proposed at the interface in a Hele-Shaw cell (Saffman and Taylor [9], Chuoke et
al. [2]) where, for example, Pc is replaced by ly/b corresponding to a uniform
semi-circular meniscus between the plates of the cell. Other choices of Pc take
account of a non-zero contact angle (assumed constant) and the presence of a
uniform film of displaced fluid remaining on the plates. Although the choice of
constant Pc is probably a good approximation in Hele-Shaw cells for small
deviations from a horizontal interface, recent evidence (Pitts [8], McLean and
Saffman [7]) suggests that, in general, the curvature of the meniscus varies along
the interface, corresponding to variations in film thickness. Theoretical [1] and
experimental [4, 12] studies of a finger of negligible viscosity, moving steadily
with velocity U in a tube, found that film thickness depends on /x(//y; a similar
dependence is expected at each point of the interface C in a Hele-Shaw cell with
U replaced by un. (When fiU/y « 1, viscous stresses significantly affect the
steady, profile shape only near the walls of the tube and Bretherton [1] has
applied the lubrication hypothesis in this region.) However, a proper determina-
tion of the pressure drop across C appears to require an analysis of the
three-dimensional flow near the interface.

For a uniform velocity V at infinity, we require (using equation (1))

p2^> -K2y + A2

where Kt — fijV/k + ptg and Ax, A2 are arbitrary functions of x. At the side
walls, we require M, = 0, hence

3/>,/3;c = 0 for x = 0 and x = L. (6)

The objective is to use a Green's function for the problem to obtain a boundary
integral representation for un.
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18 M.R.Davidson [5]

3. The Green's function

A function G(x, y; f, TJ) satisfying

V2G — S(x — f )S(y — TJ) (7)

in the region 0 < x, J < L, -oo < y , TJ < oo, together with the side wall boundary
condition (6), is given by

G(x, y; f, TJ) = — (loglcosh y(y - TJ) - cos y ( x + f))

where
1 l

G -* E(x, y; f, TJ) for (f, TJ) -> (x, y) and 0 < x < L,

and

G-*2E(x,y;0,i,) forf-»0,

-» 2£(x, j ; L, TJ) f o r f ^ L ,

where

E = — log r and r2 = (_y - TJ)2 + (x - f f.

Hereafter, we use an abbreviated notation, writing G{X; | ) , E{X; | ) where Zand
£ are the points (x, y) and (f, TJ), respectively.

4. The integral equation

Consider the Green's theorem

where dR is the boundary of region R, N is the outward normal to dR and S is arc
length. If point X — (x, y) lies within the upper fluid (/?,), then applying Green's
theorem over regions Rl and R2 in turn, and adding the resulting expressions
gives

= conslant -
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[6] Immiscible fluid displacement 19

(note that N — -n when /? = /?, and N = n when R = R2). The same procedure
results in an identical expression for p2{X) when X lies within the lower fluid
(R2). By substituting the interface conditions (3) and (4) into expression (9) we
get

Px(X) = constant - i(*, + K2)y + Y £ t f ( | ) M ^ i i </<?(£)

U) + (Pi - P2)gcos6]jG(X; Z)dS(Z), (10)

and an expression of the same form for p2( X). Note that equation (A7) shows
that the integral involving capillary pressure Pc is a constant. This is expected
since, initially, we could have set Pc = 0 simply by adding constants to/?, andp2.

The determination of un on C is of fundamental interest, not only because it
describes the motion of the interface, but also because the pressure at any point
can then be calculated from equation (10). Limiting expressions for 9/?,/9« and
dp2/dn as X approaches C from above and below, respectively, may be derived
from equation (10) by using results (Al) and (A3). By adding these expressions
and using the interface condition (3), we find that

un(X) =

?vlr I r dH( X} \

W I f „ / Y. £)dS(Z) - J ^ . ( G ( X ; tL) - G(X; £ 0 ) ) l

(11)

for 0 < x < L on C, where

and

By taking the derivative of equation (4) along the curve C, evaluating it at the end
points of C, and using equations (1) and (6), we get

^0*, - n2)unjsm6 (12)

at x = 0 and x = L. Thus, condition (A6) is satisfied with respect to the two
integrals in equation (10), and dpt/dn + dp2/dn may be evaluated at the end
points of C, as required. Results (A5) and (12) can be applied to equation (10) to
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20 M. R. Davidson [?l

show that, when x = 0 or L,

2 i I yk \ dH t
un(X) = Kcos0 + — — r - — -JF(0c o t0-c o s 20) + 2 / D(X;£)dS(t)

IT \ fit + H2 I ab Jc

(13)

where

and

, = f l , x = 0,
J l - l , x = L.

