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Abstract

Wireless and portable devices depend on the limited
power supplied by the battery. Dynamic Voltage Scaling
(DVS) is an effective method to reduce CPU power con-
sumption. For real-time systems, DVS algorithms must not
only provide enough CPU cycles, but also guarantee that
no job misses its deadline. In this paper, we propose an in-
tegrated approach for applying DVS to real-time systems.
We define two functions, the available cycle function (ACF)
and the required cycle function (RCF), to capture the CPU
workload of the real-time tasks. We then formulate the DVS
scheduling problem for real-time systems as a nonlinear op-
timization problem and propose an optimal off-line algo-
rithm to solve this problem. We also propose a novel on-
line algorithm with time complexity O(1) to further reduce
power consumption when a job uses fewer execution cycles
than the worst-case budget. The algorithms in this paper
are based solely on ACF and RCF, and may be applied to
different scheduling policies. We illustrate the generality
of our approach over previous research by applying our
method to EDF and RM scheduling policies and deriving
the optimal off-line DVS algorithms for them. Our simu-
lation results show significant improvement over previous
work.

1 Introduction

Many wireless and portable devices depend on the lim-
ited power supplied by the battery. Dynamic voltage scaling
(DVS) is an effective method to increase battery life by re-
ducing the power consumption of a processor. Specifically,
DVS reduces the energy consumption of a CMOS processor
by dynamically controlling its supply voltage. The power
consumed per CPU cycle can be expressed as P = kCV 2f ,
where k is a constant, C the total capacitance of wires and
transistor gates, V the supply voltage, and f the clock fre-
quency. DVS technology has already been incorporated into
many processors produced by companies including Trans-

meta, AMD, and Intel.

Changing a processor’s supply voltage also changes its
speed, since the relationship between clock frequency and
supply voltage is f ∝ (V − Vt)2/V , where Vt is the
threshold voltage. As a result, DVS may hurt the perfor-
mance of some systems in a significant way, in particu-
lar, real-time systems where some deadlines are hard. In
past work, many algorithms have been proposed to apply
DVS to general purpose and soft real-time systems only,
e.g., [22, 4, 17, 7, 16, 19].

Applying DVS to hard real-time systems is more diffi-
cult. When a DVS algorithm reduces CPU speed to save
energy, it must guarantee that all jobs still meet their dead-
lines. In the past few years, a large number of algorithms are
proposed, e.g., [23, 8, 9, 10, 21, 1, 11, 5, 6, 18, 19, 25, 12,
20, 24]. Although these algorithms have demonstrated the
benefits of applying DVS to hard real-time systems, they
generally only apply to some specific real-time scheduler.
There has not been any algorithm designed to work with
different real-time schedulers.

The objective of this paper is to propose an integrated
approach for applying DVS to hard real-time systems. Us-
ing this approach, we derive unified algorithms that work
with different real-time schedulers. We illustrate the gener-
ality of the approach by applying it to RM and EDF sched-
ulers; we shall derive the optimal off-line DVS algorithms
for these real-time scheduling policies.

Specifically, we shall propose the definition of two func-
tions: the available cycle function (ACF) and the required
cycle function (RCF). The values of these two functions are
derived from the parameters of the task set and the schedul-
ing policy used to dispatch the tasks of the system. These
functions help us to capture the workload of a real-time sys-
tem by characterizing an envelope: they constrain the range
of a speed function so that if the CPU executes at the speed
defined by the function, then there is no idle cycle and no
job misses its deadline.

Using ACF and RCF, we formulate the energy minimiza-
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tion problem as a constrained nonlinear optimization prob-
lem. We prove that for strictly convex power functions,
which are the case for all known power models, we can
simplify the formulation of the problem. We propose an
algorithm to solve the problem and to derive the optimal
speed function that minimizes energy consumption. The al-
gorithm is shown to work with both EDF and RM.

