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Abstract. In the paper, by virtue of the Cauchy integral formula in the theory of complex functions,
the authors establish an integral representation for the generating function of the Catalan numbers in
combinatorics. From this, the authors derive an alternative integral representation, complete monotonicity,
determinantal and product inequalities for the Catalan numbers.

1. Introduction

It is known [7, 48] in combinatorial analysis that the Catalan numbers Cn for n ≥ 0 form a sequence
of natural numbers that occur in tree enumeration problems such as “In how many ways can a regular
n-gon be divided into n− 2 triangles if different orientations are counted separately?” whose solution is the
Catalan number Cn−2. The Catalan numbers Cn can be generated by

2

1 +
√

1 − 4x
=

1 −
√

1 − 4x
2x

=

∞∑
n=0

Cnxn = 1 + x + 2x2 + 5x3 + 14x4 + 42x5 + 132x6 + 429x7 + · · · (1.1)

Explicit formulas of Cn for n ≥ 0 include

Cn =
1

n + 1

(
2n
n

)
=

(2n)!
n!(n + 1)!

=
2n(2n − 1)!!

(n + 1)!
= (−1)n22n+1

( 1
2

n + 1

)
=

1
n

(
2n

n − 1

)
= 2F1(1 − n,−n; 2; 1)

and

Cn =
4nΓ(n + 1/2)
√
πΓ(n + 2)

, (1.2)
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where

Γ(z) =

∫
∞

0
tz−1e−t d t, <(z) > 0

is the classical Euler gamma function and

pFq(a1, . . . , ap; b1, . . . , bq; z) =

∞∑
n=0

(a1)n · · · (ap)n

(b1)n · · · (bq)n

zn

n!

is the generalized hypergeometric series defined for complex numbers ai ∈ C and bi ∈ C \ {0,−1,−2, . . . }, for
positive integers p, q ∈N, and in terms of the rising factorial

(x)n =

x(x + 1)(x + 2) . . . (x + n − 1), n ≥ 1;
1, n = 0.

There are two integral representations

Cn =
22n+5

π

∫ 1

0

x2
(
1 − x2

)2n

(1 + x2)2n+3 d x and Cn =
1

2π

∫ 4

0
xn

√
4 − x

x
d x

for the Catalan numbers Cn in [2, p. 413, Proposition 2.1], [15, p. 10], and [17]. In [4, 7, 48, 51], the asymptotic
expansion

Cx ,
4xΓ

(
x + 1

2

)
√
πΓ(x + 2)

∼
4x

√
π

( 1
x3/2
−

9
8

1
x5/2

+
145
128

1
x7/2

+ · · ·
)

for the Catalan function Cx was given. Recently, among other things, the formula

Cn = (−1)n 2n

n!

n∑
k=0

1
2k

k∑
`=0

(−1)`
(
k
`

) n−1∏
m=0

(` − 2m) =
2n

n!

n∑
k=0

k!
2k

(
2n − k − 1
2(n − k)

)
[2(n − k) − 1]!!

has been established in [41, Theorem 3]. For more information on the Catalan numbers Cn, please refer to
the monographs [1, 4] and references cited therein.

In the paper [47], motivated by the explicit expression (1.2) and by virtue of an integral representation
of the gamma function Γ(x), the authors established an integral representation of the Catalan function Cx
for x ≥ 0.

Theorem 1.1 ([47, Theorem 1]). For x ≥ 0, we have

Cx =
e3/24x(x + 1/2)x

√
π (x + 2)x+3/2

exp
[∫ ∞

0

( 1
et − 1

−
1
t

+
1
2

) e−t/2
− e−2t

t
e−xt d t

]
. (1.3)

Recall from [14, Chapter XIII], [46, Chapter 1], and [53, Chapter IV] that an infinitely differentiable
function f is said to be completely (or absolutely, respectively) monotonic on an interval I if it satisfies
0 ≤ (−1)k f (k)(x) < ∞ or 0 ≤ f (k)(x) < ∞, respectively on I for all k ≥ 0 and that a function f (x) is completely
monotonic on I if and only if the function f (−x) is absolutely monotonic on −I. Recall from [29] that an
infinitely differentiable and positive function f is said to be logarithmically completely monotonic on an
interval I if 0 ≤ (−1)k[ln f (x)](k) < ∞ hold on I for all k ∈ N. For more information on logarithmically
completely monotonic functions, please refer to [33, 34, 37, 44].