Note that the integrands in equations (11) and (13) are finite when £ = X since
the singular parts of the corresponding component terms cancel.

We consider the following points:
(i) When 6 = 0 at an end point, equation (12) shows that either y — 0 or

dH/dS = 0 there. That is, when the interface is normal to a side wall, it also has a
local maximum or minimum of curvature there, unless the interfacial tension is
zero. In this case, the integral equations (11) and (13) are equivalent, the latter
then applying at this end point as well as at interior points of C.

(ii) When 6 — ± \m at an end point, un = 0.
(iii) Equations (12) and (13) place constraints on the behaviour of the interface

at its end points for given physical parameters. However, there seems to be no
straightforward and general way of determining such behaviour at end points
with 6 ¥= 0, ± JIT when /LL, ¥= ju2; we therefore confine ourselves to the above
cases (i) and (ii) in the examples to follow (Section 6).

(iv) When ji, = /x2, «„(£) disappears from the integrands in equations (11) and
(13), so un( X) is expressed as an integral of known quantities.

(v) In the special case of no flow, equations (1) and (4) show that

y

and hence

y~dS =

yH = (p, - p2)g7j + constant,

at all points on C. This corresponds to the balance between gravitational force
and interfacial tension. That the integral equation is satisfied may be confirmed
by comparison with results (A 10) and (All).
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5. Comparison with steady solutions

Consider the steady advance of a single, parallel sided finger of displacing fluid
in which the nose section (C,) moves forward with velocity V* and the tail section
(C2) moves backward with velocity V2*. In Figure 2, C, is the curve A OF and C2

consists of the two curves BC and ED. The parallel vertical sections AB and EF
have length » 1 and are denoted by C3. When 7 = 0, curve C, is given by the
Saffman-Taylor solution which, for a finger of width 2 A in a cell of width L = 2,
is

l ^ (14)
A

where (x*, y*) are coordinates with respect to an origin 0 located at the nose of
the finger.

Now, by equation (1), dpi/dy = y.y*/k — pxg, on C2 and, dp2/dy =
~H2V*/k — p2g, on C,. However, we see from condition (4) that 9/?,/9j> =
dp2/dy on the vertical sections C3 which match C, and C2 (this remains true when
y # 0 since C3 has zero curvature). Thus

Conservation of mass is given by

f un(X) dS(X) = VL, (16)
Jc

and hence

V = XV* - (I - X)V2*. (17)

Both expressions (15) and (17) have been derived previously by Saff man and
Taylor [9].

Now, for X lying on C,,

• f cos6(S)dG/dn(X)dS(Z)

and, since 9G/9n( A') -> |cos 0(X) when L = 2 as TJ -» -oo,

f = 1 (1 - X)
Mi + V-i

where

onC,,
onC2.
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0

(9]

A

B

y
c2

F

E

v2*

-L=2-
D

Figure 2. Schematic representation of a single, steadily advancing, parallel sided finger of width 2 A in
a medium of width L = 2. The finger nose .4Of (denoted by Ct) is advancing with velocity V* and
the tail sections BC and £D (denoted by C2) are retreating with velocity V*. C3 refers to the vertical
sections A B and EF which match C, and C2.

On C3, F — 0 (as un = cos 0 = 0) and the corresponding integral is zero. Thus, by
using expressions (15) and (17) in equation (11) for y = 0, we can show that the
Saffman-Taylor profile (equation (14)) must satisfy

f
for all I o n C | , a result which may be demonstrated to a high degree of accuracy
by numerical integration. Similarly, when 7 ¥= 0, we can show that the finger C,
must satisfy

dG yk

c,rmw) V2*)
M(X; 0 ) dS(£) = i(l - X)cos6(X)

(18)

for all X on C,.
McLean and Saffman [7] have derived fully developed finger shapes corre-

sponding to curve Cx, which include interfacial tension effects, as numerical
solutions of a nonlinear, integro-differential equation (gravity was ignored and
the displacing fluid was assumed to have negligible viscosity ju2). These shapes,
together with the corresponding relationship between X and yk/di^f) (derived
by McLean and Saffman as part of their solution), must satisfy equation (18);
however, it is not convenient to confirm this directly, as the McLean-Saffman
curves can only be derived numerically. Instead, for these curves, we use an
approximate analytical form which was noted by Pitts [8] and is given by
equation (14) with the multiplier (1 — A) replaced by X. Using McLean and

https://doi.org/10.1017/S0334270000004306 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004306
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Saffman's data relating A to Y/C/(MI*7) ([7], Table 1 and equation (17)), we find
that equation (18) is satisfied with an error which increases with X (see Table 1,
this paper), corresponding to the apparent increasing deviation between the Pitts
approximating curves and the McLean-Saffman exact curves.