Since the static algorithm is based on the worst-case bud-
get, we also propose a novel, online, dynamic algorithm to
reclaim slack cycles which are generated by early comple-
tion of jobs; by a job, we mean an instance of a recurring
task (periodic or otherwise) in a schedule. The dynamic al-
gorithm lowers CPU speed whenever slack cycles are avail-
able; the new speed will not cause any missed deadline or
extra idle cycles. The time complexity of the algorithm is
O(1). Furthermore, the algorithm may trade runtime cost
for energy savings. It can be improved, with added com-
plexity so that an optimal CPU speed solution is always
found at any time. Again, the dynamic algorithm works
with both EDF and RM.

The rest of this paper is organized as follows. In Sec-
tion 2, we discuss related work. In Section 3, we introduce
the task model and the processor model. In Section 4, we
define the functions to be used. In Section 5, we formulate
the energy minimization problem and present our solution.
In Section 6, we present the online dynamic algorithm. We
present evaluations of our approach in Section 7 and con-
clude in Section 8. According to the space limitation, we
omit the proofs of most lemmas and theorems in the paper.
Interested readers are referred to [15].

2 Related Work

In applying DVS to hard real-time systems, different
scheduling policies and task models have been examined
in past work. Both static and dynamic algorithms have been
proposed to achieve different system goals.

Most previous research has considered the EDF sched-
uler. In [23], Yao et al use the aperiodic task model and
propose an optimal static solution. Extending their result,
Hong et al also consider the effect of speed switching over-
head [10]. The authors of [18, 2] use the periodic task
model. They define the CPU speed in terms of the utiliza-
tion of the task set and show that the speed is optimal in
minimizing energy consumption.

Other previous research has considered the RM sched-
uler. The authors of [5, 18] propose static algorithms for
the RM scheduler. Pillai and Shin [18] use a constant speed
for the whole task set. Gruian [5] uses a constant speed for
each task of the task set. However, the proposed solutions
are not optimal. More importantly, to our knowedge there
has been no previous unified algorithm that can work with
different scheduling policies or different models.

Since the ratio of the worst-case execution time to the

best-case execution time can be as high as 10 in some ap-
plications [3], many researchers have proposed dynamic al-
gorithms to reclaim unused CPU cycles, ı.e., slack cycles.
In [18, 2], the authors propose dynamic algorithms for the
EDF scheduler. In [21, 5, 18], the authors propose dynamic
algorithms for the RM scheduler. These algorithms collect
the slack cycles at runtime whenever a job finishes early
and reclaim the unused cycles by reducing the CPU speed.
However, the reduction of the CPU speed is under differ-
ent constraints. In [18], for EDF, the speed is reduced until
the arrival of the next job belonging to the same task; for
RM, the speed is reduced until the next deadline. In [21],
the speed is reduced when only one job is ready to execute.
In [5], the speed is reduced depending on the job’s priority.
In [2], the speed is reduced when the dynamic completion
time of a job is no later than its completion time in the static
schedule.

While most research focuses on energy optimization,
the authors of [12, 20] consider the optimization of sys-
tem performance or system value under energy consump-
tion constraints. There has also been other research pertain-
ing to different system configurations. For example, DVS
for multi-processors is discussed in [11, 25]. DVS for non-
preemptible tasks is discussed in [8]. DVS for sporadic
tasks is discussed in [9]. DVS for tasks with different power
consumption characteristics is discussed in [1]. DVS for
tasks with precedence constraints is discussed in [6], and
DVS for tasks with non-preemptible sections is discussed
in [24].

3 System Model

3.1 Task Model
We shall use the well known Liu and Layland peri-

odic task model [14] to demonstrate our approach. Let
T = {T1, T2, ..., Tn} denote a task set. The tasks are
periodic, preemptible, and mutually independent. Each
task Ti is defined by a pair, (pi, ci), where pi is the pe-
riod, and ci the worst-case workload measured in CPU
cycles. As an example, the first task in the task set
{T1(4, 2), T2(5, 1), T3(10, 1)} has period 4, relative dead-
line 4 and workload 2. We assume that all tasks start at time
0. We use J(i, k) to denote the k-th job of a task Ti; its
available time is pi ∗ (k − 1) and its deadline is pi ∗ k.