The formula (1.3) can be rearranged as

ln
[ √π (x + 2)x+3/2

e3/24x(x + 1/2)x Cx

]
=

∫
∞

0

1
t

( 1
et − 1

−
1
t

+
1
2

)(
e−t/2

− e−2t
)
e−xt d t. (1.4)
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Since the function 1
t

(
1

et−1 −
1
t + 1

2

)
is positive on (0,∞) (see [8, 38, 54] and references therein), the right hand

side of (1.4) is a completely monotonic function on (0,∞). This means that the function

(x + 2)x+3/2

4x(x + 1/2)x Cx (1.5)

is logarithmically completely monotonic on (0,∞). Because any logarithmically completely monotonic
function must be completely monotonic (see [34, Eq. (1.4)] and references therein), the function (1.5) is also
completely monotonic on (0,∞).

By virtue of (1.2), the function (1.5) can be rewritten as

(x + 2)x+3/2Γ(x + 1/2)
(x + 1/2)xΓ(x + 2)

, x > 0. (1.6)

Hence, the logarithmically complete monotonicity of (1.5) implies the logarithmically complete monotonic-
ity of (1.6). The function (1.6) is a special case F1/2,2(x) of the general function

Fa,b(x) =
Γ(x + a)
(x + a)x

(x + b)x+b−a

Γ(x + b)
, a, b ∈ R, a , b, x > −min{a, b}. (1.7)

We note that the function Fa,b(x) does not appear in the expository and survey articles [20, 21, 34–36] and
plenty of references therein. This naturally motivated us to pose an open problem in our previous work,
which is recapitulated below.

Open Problem 1.1 ([47, Open Problem 1]). What are the necessary and sufficient conditions on a, b ∈ R such that
the function Fa,b(x) defined by (1.7) is (logarithmically) completely monotonic in x ∈ (−min{a, b},∞)?

This problem was solved in [43] as follows.

Theorem 1.2 ([43, Theorem 1.3]). For a, b > 0, the function Fa,b(x) defined by (1.7) has the exponential representation

Fa,b(x) = exp
[
b − a +

∫
∞

0

1
t

( 1
1 − e−t −

1
t
− a

)(
e−at
− e−bt

)
e−xt d t

]
on [0,∞) and the function [Fa,b(x)]±1 is logarithmically completely monotonic on [0,∞) if and only if (a, b) ∈ D±(a, b),
where

D±(a, b) = {(a, b) : a ≷ b, a ≥ 1} ∪
{
(a, b) : a ≶ b, a ≤

1
2

}
.

Recall from monographs [14, pp. 372–373] and [53, p. 108, Definition 4] that a sequence {µn}0≤n≤∞ is said
to be completely monotonic if its elements are non-negative and its successive differences are alternatively
non-negative, that is, (−1)k∆kµn ≥ 0 for n, k ≥ 0, where

∆kµn =

k∑
m=0

(−1)m
(

k
m

)
µn+k−m.

Recall from [53, p. 163, Definition 14a] that a completely monotonic sequence {an}n≥0 is minimal if it ceases
to be completely monotonic when a0 is decreased.

Let λ = (λ1, λ2, . . . , λn) ∈ Rn and µ = (µ1, µ2, . . . , µn) ∈ Rn. A sequence λ is said to be majorized by µ (in
symbols λ � µ) if

k∑
`=1

λ[`] ≤

k∑
`=1

µ[`], k = 1, 2, . . . ,n − 1 and
n∑
`=1

λ` =

n∑
`=1

µ`,
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where λ[1] ≥ λ[2] ≥ · · · ≥ λ[n] and µ[1] ≥ µ[2] ≥ · · · ≥ µ[n] are respectively the components of λ and µ
in decreasing order. A sequence λ is said to be strictly majorized by µ (in symbols λ ≺ µ) if λ is not a
permutation of µ. For example,(1

n
, . . . ,

1
n︸    ︷︷    ︸

n

)
≺

( 1
n − 1

, . . . ,
1

n − 1︸              ︷︷              ︸
n−1

, 0
)
≺

( 1
n − 2

, . . . ,
1

n − 2︸              ︷︷              ︸
n−2

, 0, 0
)
≺ · · ·

≺

(1
3
,

1
3
,

1
3
, 0, . . . , 0

)
≺

(1
2
,

1
2
, 0, . . . , 0

)
≺ (1, 0, . . . , 0).

