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AN INTEGRAL EQUATION INVOLVING LEGENDRE FUNCTIONS*. EIDL
1. Introduction. In recent years there appeared solutions of several

integral equations whose kernels contain one of the classical orthogonal
polynomials. Ta Li Ill solved the integral equation

(1.1) (u a2)-1/2T, y(u) du f(z), 0 < c 1,

which arose in the solution of a certain aerodynamical problem and in
which T is the Chebyshev polynomial of the first kind; R. G. Buschman
[2] found the solution of the analogous integral equation

(1.2) P, y(u) du f(a), 0 < c 1,

involving the Legendre polynomial P, ;and T. P. Higgins [3] discussed
an integral equation which includes both (1.1) and (1.2) as special cases,
namely the equation

(1.3) (u x-i x. y(u) du f(), 0 < c S 5 ,
in which C,x is an ultraspherical (Gegenbauer) polynomial.
The solution of these integral equations by the aforementioned authors

is based on certain integrals involving products of the respective orthogonal
polynomials. Another method of solution can be based on Rodrigues’s
formula and its extension to the classical orthogonal polynomials. By means
of this formula it is possible to represent the left hand side of the integral
equation as u derivative of order n of an integral whose inversion is a
problem in integral equations of Abel’s type--and therefore a known prob-
lem.

This second method of solution can be presented in a slightly different
form which is especially simple in the case of Buschman’s integral equation.
The left hand side of (1.2) is a constant multiple of the derivative of order
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16 A. ERDlLYI

n with respect to -1 of

0
"-2n fl (u a)nu-’y(u) du,

and the integral appearing here is a multiple of the n 1 times repeated
integral with respect to a2 of a-n-ly(a). This observation leads to an ele-
mentary solution [4] of (1.2) under conditions which are both necessary
and sufficient for the existence of an integrable solution y(u) of (1.2).

Rodrigues’s formula can be applied also to (1.1) and (1.3) but here the
situation is slightly more involved in that the integrals with respect to
a are of fractional order and their inversion requires the knowledge of
differentiation and integration of fractional order. In spite of this complica-
tion the method has its merits and seems more direct than that employed
in [1] and [3]. Moreover, once differentiation and integration of fractional
order are used, it seems appropriate to allow a derivative of fractional
order with respect to a-1 to appear so that the ultraspherical polynomial
in (1.3) may be replaced by an (associated) Legendre function. This will
be done in the present paper.
Although this slight generalization and the resulting form of the solu-

tion which differs from that obtained in [1], [2], [3] and in some cases en-
tails more liberal conditions of validity, are of some interest in themselves,
the motivation for this paper lies not so much in these (slight) improve-
ments on known results as in the desire to illustrate the usefulness of frac-
tional integrals as a tool in applied mathematics. With this in mind, the
descriptive account (in 2) of fractional integrals and derivatives and
their application (in 3) to Legendre functions are given in a little more
detail than is required for the solution of the integral equation.

In 4, the integral equation

(X2
(1.4)

g(t) dt f(x),

1
--1, > 0 < a-< x < b,

2

is solved in the form

(1.5) vT1T----IT--h_/Xg(x) (2x)

(for the definition of the operator I" see 2, for the conditions of validity

Derivatives of fractional order appear in certain cases also in Higgins’s work in an
intermediate step leading towards the solution, and the same author applied frac-
tional differentiation to an integral equation whose kernel contains a hypergeometric
function. [Note added September, 1963: This work has been prepared for publication
under the title, A hypergeometric function transform.]
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see 4); and in 5 explicit analytic forms of this solution are obtained in
various cases depending on whether v and }, v are or are not nonnegative
integers. Better, if less explicit, conditions of validity and an alternative
form of the solution are obtained in 6... Fractional integration and differentiation. Let [a, b] be a compact
(bounded and closed) real interval; let A0 be the class of complex-valued
functions integrable on [a, b]; and for positive integer ] let Ak be the class
of functions for which (i) f(k-1)(x) exists and is absolutely continuous on
[a, b] nd (ii)

(2.1) f(a) f’(a) f(k-l)(a) O.

Two functions equal almost everywhere (that is, equal except on a set of
measure zero) are not regarded as distinct, and for functions belonging to
A0 it is sufficient to be defined almost everywhere (a.e.). fo) indicates the
jth derivative of f. Since f(,-l) (x) is absolutely continuous, f(*) (x) exists
a.e. and defines an integrable function.