We define the hyper period H to be the smallest interval
from time 0 in the periodic schedule after which the sched-
ule repeats itself. For our task model,H is the least common
multiplier (LCM) of all the task periods in the task set.

We want to point out that the results in this paper can
be easily extended to the cases where tasks have preperiod
deadlines, i.e., a task may have a relative deadline that is
smaller than its period and where tasks may have start times
other than the beginning of their periods. We choose the
simpler task model for ease of discussion.
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3.2 Processor Model
We assume the processor can change its voltage con-

tinuously. In other words, a processor can operate at any
normalized speed from 0 to 1. When the speed is 0, the
processor is in shutdown mode. We shall ignore the speed
switching overhead which in general is small [18].

From the Introduction section, we note that P , the power
consumed per CPU cycle is proportional to V 2f , and f is
proportional to (V −Vt)2/V , where V is the supply voltage,
f the frequency, and Vt the voltage threshold. The exact
definition of P depends on the specific hardware. We shall
not assume any fixed form for P , except that it is a strictly
convex function of the frequency. We use P (S) to denote
that P is a function of speed S.

In this paper, only real-time tasks are considered. CPU
cycle not assigned to a task is considered to be wasted and
should be avoided to save energy.

4 Functions Definition

In this section, we shall define three functions: Speed
Function S(t), Available Cycle Function ACF (t), and Re-
quired Cycle Function RCF (t). These functions are the
building blocks of our approach.

4.1 Speed Function

Definition 1 The speed function S(t) is the CPU speed, in
cycles per time unit, at time t.

Using our processor model, we have 0 ≤ S(t) ≤ 1.
The cycles supplied by a processor during a time period

(t1, t2] is
∫ t2

t1
S(t)dt. In Figure 1(a), we show several speed

functions. The x-axis shows time; the y-axis shows CPU
cycles. The curve shows the cycles supplied by the speed
function up to time t, i.e.,

∫ t

0
S(x)dx. We can see that S(t)

during a period (t1, t2] is a constant iff
∫ t

0
S(x)dx, where

t1 ≤ t ≤ t2, is a straight line from coordinate (t1,
∫ t1
0
S(x))

to coordinate (t2,
∫ t2
0
S(x)dx).

The energy consumed by a speed function S(t) during a
time period (t1, t2] is E(t1, t2, S) =

∫ t2
t1
P (S(t))dt.

The optimization objective of applying DVS to a real-
time system is to derive a speed function that minimizes
the energy consumption and guarantees no missed deadline.
For our task model, since a schedule repeats itself every hy-
per period, we only need to derive a speed function S(t) for
the hyper period (0, H ] that minimizes E(S) = E(0, H, S)
and guarantees no missed deadline. We now specify the
constraints on such a speed function.

4.2 ACF and RCF

Definition 2 The available cycle function ACF (t) is de-
fined as the upper bound of cycles available for execution
up to time t.

Given a periodic task set T = {Ti : 1 ≤ i ≤ n},
ACF (t) =

∑n
i=1(� t

pi
�∗ci). The function depends only on

the task set and is independent of the scheduler. Consider a
task set {T1(4, 2), T2(5, 1), T3(10, 1)}. The available cycle
function ACF (t) for this task set is shown in Figure 1(b).

In [14], the same function is used to analyze RM schedu-
lability. We use this function here differently.

Lemma 1 If a speed function S optimizes energy consump-
tion, then

∫ t

0 S(x)dx ≤ ACF (t) for all time t.

Proof. Suppose
∫ t

0
S(x)dx > ACF (t) at a time t. This

implies that the CPU must idle at some time. We can set
the speed to 0 when the CPU idles and get a new speed
function that provides the same cycles to the tasks. This
new speed function consumes less energy because when the
CPU idles, it operates at a speed bigger than 0 but does
nothing useful. Thus, if S optimizes energy consumption,
we have

∫ t

0
S(x)dx ≤ ACF (t) for all time t. �

Definition 3 The basic required cycle function BRCF (t)
is the minimal number of cycles that must be executed up to
time t.