For more information on the theory of majorization and its applications, please refer to monographs [6, 11]
and closely related references therein.

In this paper, by virtue of the Cauchy integral formula in the theory of complex functions, we establish an
integral representation for the generating function 1

1+
√

1−4x
of the Catalan numbers Cn. From this, we derive

an alternative integral representation, complete monotonicity, determinantal and product inequalities for
the Catalan numbers Cn for n ≥ 0 and the sequences

{
Cn
4n

}
n≥0

and {n!Cn}n≥0.
Our main results in this paper can be stated as the following theorems.

Theorem 1.3. For x ∈
(
−∞, 1

4

]
, we have

1

1 +
√

1 − 4x
=

1
2π

∫
∞

0

√
t

(t + 1/4)(t − x + 1/4)
d t. (1.8)

Consequently, the Catalan numbers Cn for n ≥ 0 can be represented by

Cn =
1
π

∫
∞

0

√
t

(t + 1/4)n+2 d t =
2
π

∫
∞

0

t2

(t2 + 1/4)n+2 d t (1.9)

and the sequence
{

Cn
4n

}
n≥0

is completely monotonic and minimal.

Theorem 1.4. If m ≥ 1 and a0, a1, . . . , am are non-negative integers, then(Ca0

4a0

)m−1 C∑m
k=0

ak

4
∑m

k=0 ak
≥

m∏
k=1

Ca0+ak

4a0+ak
(1.10)

and ∣∣∣∣∣Cai+a j

4ai+a j

∣∣∣∣∣
m
≥ 0, (1.11)

where |ekj|m denotes a determinant of order m with elements ekj.

Theorem 1.5. Let m ∈ N and let n and ak for 1 ≤ k ≤ m be non-negative integers. Then the Catalan numbers Cn
satisfy∣∣∣(−1)ai+a jCn+ai+a j

∣∣∣
m ≥ 0 (1.12)

and ∣∣∣Cn+ai+a j

∣∣∣
m ≥ 0, (1.13)

where

C` = `!C`, ` ≥ 0. (1.14)
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Theorem 1.6. Let m ∈N and let λ and µ be two m-tuples of non-negative integers such that λ � µ. Then∣∣∣∣∣∣ m∏
i=1

Cn+λi

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ m∏

i=1

Cn+µi

∣∣∣∣∣∣, (1.15)

where C` is defined by (1.14). Consequently,
1. the infinite sequence {Cn}n≥0 is logarithmically convex,
2. the inequality

C
n
`+k ≤ C

k
`+nC

n−k
` (1.16)

is valid for ` ≥ 0 and n > k > 0.

Theorem 1.7. If ` ≥ 0, n ≥ k ≥ m, k ≥ n − k, and m ≥ n −m, then

C`+kC`+n−k

C`+mC`+n−m
≥

(` + m)!(` + n −m)!
(` + k)!(` + n − k)!

. (1.17)

For n,m ∈N and ` ≥ 0, let

Gn,m,` = C`+n+2m(C`)2
− C`+n+mC`+mC` − C`+nC`+2mC` + C`+n(C`+m)2,

Hn,m,` = C`+n+2m(C`)2
− 2C`+n+mC`+mC` + C`+n(C`+m)2,

In,m,` = C`+n+2m(C`)2
− 2C`+nC`+2mC` + C`+n(C`+m)2,

where C` is defined by (1.14). Then

Gn,m,` ≥ 0, Hn,m,` ≥ 0, (1.18)
Hn,m,` Q Gn,m,` when m ≶ n, (1.19)

and

In,m,` ≥ Gn,m,` ≥ 0 when n ≥ m. (1.20)

2. Proofs of Theorems 1.3 to 1.7

We are now in a position to prove Theorems 1.3 to 1.7.