TABLE 1. Maximum error in equation (18) when fully developed fingers in the case /i2
 = 0, g = 0 are

represented by the Pitts approximate analytical form and the relationship between A and yAr/(ft,K|*) is
given by the McLean-Saffman calculations.

A

0.515
0.524
0.537
0.557
0.582
0.604
0.640

Maximum
Error

0.0044
0.0062
0.0075
0.0096
0.0125
0.0158
0.0242

A

0.678
0.720
0.767
0.809
0.881
0.947
0.984

Maximum
Error

0.0282
0.0390
0.0594
0.0836
0.1407
0.2377
0.3743

6. Numerical solutions

The integral equation (11) can be solved numerically by standard methods
(quadrature of the integral followed by collocation to obtain a set of simultaneous
linear algebraic equations). However, unless 0 = 0 at both ends of C, it is first
necessary that F(£)$G/dn(X) in equation (11) be replaced by F(£)dG/dn(X) -
F(X)dG/dn($) (this is permissible by equation (A8)) to ensure accuracy. This
becomes clearer if we consider equation (Bl). At interior points X of C,
(3G/3n(X))i=x increases in magnitude as x -» 0 or L (unless 6 -> 0 also) and will
magnify numerical errors in un near the side walls. However, this effect may be
substracted, as is indicated above. A useful check on the numerical procedure is
the conservation of mass requirement (equation (16)).

Attention is focused on cases (i) and (ii) in Section (4) for which 0 = 0 or
0 — ± \tr, so that condition (12) is satisfied independently of y. In these cases it
is convenient to separate out the effect of interfacial tension by setting

so that

W2{X) - 2a, fJc

^ p - SL) - G(X;

n(X) dS(£)

(19)
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by equation (11), where a, = (/t, - M2>/(Mi + M2) ̂  «2 = lk/{L2V(\>.x + M2))
are dimensionless parameters, W, is the normal velocity of C when y = 0 and W2

is a function describing the pattern of the correction, due to interfacial tension, to
the normal velocity.

To illustrate, we assume that V = L = 1 and px = p2, and normal velocities Wx

and W2 are calculated for two different interfaces given by

(a)

and
(b)

y =
2\ 2

(i.e. a semicircle),

y = cos TTX,

and the results are plotted in Figures 3 and 4. In case (a), curvature is constant, so
W2(X) = 0 and un(X) = W^X). In case (b), 6 - 0 at the side walls, so dujdx
= 0 there (since w, = 0 on the side walls and dut/dy — 3u,/3;c).

When ft, = n2 (i.e. a, = 0), Wx = cos^ corresponding to uniform flow every-
where of a single, homogeneous fluid. When the upper fluid is much more viscous

0.2 0.4 0.6 0.8 1

Figure 3. Normal velocity Wi (solid curves) of a semicircular interface (dashed curve) plotted against x
for different values of the parameter a! = (/i, — fi2)/(/

1i + ^2)-
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1 | - r - 1 1 1 1 71 10

25

0.2 0.4 0.6 0.8 1

Figure 4(a). An interface y = cos TTX (dashed curve) with curvature H. The solid curve is a plot of -H
against x.
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J \
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• — •

1.5

- 0.5

- 0

- - 0 . 5

- - 1

- -15

0.2 0.4 06 08

Figure 4(b). Normal velocity (W{) in the absence of interfacial tension (y) of the above interface is
plotted (solid curves) against x for different values of the parameter a, = (p, — /i2)/(/*i + ^2)- The

component of the normal velocity due to interfacial tension is a2W where a2 = yk/(L2V(iil + /i2)).
The dashed curve is a plot of W2 against x for a, = -1 (the curve for a, = 1 is very similar).
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26 M.R.Davidson [13]

than the lower, displacing fluid (i.e. a, = 1), Wx in Figures 3 and 4 is greater or
less than that for uniform flow near points of maximum or minimum displace-
ment of fluid 1 by fluid 2. The interface will therefore tend to increase in
amplitude. Conversely, when the upper fluid is much less viscous than the lower
(i.e. a, = -1), the opposite is true and the amplitude tends to decrease. This is
consistent with conclusions about stability based on an analysis of small per-
turbations of a horizontal interface under the same conditions. Saffman and
Taylor [9] and Chuoke et al. [2] showed that small perturbations of the form

y — eexp(inx + at),

satisfy

(/», + n2)a/n = (/», - p2)V+kg(px ~ p2) - n2yk, (20)

and the disturbance is unstable when o > 0 and stable when a < 0. In particular,
when P\ — p2 and y = 0, a ^ 0 when a, ^ 0.