Let Ix be the operator of integration defined by

(2.2) If(x) f(t) dt,

so that the operation of l times repeated integration is expressed as

1 (x t)-lf(t) dt, lc 1, 2, 3,...(2.3) If(x)
(] 1)!

and set

I,’f(x) f(x),(2.4) -k f(k) / 1 2,(x),

The most important properties of I may be summarized as follows.
If f A., j 0, 1, 2, and / is an integer (positive, negative, or
zero) for which j -t- / >_- 0, then If exists and belongs to A.+ if is a
further nonnegative integer which does not exceed j -k/, then

(2.5)

exists and belongs to A.+_z. Also, for f A, /c 0, 1, 2,
have

(2.6) f(x) I,f( (x).

We shall now extend these and other results to nonintegral values of
the index. For the sake of simplicity we restrict ourselves to real indices
although complex indices with nonzero real part are easily included, and
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imaginary indices have also been considered [5]. Accordingly, a, ,
will be real numbers, and, as usual, [a] will stand for the largest integer
not exceeding a.

For a > 0, we follow Riemann nd Liouville in defining the in,egral of
order a of f as

(2.7) I"f(x)
r(o/)

(X )a-lf(g) dr.

By a simple application of Fubini’s theorem it can be shown that I,"f(x)
exists a.e. and defines an integrable function if f is intcgrable and a > 0.
The further formula

(2.8) I,"(I:Of)(x) I,"+f(x)
for f A0, a > 0, fl > 0 can be proved by interchanging the order of
integrations (again by Fubini’s theorem) in the repeated integral indicated
on the left hand side of (2.8).
For a _>_ 1 (and f A0), I" is not merely integrable but absolutely

continuous, and

d I(2.9) d-- I"f(z) a,, ).

This is immediate for a 1; for a > 1 it can be proved by differentiation
"under the integral sign", a process justifiable by Lebesgue’s theorem on
dominated convergence.

If a < 0, we define I,) indirectly, saying that I,f g if f I-"g.
I,) for a < 0, if it exists, is thus defined up to a function vanishing a.e..
It is easy to verify that for the so extended operator I", for all real a,
(2.8) and (2.9) hold provided that the functions involved in these rela-
tions make sense. Moreover, this definition of I," agrees, in the case of
integer a, with the definition given at the beginning of this section. For

I"negative a, is an operator of differentiation of fractional order but it
will be convenient not to make this distinction" we regard differentiation as
integration of negative order and conversely, we consider integration as
differentiation of negative order.
Iff A,/c 1,2, ...,and-It =< a <0, then

jr(2.10) f(x) If()(x) I (- a )(x)

by (2.6) and (2.8). It follows that for f A and a + k _>_ 0, I"f(x)
exists, and

I,."f(x) I,"+f()(x).
Combining these various pieces of information, we can now show that
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for f A, and a -t- ] => 0, I"f exists and belongs to A,+,] and if j is a
nonnegative integer not exceeding k + [a], then

(7-x) i/-+f()(2.11) I"f(x) I"-f(x) (x).

Moreover, (2.8) holds for f A provided [fl] + >_- 0 and
[,4+[t]+>-O.
For the sake of simplicity we considered the operators Ix" on A. It

should be understood that the conditions given above for the existence
of I,"f, while sufficient, are by no means necessary, and that the state-
ments made above with regard to continuity properties are certainly not
the best possible statements. For instance, it is known [6, Theorem 4]
that for -1 < a < 0, I,"f exists as an integrable function if and only if

f A0 and I "+r(x) is an absolutely continuous function vanishing at a.j\

This is a much less restrictive condition than f A,, but also one that is
more difficult to verify. For more effective results and conditions it seems
appropriate to consider functions subject to Lipschitz conditions [7]
but we shall not discuss this refinement here.

If a > 0 so that x 0 is not a point of [a, b], we can define also frac-
tional integ.ration with respect to x for any nonzero real n. For a > 0,
the appropriate definition is

1 x, t._f( nt_(2.12) I%f(x) F(a)
t) dt,

and the extension to a _-< 0 is made as before. The analogues of the basic
identities remain valid. In particular,

IxnI. I.+

remains valid so that I% and Ix commute. Note, however, that for m n,
Ix% and Ixn do not commute. Since x and x are indefinitely differentiable
functions of one another on [a, b] if a > 0, all continuity and integrability
properties are preserved when the variable is c.hanged, and the operator
I% can be defined on the classes A that are independent of n.