Proof. [Proof of Theorem 1.3] As usual, we use ln x for the logarithmic function having base e and applied
to the positive argument x > 0. Further, the principal branch of the holomorphic extension of ln x from the
open half-line (0,∞) to the cut plane C \ (−∞, 0] is denoted by ln z = ln |z| + i arg z, where i =

√
−1 is the

imaginary unit and the principal value arg z of the argument of z satisfies | arg z| < π.
Let

f (z) =
2

1 + exp ln(1−4z)
2

, z ∈ C \
[1
4
,∞

)
, arg

(
z −

1
4

)
∈ (0, 2π)

and

F(z) =
2

1 + exp ln(−4z)
2

, z ∈ C \ [0,∞), arg z ∈ (0, 2π).

By virtue of the Cauchy integral formula in the theory of complex functions, for any fixed point
z0 = x0 + iy0 ∈ C \ [0,∞), we have

F(z0) =
1

2πi

∫
L

F(ξ)
ξ − z0

d ξ,

where L is a positively oriented contour L(r,R) in C \ [0,∞), such that
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1.

0 < r < |y0| ≤ |z0| < R, y0 , 0,
0 < r < −x0 = |z0| < r, y0 = 0,

2. L(r,R) consists of the half circle z = reiθ for θ ∈
[
π
2 ,

3π
2

]
,

3. L(r,R) consists of the half lines z = x ± ir for x > 0,
4. L(r,R) consists of the circle |z| = R,
5. the half lines z = x± ir for x ≥ 0 cut the circle |z| = R at the points R(r)± ir and 0 < R(r) =

√

R2 − r2 → R
as r→ 0.

Then the integral on the circle with radius R equals∫ 2π−arcsin(r/R)

arcsin(r/R)

2Rieiθ(
Reiθ − z0

)[
1 + exp ln(−4Reiθ)

2

] dθ = 2i
∫ 2π−arcsin(r/R)

arcsin(r/R)

1(
1 − z0

Reiθ

)[
1 + exp ln(4R)+i arg(−4Reiθ)

2

] dθ

which tends uniformly to 0 as R→∞.
Further, the integral on the half circle z = reiθ for θ ∈

[
π
2 ,

3π
2

]
is

−
1

2πi

∫ 3π/2

π/2

2rieiθ(
reiθ − z0

)[
1 + exp ln(−4reiθ)

2

] dθ = −
1
π

∫ 3π/2

π/2

1(
1 − z0

reiθ

)[
1 + 2

√
r exp i arg(−4reiθ)

2

] dθ

which tends uniformly to 0 as r→ 0+.
Continuously, because

F(x + ir) =
2

1 + exp ln(−4x−4ri)
2

=
2
(
1 + 2

4√

x2 + r2 sin arctan(r/x)
2

)
+ i4

4√

x2 + r2 cos arctan(r/x)
2[

1 + 2
4√

x2 + r2 sin arctan(r/x)
2

]2
+

[
2

4√

x2 + r2 cos arctan(r/x)
2

]2 →
2 + i4

√
x

1 + 4x

as r→ 0+, the integral on the half lines z = x ± ir for x > 0 is equal to∫ R(r)

0

F(x + ir)
x + ir − z0

d x +

∫ 0

R(r)

F(x − ir)
x − ir − z0

d x =

∫ R(r)

0

(x − z0)[2i=(F(x + ir))] − ir[2<(F(x + ir))]
(x + ir − z0)(x − ir − z0)

d x

→

∫
∞

0

2i
x − z0

4
√

x
1 + 4x

d x = 8i
∫
∞

0

√
x

(1 + 4x)(x − z0)
d x

as r→ 0+ and R→∞. Consequently, it follows that

2

1 + exp ln(−4z0)
2

=
4
π

∫
∞

0

√
x

(1 + 4x)(x − z0)
d x (2.1)