The contribution (a2W2) to un made by interfacial tension depends on curva-
ture and is more complicated than Wv In Figure 4(b), W2 is plotted for a! = -1
(in this case little difference is found between the W2 curves corresponding to
a, = ± 1). In the central part, curvature {H) is low, hence W2 is small. Near
x = 0, H (and p2 — pt on C) becomes large and positive and local pressure
gradients become less negative, decreasing un and hence W2, as is shown in Figure
4(b). Conversely, near x — 1, H becomes large and negative, un and hence W2

must increase. Thus interfacial tension appears to hasten amplitude reduction
during stable flows and slow amplitude growth during unstable flows, a result
consistent with equation (20).

7. Conclusion

In summary, we have presented an integral equation for the velocity of the
interface between two immiscible viscous fluids in a two-dimensional porous
medium or Hele-Shaw cell when one of the fluids is displaced by the other.
Knowledge of this velocity permits the evaluation of the pressure at any point. It
is also necessary for a stepwise determination of the evolution of the interface
and, at each step, consideration of an integral equation is preferable to a
numerical solution for flow over the whole fluid region.

The Saffman-Taylor profiles are seen to satisfy the integral equation when
y = 0. Similarly, when y ¥= 0, it is shown that the Pitts approximating profiles,
together with the McLean-Saffman data relating finger width to interfacial
tension, satisfy the integral equation with an error which increases with \ ,
corresponding to the increasing error between the Pitts approximating function
and the exact profile.
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Appendix A

Some integral properties on C

Let

and

where 5 is the arc length along curve C. If G(X; £) is replaced by E(X; £) then/
and /J define a simple layer and a double layer, respectively. Using standard
techniques (Stakgold [11], page 121) one can show that
(i) For 0 < x0 < L

\imJf(X)/dv = ±^a{XQ) + j a{£) v °' dS(£), (Al)

-rfS(€), (A2)
X->/Vo±

Um aACA'Va*'

^ o ) ) , (A3)

where £0 = (0, TJ) and | L = (L, TJ), V is the upward normal direction n(X0) as
A" -» Xo on C and plus or minus indicates that the limit in X is taken from above
or below C, respectively. The method involves splitting C into two parts, C — Ce

and CE where CE is a small segment containing the point Xo, then taking the limit
e -> 0 after the limit in X. For lim^,,^* dh(X)/dv one first obtains

db \iL
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Equation (A3) is then derived by integration by parts after recognising that

32G 32G \

(set b — 1 and use result (A7)) and that

and

are finite at | = AQ.
(ii) For x0 = 0 or x0 = L

X—* sin —
(A4)

where

7 = - 1 , x0 - L.

When Xo is an end point of C, equations (A1-A3) still apply, provided C is
normal to the side wall (i.e. ^A^) = 0). Equations (Al) and (A3) also hold at an
end point when a(X0) = 0 and db(X0)/dS = 0, respectively. When 0(XQ) =
— ?"•> 9//9»' and dh/dv -> 0 as X -» Ao ± . In general,

am +

provided

(iii) Additional results

+ a sin 0 = 0 when X = Xo.

fc

(A5)

(A6)

(A7)
ifXf=R2

and

(A8)

https://doi.org/10.1017/S0334270000004306 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004306


[161 Immiscible fluid displacement

for points XQ lying on C and settings = 0 when 0 < x0 < L. Also

29

- 2~log2 if X ER2.

(A9)

Hence

for XQ £ C and 0 < x0 < L, and

= 0

(A10)

7T
= 0, (All)

for Xo G C and x0 = 0 or L using results (Al), (A3) and (A5).

Appendix B

Integrand values when i = X

The integrands in equations (11) and (13) are continuous in £ for given X. In
the following we give the values of those integrands at the point £ = X. The
curvature of the interface is denoted here by K(X); H{X) in equation (4) is now
presumed to be a general function (in the main text it is assumed that H = K).
(a) 0 < x < L

dG K sin 6 TTX

\ dH irx d2H
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(b) x = 0, L; 0 = 0

<B4)

Note that dH/dS = 0 in this case.
(c) x = 0, L; all 0

j - f ** cos2 0^- + KFcos2 6 - sin 2 0 ^ ) (B5)

where

F =
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