3. Legendre functions. It is appropriate to use a different normalization
of Legendre functions according as the variable is restricted to the interval
(-1, 1) (the "cut") or varies in the complex plane (in the first instance
slit along the real axis from oo to 1 ). In this paper, the variable appearing
in the Legendre functions will always be positive real and the two normali-
zations will be used respectively, on (0, 1) and (1, oo ). The functions
themselves will be distinguished as PvX(z), for -1 < z < 1, and PvX(z),
for z > 1 or complex z.
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In the first instance P-’(z) is defined in terms of a hypergeometric
series [8, 3.2 16)] but we shall replace this series by the Eulerian integral
representing it [8, 2.1 (10)], defining

P,-’(z) {(z- 1)/(z + 1)}
2’r(, + )r(x )

(3.1)

f vX-’-l(1--v)’{z-l-- (z-- 1)v}dv, , > > --1, z > 1,

and

(3.2)

P,-(z) {(1 z)/(1 + z)}
2r( + 1)F(k )

v){z-b 1 (z- 1)v.} dr,

Here all fractional powers are given their principal (in this case positive)
values. The restriction to real values of h, , z is inessential.
The following recurrence and reduction formulas will be needed in the

sequel.

(3.3) P-(z) -xP--I(z),

(z 1) v2(3.4) P-V(z) P-,,-I(z) F( + 1)’ z > 1,

(3.5) P-X(z)
F(X+ 1) + z]

--1 < z <.1,

(3.6) zP-X(z) + (X- )(1- z)inP,-X-(z) PT(z), --1 < z < 1.

These are known [8, 3.3, 3.6, 3.8].
We shall now establish two results on fractional integrals of Legendre

functions. In these, a > 0, and x vary over the interval [a, b], and H is
Heaviside’s unit function defined by

H(u) 1 if u > O, H(u) 0 if u <0.

The first result [9, 13.1 (52) is

(3.7)
H(x t)

and holds when either a >= 0 and h > -1 or a =< 0 and ) > -a 1.
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In order to prove (3.7), we consider for a > 0, > 0, and a -< < x -< b,

r(t)
t)"-’

r()r()
(x u)"-(u t)-1 du.

Here we introduce a new variable of integration v by the substitution
u x-(x- t)v and obtain

1 t)"+o- -Jo"r()r()
(x v"-(1 v)O-{x + --(x t)v} t-i dv.

On account of (3.1) we thus have

(3.s)

H(x t) (x t2)0-1
r()

(2t)-l(x2- t)("+-l)/2P-- ()H(x-t)
for a 0,/3 > 0. In view of the definition of Ix" for a < 0 we also have

(3.9)

for, => ,> --1.

H(x -t)}
H(x t)

x
r(, + 1)

(2t)-"( t)"

Returning now to (3.7), we note that on account of (3.3) we may take
>= -1/2. If }, > >= -1/2 and a > 0, then the left hand side of (3.7) is

t) (2t) x }F(u -- 1)
t)

by (3.8). Here I"I,x-" i,+x-, by (2.8), whereupon a second application
of (3.8) leads to the right hand side of (3.7). Thus, this relation is now
established for a > 0, , > u => -1/2. Holding a and u fixed, we see that
both sides are analytic functions of the complex parameter ,, regular when
Re > -1. Thus, (3.7) holds when a > 0, > -1, u => -1/2. The ex-
tension to a 0 is trivial, and the extension to u < -1/2 follows from (3.3),
since -u 1 > -1/2 in this case; so (3.7) holds when a > 0 and , > -1.
From this it follows that

I,-"{(x --t)(x+")P.-X-"()H(x--t)}
(x t)XlP,-x () H(x t)
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if a --< 0 and X - a > --1, and n view of the definition of Ix" for a < 0
this proves the validity of (3.7) under the conditions a -< 0, X > -a 1.

Lastly, putting X 1 in (3.7) and using (3.4) we find that
(3.8) holds not only when a => 0 and $ > 0 but also when a -< 0 and
a W t > 0; and putting a X in (3.7) and using (3.4) we find that
(3.9) holds not only when X -> > -1 but also when >__ X > -1.