for z0 ∈ C \ [0,∞) and arg z0 ∈ (0, 2π).
Furthermore, since F(z) = f (z + 1

4 ) and the point z0 in (2.1) is arbitrary, making use of (2.1) arrives at

2

1 + exp ln(1−4z)
2

=
4
π

∫
∞

0

√
x

(1 + 4x)(x − z + 1/4)
d x (2.2)

for z ∈ C \
[

1
4 ,∞

)
and arg

(
z − 1

4

)
∈ (0, 2π). In particular, when taking z = x ∈

(
−∞, 1

4

)
, the formula (2.2)

becomes the integral representation (1.8) on
(
−∞, 1

4

)
. When taking x→

(
1
4

)−
, the integral in the right hand

side of (1.8) converges, consequently, the integral representation (1.8) holds on
(
−∞, 1

4

]
.

Differentiating n ≥ 0 times with respect to x on both sides of (1.8) and taking the limit x→ 0 yield
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lim
x→0

dn

d xn

( 1

1 +
√

1 − 4x

)
=

1
2π

lim
x→0

∫
∞

0

n!
√

t
(t + 1/4)(t − x + 1/4)n+1 d t

=
n!
2π

∫
∞

0

√
t

(t + 1/4)(t + 1/4)n+1 d t =
n!
2π

∫
∞

0

√
t

(t + 1/4)n+2 d t =
n!
π

∫
∞

0

s2

(s2 + 1/4)n+2 d s. (2.3)

As a result, by virtue of (1.1), the integral representations in (1.9) follow.
We can rewrite the first integral representation in (1.9) as

Cn

4n+2 =
1
π

∫
∞

0

√
t

(1 + 4t)n+2 d t, n ≥ 0.

It is easy to see that the function ax for 0 < a < 1 is completely monotonic in x ∈ [0,∞). Hence, the function
1

(1+4t)x+2 for any fixed t > 0 is completely monotonic in x ∈ [0,∞). Equivalently, the function Cx
4x is completely

monotonic in x ∈ [0,∞). Theorem 14b in [53, p. 164] states that “a necessary and sufficient condition that
there should exist a function f (x) completely monotonic in 0 ≤ x < ∞ such that f (n) = an for n ≥ 0 is
that {an}

∞

0 should be a minimal completely monotonic sequence”. As a result, the sequence Cn
4n for n ≥ 0 is

minimal completely monotonic. The proof of Theorem 1.3 is complete.

Proof. [Proof of Theorem 1.4] In [12] and [14, pp. 369 and 374], it was obtained that if f is completely
monotonic on [0,∞) and m ≥ 1, then

[ f (x0)]m−1 f
( m∑

k=0

xk

)
≥

m∏
k=1

f (x0 + xk) (2.4)

and

| f (xi + x j)|m ≥ 0. (2.5)

Now we consider the function

h(x, s) =
16
π

∫
∞

0

√
t

(1 + 4t)(4x + 4t + 1)s+1 d t, x, s ≥ 0.

It is easy to see that the function h(x, s) for any fixed x > 0 is completely monotonic in s ∈ [0,∞). By virtue
of (2.3), we obtain

lim
x→0+
h(x, ai) =

Cai

4ai
,

where ai for i ≥ 0 are non-negative integers. Replacing the function f and non-negative numbers
x0, x1, . . . , xm in (2.4) and (2.5) by the function h(x, s) and non-negative integers a0, a1, . . . , am respectively
yields

[h(x, a0)]m−1h

(
x,

m∑
k=0

ak

)
≥

m∏
k=1

h(x, a0 + ak) (2.6)

and

|h(x, ai + a j)|m ≥ 0. (2.7)

Therefore, taking x→ 0+ in (2.6) and (2.7) leads to (1.10) and (1.11). The proof of Theorem 1.4 is complete.
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Proof. [Proof of Theorem 1.5] From (2.3), we observe that Cn = limx→0 hn(x), where

hn(x) =
4
π

∫
∞

0

√
t

(1 + 4t)(t − x + 1/4)n+1 d t

and hn(x) is absolutely monotonic on
(
−∞, 1

4

)
. This means that the function

Hn(x) = hn(−x) =
4
π

∫
∞

0

√
t

(1 + 4t)(x + t + 1/4)n+1 d t (2.8)

is completely monotonic on
(
−

1
4 ,∞

)
⊃ [0,∞) and that Cn = limx→0 Hn(x). A direct computation gives

H(k)
n (x) = (−1)k (n + k)!

n!
Hn+k(x)→ (−1)k (n + k)!

n!
Cn+k = (−1)kCn+k

n!
(2.9)

for k ≥ 0 as x→ 0. From either [13] or [14, p. 367], we know that if f is a completely monotonic function on
[0,∞), then∣∣∣ f (ai+a j)(x)

∣∣∣
m ≥ 0 (2.10)

and ∣∣∣(−1)ai+a j f (ai+a j)(x)
∣∣∣
m ≥ 0. (2.11)

Applying f in (2.10) and (2.11) to the function Hn(x), we arrive at∣∣∣H(ai+a j)
n (x)

∣∣∣
m ≥ 0 (2.12)

and ∣∣∣(−1)ai+a j H(ai+a j)
n (x)

∣∣∣
m ≥ 0. (2.13)

Letting x→ 0 in (2.12) and (2.13) and making use of (2.9) arrive at∣∣∣∣∣(−1)ai+a j
Cn+ai+a j

n!

∣∣∣∣∣
m
≥ 0 (2.14)

and ∣∣∣∣∣Cn+ai+a j

n!

∣∣∣∣∣
m
≥ 0. (2.15)

Further simplifications of (2.14) and (2.15) lead us to (1.12) and (1.13). The proof of Theorem 1.5 is
complete.

Proof. [Proof of Theorem 1.6] In [14, p. 367, Theorem 2] and [50, p. 106, Theorem A], which are a minor
correction of [3, Theorem 1], it was obtained that if f is a completely monotonic function on (0,∞) and
λ � µ, then∣∣∣∣∣∣ n∏

i=1

f (λi)(x)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ n∏

i=1

f (µi)(x)

∣∣∣∣∣∣. (2.16)

The equality in (2.16) is valid only when λ and µ are identical or when f (x) = e−cx for c ≥ 0. An application
of the inequality (2.16) to Hn(x) defined in (2.8) leaves us∣∣∣∣∣∣ m∏

i=1

H(λi)
n (x)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ m∏

i=1

H(µi)
n (x)

∣∣∣∣∣∣.
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Taking the limit x→ 0 on both sides of the above inequality and making use of (2.9) reveal∣∣∣∣∣∣ m∏
i=1

(−1)λi
Cn+λi

n!

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ m∏

i=1

(−1)µi
Cn+µi

n!

∣∣∣∣∣∣
which is equivalent to (1.15).

From the majorization relation (i + 2, i) � (i + 1, i + 1) for i ≥ 0 and the inequality (1.15), the logarithmic
convexity of the sequence {Cn}n≥0 follows immediately.

In [14, p. 369] and [16, p. 429, Remark], it was formulated that if f (t) is a completely monotonic function
such that f (k)(t) , 0 for k ≥ 0, then the sequence

si(t) = ln
[
(−1)i−1 f (i−1)(t)

]
, i ≥ 1

is convex. Applying this result to the function Hn(x) and making use of (2.9) figures out that the sequence

ln
[
(−1)i−1H(i−1)

n (x)
]
→ ln

Cn+i−1

n!
, x→ 0

for i ≥ 1 is convex. Hence, the sequence {Cn}n≥0 is logarithmically convex.
As in [3], we consider the majorization relation

(k, k, . . . , k︸    ︷︷    ︸
n

) ≺ (n, . . . ,n︸  ︷︷  ︸
k

, 0, . . . , 0︸  ︷︷  ︸
n−k

)

for n > k, so that the inequality (2.16) becomes

(−1)nk
[

f (k)(x)
]n
≤ (−1)nk

[
f (n)(x)

]k
[ f (x)]n−k, n > k > 0.

Substituting H`(x) for f (x) in the above inequality, letting t→ 0, and utilizing (2.9), we obtain

(−1)nk
[
H(k)
` (x)

]n
≤ (−1)nk

[
H(n)
` (x)

]k
[H`(x)]n−k

which is equivalent to

(−1)nk
[
(−1)kC`+k

`!