(3.8) may be considered as an extension to "Gegenbauer functions"
[8, 3.15.2] of Rodrigues’ formula for Gegenbauer polynomials
[8, 3.15(10)]; we obtain the latter formula if a -n, n k 1/2,
n 0, 1, 2, in (3.8).
The second result on fractional integrals of Legendre functions is

(3.10)
I,%{(2x)(x2- t2)XP-X()H(x t)}

and it too holds if eithera__> 0andX > -lora-< 0 and X > -a- 1.
To prove this, we assume a > 0, > 0, a -< < x <= b and consider

IN H( ) (x )- 2 (x )"-( )- d.
r()r()

With u + (x t)v this becomes

2t a’nt-fl--1 [r()r()
(x t) v’-x( v) /x + (t z)v}"- dv

fo V) a-1+ r(.)r(t)
(x t)"+ v(1 Ix -k (t x)v}"- dr.

This is

2aXa-I(x2 t2)(aq-tS--1)/2 lb" a-1 +

in view of (3.2). Here we can use (3.6) and obtain

(3.11)
I{H(x (z--t)t-t}

(2x)"(x t)("+-l)/2P.-"- ()H(x- t).

From this result (3.10) can be deduced by steps analogous to those leading
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from (3.8) to (3.7). The relation analogous to (3.9) in this case is

Ix- {(2x)(x t)/P: () lt(x t)}
(3.12)

H(x t) (x t)x-.
F(X- - 1)

It follows from (3.10) with 0 nd (3.5) that (3.11) holds if either
a 0 nd > Oorifa Ond a+ > O;nd that (3.12) holds if
either 0 nd > -1orb > -1 -1. Witha -n,
h + 1, n O, 1, 2, (3.11) leds to the formul

--b] n--1F(X + n + 1)
(x t) x+n (2x)-n(x ,2xX/2p-X

since P-n Pn-1. This is a counterpart to Rodrigues’ formula.

4. The integral equation. We are now ready for the discussion of the
integral equation

(4.1) (x- t)X/PTX g(t) dt f(x), 0 < a < x b,

in which g is the unknown function and f is a given function. We shall seek
solutions g in A0 and for the present do not say much about the nature of
f beyond stipulating that it shM1 possess a representation of the form (4.1).
Later we give sufficient conditions under which this is the case.

In view of (3.3) we may assume > in (4.1) indeed
if < -. It is seen from (3.1) hat

where F is a bounded continuous funegion of and for N N N b,
and i follows ha X > -1 is a necessary and sueien condition for he
exisgenee of ghe integral in (4.1) for each A0 and a.e.z. Accordingly,
W 88um

(4.2) X > -1, >

Wigh ghese assumpgions ig can be proved by FubiN’s heorem ghag f A0
lager we shall resgrie f go a smaller class.
Under assumptions (4.2) ghe eondigions for ghe applieagion of (.8) are

satisfied, and we may rewrite he integral equation as

k,fH(+--1)) (2)-(z-)} () d.
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If it is permissible to interchange the operation Ix-’ with integration with
respect to t, we may use (2.12) and obtain

T(4.4) f(x) 1 :. 1(2x)--lg(x)}.
We shall now show that this relation is indeed equivalent to (4.1).

If X v, (2.4) and (3.4) show that (4.1) and (4.4) are identical. If
X > v >= -1/2, the operator Ixx- is an integral operator of the form (2.7).
In this case the right hand sides of (4.3) and (4.4) are repeated integrals;
and these repeated integrals are equal by Fubini’s theorem. There remains
the case > X > -1, when I-x is an integral operator. In this case we
form

I,’-Xf(x) Ix"-x H(x t)(x t2)X/2P,-x g(t) dr.

The right hand side is a repeated integral in which the order of integrations
can be interchanged by Fubini’s theorem. When this is done, one obtains
by (3.9) and (2.4)

x2 /(2x) -’-1., (x)},

a relation equivalent to (4.4).
The solution of (4.4), and hence of the integral equation (4.1), may now

be written in the form

(4.5) +IT;--I -x::g(x) (2x) :x:.
We shall now discuss the conditions that must be imposed on f in order

that (4.1) have a solution g A0. We have already pointed out that
f A0 is a necessary condition. Let us set h(x) (2x)--lg(x). Since
g A0, also h A0, and it follows from the properties of Ix% that I+h (x)

X--v rv+lAII+. If, moreover[v] + 1 +- v _>- 0, then x (x) Atl++tx_
We now see that a necessary condition for the existence of a solution g Ao
of (4.1) is that f A where

(4.6) j max{0, 1 + [v] + [X v]}.

On the other hand, we will show that a sufftcient condition for the existence

of a solution g Ao of (4.1) is that f A where

(4.7) /c 1 [--v]-- [-- X].