]n

≤ (−1)nk
[
(−1)nC`+n

`!

]k

(C`)n−k

for n > k > 0 and ` ≥ 0. This may be simplified as (1.16). The proof of Theorem 1.6 is complete.

Proof. [Proof of Theorem 1.7] In [49, p. 397, Theorem D], it was revealed that if f (x) is completely monotonic
on (0,∞) and if n ≥ k ≥ m, k ≥ n − k, and m ≥ n −m, then

(−1)n f (k)(x) f (n−k)(x) ≥ (−1)n f (m)(x) f (n−m)(x).

Replacing f (x) by the function H`(x) defined by (2.8) in the above inequality, we are led to

(−1)nH(k)
` (x)H(n−k)

` (x) ≥ (−1)nH(m)
` (x)H(n−m)

` (x).

Further taking x→ 0 and employing (2.9) find

(−1)n(−1)kC`+k

`!
(−1)n−kC`+n−k

`!
≥ (−1)n(−1)mC`+m

`!
(−1)n−mC`+n−m

`!
.

Simplifying this inequality, we are led to (1.17).



F. Qi et al. / Filomat 32:2 (2018), 575–587 584

In [50, Theorem 1 and Remark 2], it was obtained that if f is completely monotonic on (0,∞) and

Gn,m = (−1)n
{

f (n+2m) f 2
− f (n+m) f (m) f − f (n) f (2m) f + f (n)

[
f (m)

]2}
,

Hn,m = (−1)n
{

f (n+2m) f 2
− 2 f (n+m) f (m) f + f (n)

[
f (m)

]2}
,

In,m = (−1)n
{

f (n+2m) f 2
− 2 f (n) f (2m) f + f (n)

[
f (m)

]2}
for n,m ∈N, then Gn,m ≥ 0, Hn,m ≥ 0, and

Hn,m Q Gn,m when m ≶ n,
In,m ≥ Gn,m ≥ 0 when n ≥ m.

Replacing f (x) by H`(x) in Gn,m, Hn,m, and In,m, taking x→ 0, and employing (2.9) produce

Gn,m = (−1)n
{
H(n+2m)
` H2

` −H(n+m)
` H(m)

` H` −H(n)
` H(2m)

` H` + H(n)
`

[
H(m)
`

]2}
=

1
(`!)3

[
C`+n+2m(C`)2

− C`+n+mC`+mC` − C`+nC`+2mC` + C`+n(C`+m)2
]

=
Gn,m,`

(`!)3 ,

Hn,m = (−1)n
{
H(n+2m)
` H2

` − 2H(n+m)
` H(m)

` H` + H(n)
`

[
H(m)
`

]2}
=
Hn,m,`

(`!)3 ,

In,m = (−1)n
{
H(n+2m)
` H2

` − 2H(n)
` H(2m)

` H` + H(n)
`

[
H(m)
`

]2}
=
In,m,`

(`!)3 .

Accordingly, the inequalities in (1.18), (1.19), and (1.20) are proved. The proof of Theorem 1.7 is complete.

3. Remarks

Remark 3.1. The integral representation (1.8) can be rearranged as

1

1 +
√

1 + 4x
=

1
2π

∫
∞

0

√
t

(t + 1/4)(x + t + 1/4)
d t

for x ∈
[
−

1
4 ,∞

)
. This means that

1
1 + 2

√
x

=
2
π

∫
∞

0

√
t

(4t + 1)(x + t)
d t (3.1)

for x ∈ [0,∞). In [46, p. 16, Definition 2.1], a (non-negative) Stieltjes function is defined as a function
f : (0,∞)→ [0,∞) which can be written in the form

f (λ) =
a
λ

+ b +

∫
(0,∞)

1
λ + t

σ(d t),

where a, b ≥ 0 are non-negative constants and σ is a measure on (0,∞) such that
∫

(0,∞)
1

1+tσ(d t) < ∞.

Therefore, the function 1
1+2
√

x
is a positive Stieltjes function with a = b = 0 and the measure

σ(d t) =
2
π

√
t

4t + 1
d t.