Indeed, /c + v X -> 0since -v _-< 1/2and [-v] -< 0. Consequently,
Ix-xf exists and belongs to A+t-xl A_t_ iff A. Moreover, 1 [- v]
+ (- v 1) -> 0 and hence g, defined by (4.5), exists and belongs to A0.
That g satisfies (4.1) follows by retracing the steps that lead from (4.1)
to (4.4).
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For any real number p, [p] + [-p] 0 if p is an integer, and [p] + [-p]
-1 if p is not an integer. It follows that j k 1 + h if both and

h are integers, i.e., the integral equation involves a derivative (of integral
order) of Legendre’s polynomial. In this case the condition f Ak is both,

necessary and sufftcient for the existence of an integrable solution of (4.1).
In all other cases k j 1 or 2, and our necessary and sufficient con-

ditions differ. Although the gap between them could be narrowed somewhat
by a more careful analysis of fractional integrals, the formulation of neces-
sary and sufficient conditions seems to require a somewhat different ap-
proach and will be postponed to 6.

5. Elicit solutions. The explicit and analytic form of the solution
(4.5) is different according as v or k v or both of these numbers are or
are not nonnegative integers. In what follows, m and n will stand for non-
negative integers, and k is defined by (4.7).

I V()= ()First assume k m. Since k v < k, we have -x

in this case by (2.4). If, in addition, also v n, then (4.5) may be tran-
scribed as

(5.1) g(x) (2x)+l f()(z) k m + n, n.k/
If v is not an integer and v < n, where n is an integer, then we may write

z and have

(2) u+l ( dn+lf n--r--If(m,
(5.2)

g(x)
F(n- )] (x t:) (t)2t dr,

h =r+m, r <n.

Next we turn o nontegral values of h . Since h < k, there
will be a nonnegative integer m so that h < m k; indeed we may
take m 0 if h , and m -[ hi if h > r. We write
I’-x r -x+i and have accordingly,

L’-I(z)
r( x + m)

( t)-+-’()(t) at.

If, in this case, v n is an integer, we have from (4.5),

(5.3)
(x) =r(m+n_X) k/ a (z--t) (t) dt,

v n, m 0 if X <n, m --n-- [--X] if X > n.

Lastly, if v is no an integer, choose n so ,ha v < n and write
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H(x --t)

by (3.11), and this enables us to evaluate

by interchanging the orders of integration. Using the result in (4.5), we
finally obtain

{(5.4) (2x)n-v (x 2) (.+.-x-)/2pl--__-n+X f(’) (t) d

v <n, m 0 if X <_- v, m --[v--X] if X > v.

It may be verified by means of (3.4) and (3.5) that (5.1), (5.2) and
(5.3) are particular cases of (5.4); but on account of their simplicity it
seems appropriate to list the former relations separately. It is noteworthy
that a comparatively elementary solution is obtained whenever at least
one of the numbers v and X v is a nonnegative integer. This is probably
explained by the circumstance that these are precisely the cases when
P-X(z) is the product of an elementary function and a polynomial. For

n this can be seen from (3.1) and for h m, either from a familiar
expansion [8, 3.2(16)] or else from the formula connecting Legendre
functions and ultraspherical polynomials [8, 3.15(4)].

6. Necessary and sufficient conditions. Necessary and sufficient condi-
tions for the existence of an integrable solution of (4.1) can be based on
the observation that the class of functions representable in the form
I.f(x), with a fixed a > 0 and some integrable f, is independent of n. We
shall first establish this fact.

Let be an infinitely differentiable function, and assume that ’ (x) > 0,
on [a, b]. Repeated integrals with respect to may be defined by the formula

1 f(6.1) I"f(x)
F(a)

[(x) 4(t)J"-f(t)k’(t) dt, a > O,

with the usual extension to a -<_ 0.
Let us fix a > 0, and let us denote by B, the class of functions repre-

sentable in the form I,"f with an integrable f. We shall prove that the class
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of functions representable in the form I"f with an integrable f is independent
of and hence is B.

Since the inverse, -, of is again an infinitely differentiable function
with a positive derivative, and therefore the relationship between the
classes of functions representable in the forms I"f and I"f respectively is
mutual, it will be sufficient to show that for integrable f,

(6.2) Io"f Ix"g,

where g is also integrable.
We shall first prove (6.2) for 0 < a < 1 by showing that

1-. 1 fx(6.3) Ix I ’f(x) g(x) g(t) dt.a

Justifying the change in the order of integrations by Fubini’s theorem,
we have_

1 (x u)-"I, V(x)
r(.)r(1 .)

[(u) (t)]"-1’(t)f(t) d du

f() r()r( )
(x u)-[(u) ()]- d

or

(6.4)

where

(t, x)

Now

and

where

I-"I"f(x) f(t)(t, x) dr,

’(t) (x u)-"[(u) (t)]"- du.
r()r(1 )

4(u) 4(t) 4/(w) dw (u t) (t + (u t)v) dv

[(u) (t)]"- (u t)"-lb(t, u),

k(t,u) 4/(t + (u- t)v) dv
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is infinitely differentiable for a =< =< u =< b. Hence

’(t) f(t, z)
r()r( )

(x u)-(u- t)-’(t, u) du

’(t)
,o

is an infinitely differentiable function for a x b, and

(t, t) ’(t)(t, t) [O’(t)]".
We then have

b(t,x) [(b’(t)]" -t- rj, O(b(t, u) du.
Ou

Substituting this in (6.4), we once more interchange the orders of inte-
gration in the repeated integral to obtain

fa u}Il-"I"f(x) f(t)[’(t)]" dt + f(t) O(t, u)
d dt

Ou

(t)[0’(t)]" + f(u) O(u, t)
d dt.

Ot

This is of the form (6.3), with

Oz

Clearly, is ingegrable if f is ifiegrable; and if f A for some , ghen

also A. We have hus proved (6.2) for 0 < < 1 and have shown
gha in ghe even ghag one of he gwo funegions f and g is in A, ghe ogher

function is also in A.
Nexg we noge ghag (6.2) clearly holds when is a posigive ingeger,

since in his ease B A of 2. Lastly, le + o, 0 < o < 1. Then

by (6.2). Also, I,f A, and hence h A so that h Ih(), and

I"f I(Ih()) I"h(),
so that (6.2) holds with g h (n). Moreover iff A ,j 0, 1, 2, then
also g A and vice versa.
We can now show that under the assumptions (4.2) a necessary and

sufficient condition for (4.1) to possess an integrable solution is that

f B+.
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Indeed if g (x), and therefore also (2x)--lg (x), is integrable, then

and by (4.4)

h(x),f(x) 1 h(x)

so that the condition is necessary. On the other hnd, if f(x) IX+lh(x),
then

I"-Xf(x) I"+h(x) I+]c(x),
and by (4.5)

g(x) (2x)"+I-4-I.-’f(x)= (2x)"+k(x).
This function is integrable and satisfies (4.1) so that the condition is also
sufficient.
A simple characterization of B+ does not appear to be available except

when k -t- 1 is an integer, and Bx+ Ax+l. If n is an integer, and n _-< ),- 1 < n - 1, it is known thatf Bx+ if and only if either In-Xf(x) A,+
or else f An and In-xf(’) (x) A [6, Theorem 4].
The work of this section leads to alternative explicit forms of the solution

of (4.1). Since f Bx+, we have f IX+lh for some integrable h, and the
solution of the integral equation (4.1) can be expressed in terms of h as
follows. From (4.5),

g(x) (2x)+iI--I+h(x)

(2x),+1 d v-t-1I,Ix h(x).
d(x)

Computations similar to those preceding (5.4) enable us to evaluate
I-I+If(x) and lead to

(6.6) g(x) (2x)- (2x) P_ h(t) d

There is an obvious connection between this explicit solution and (5.4);
indeed one may be converted into the other by fractional integration by
parts. If m 1 is an integer, then (5.4) with n 0 becomes (6.6).

Note added September, 1963. Since this paper was written, some additional
references have come to my notice. R. G. Buschman [10] solves the same
integral equation as Higgins [3]. His method differs from those employed
by Higgins and the present paper. K. N. Srivastavu [11] solves certain
integral equations which can be reduced to an equation that is a counterpart
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of (1.4), viz., tO the integral equation

(t x)XnP-x g(t) dt f(x),

) > -1, , >- --1/2, 0 "< a x.

Srivastava’s solution (which is based upon an application of Fourier and
Hankel transforms) appears to be in error, but the integral equation can
be solved by the methods of the present paper ia the form

where K" is the operator of fractional integration defined, for a > 0 and
suitable f, by

K5 f(z) 1 (t )-f()- d.

This definition is hen exended, analogously o ghe work of 2, o oher
values of .
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