In [46, p. 21, Definition 3.1], a Bernstein function f is defined as a function f : (0,∞) → R which is of
class C∞, f (λ) ≥ 0 for all λ > 0, and (−1)n−1 f (n)(λ) ≥ 0 for all n ∈ N and λ > 0. Theorem 3.2 in [46, p. 21]
states that a function f : (0,∞)→ R is a Bernstein function if and only if it admits the presentation

f (λ) = a + bλ +

∫
(0,∞)

(
1 − e−λt

)
µ(d t), (3.2)
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where a, b ≥ 0 and µ is a measure on (0,∞) satisfying
∫

(0,∞) min{1, t}µ(d t) < ∞. In [46, p. 69, Definition 6.1],
it is defined that, if the measure µ in (3.2) has a completely monotonic density m(t) with respect to Lebesgue
measure, that is,

f (λ) = a + bλ +

∫
(0,∞)

(
1 − e−λt

)
m(t) d t,

then f is said to be a complete Bernstein function. In [46, p. 93, Theorem 7.3], it is stated that a (non-trivial)
function f is a complete Bernstein function if and only if 1

f is a (non-trivial) Stieltjes function. Hence, the
function 1 + 2

√
x is a complete Bernstein function and has the integral representation

1 + 2
√

x = 1 +
1
√
π

∫
(0,∞)

(
1 − e−xt

) 1
t3/2

d t.

Remark 3.2. The anonymous referee points out that the integral representation (3.1) can be derived from the
formulas

1
1 + 2

√
s

=
1
2

∫
∞

0

[ 1
√
πt
−

et/4

2
erfc

( √t
2

)]
e−st d t and

1
1 + 2

√
s

=
2
π

∫
∞

0

√
u

1 + 4u
d u

s + u

in [18, p. 11, Eq. 1; p. 43, Eq. 22; and p. 152, Eq. 12].
In the papers [27, 30], new conclusions and integral representations of the Catalan numbers Cn were

reviewed and surveyed.

Remark 3.3. It is clear that the integral representation (1.9) is simpler and more significant than (1.3) for Cn.
For more information, please read [2, 25] and closely-related references therein.

Remark 3.4. In the proof of [19, Theorem 4.1], the inequality (4.11) should be
∣∣∣ cn+ai+aj

n!

∣∣∣
m ≥ 0. Consequently,

the inequality (4.2) in [19, p. 248, Theorem 4.1] should be corrected as |cn+ai+a j |m ≥ 0.

Remark 3.5. In recent years, the first author of this paper and his coauthors established integral represen-
tations, complete monotonicity, inequalities, closed expressions for the Lah numbers, tangent numbers,
Bernoulli numbers of the first and second kinds, Stirling numbers of the first and second kind, Bernoulli
polynomials, Euler numbers and polynomials. For detailed information, please refer to [5, 22–24, 28, 45, 52]
and closely related references therein.

Remark 3.6. This paper is a companion of the formally published papers [9, 10, 26, 31, 32, 39, 41–43, 47] and
closely related references therein. This paper is a revised version of the preprint [40].

Acknowledgements
The authors thank the anonymous referees and the editor for their very careful corrections to and very

valuable comments on the original version of this paper.

References

[1] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, Revised and Enlarged Edition, D. Reidel Publishing
Co., Dordrecht and Boston, 1974.

[2] T. Dana-Picard, Parametric integrals and Catalan numbers, Internat. J. Math. Ed. Sci. Tech. 36 (2005), no. 4, 410–414; Available online
at https://doi.org/10.1080/00207390412331321603.

[3] A. M. Fink, Kolmogorov-Landau inequalities for monotone functions, J. Math. Anal. Appl. 90 (1982), 251–258; Available online at
https://doi.org/10.1016/0022-247X(82)90057-9.

[4] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics—A Foundation for Computer Science, 2nd ed., Addison-Wesley
Publishing Company, Reading, MA, 1994.

[5] B.-N. Guo and F. Qi, Some integral representations and properties of Lah numbers, J. Algebra Number Theory Acad. 4 (2014), no. 3,
77–87.
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