If less than BRCF (t) cycles are executed up to time
t, some job misses its deadline. Given a periodic task set
T = {Ti : 1 ≤ i ≤ n}, BRCF (t) =

∑n
t=1(� t

pi
� ∗ ci).

This function depends only on the task set and is indepen-
dent of the scheduler. Consider the previous task set exam-
ple {T1(4, 2), T2(5, 1), T3(10, 1)}. Figure 1(b) also shows
BRCF (t) for it.

Definition 4 Given a scheduler, the required cycle function
RCF (t) defines the CPU cycles that need to be supplied to
the tasks up to time t so that no job misses its deadline.

If a task set is schedulable, ACF (t), or any function
f(t) ≥ ACF (t), can be a RCF (t) for any scheduler.
However, if RCF (t′) > ACF (t′) at some time t′, we
can always set RCF (t′) = ACF (t′) without affecting the
schedulability. Thus, we assume RCF (t) ≤ ACF (t). We
also assume, without loss of generality, that RCF (t) is a
non-decreasing step function.

Different from BRCF (t), RCF (t) depends on both the
task set and the scheduler. Since a scheduler specifies the
execution order of the jobs, it is obvious that RCF (t) ≥
BRCF (t). We want to define RCF (t) as small as possible
while keeping BRCF (t) as the lower bound.

Consider the EDF scheduler specifically. We have the
following lemma.

Lemma 2 ( [15]) BRCF (t) is a RCF (t) for EDF.

In general, it is not obvious how to define a good
RCF (t) for general scheduling policies. However, if a task
set is schedulable with the full speed S = 1, we can al-
ways define a RCF (t) so that at least one speed function
constrained by it can be found. For example, we can run
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Figure 1. (a) Speed Functions; (b) ACF, BRCF and RCFRM for the task set example.

the task set using any scheduling policy over the hyper pe-
riod at full speed. Let us call this scheduleC. We can define
RCF (t) to be a step function that can increase at each dead-
line. The value at each deadline is the total cycles scheduled
in C before the point. We can prove [15] that RCF (t) de-
fined in this way is a valid required cycle function. We also
have a speed function S1. At time t, if the CPU is busy
in C, S1(t) = 1; otherwise S1(t) = 0. This speed func-
tion is constrained by ACF (t) and RCF (t); the task set is
schedulable with it.

Consider RM specifically. We shall discuss our method
of definingRCFRM later. The method applies to any fixed-
priority scheduler in a preemptive system. TheRCFRM for
the task set example is shown in Figure 1(b).

Definition 5 Given a scheduler, a valid speed function is a
speed function 0 ≤ S(t) ≤ 1 that guarantees no missed
deadline.

Lemma 3 A speed function 0 ≤ S(t) ≤ 1 that satisfies
ACF (t) ≥ ∫ t

0 S(x)dx ≥ RCF (t) at all time t is a valid
speed function.

The lemma follows directly from the definitions ofACF
and RCF . In the following, we shall use the term RCF
constraint to refer to the constraint that is

∫ t

0 S(x)dx ≥
RCF (t). We use the term ACF constraint in a similar way.

By defining ACF and RCF, we capture the workload re-
quirement of a task set under a scheduling policy. A speed
function satisfying both the ACF and RCF constraints guar-
antees that no job misses its deadline and there is no idle
cycle. Such a speed function is a good candidate for mini-
mizing energy consumption in a real-time system.

4.3 Properties
Below is a summary of the properties of the defined func-

tions.

1. 0 ≤ S(t) ≤ 1 for 0 ≤ t ≤ H .

2. ACF (t), BRCF (t), and RCF (t) are non-decreasing
step functions of time t. A step point of ACF is at the
available time of each job; a step point of BRCF is at
the deadline of each job.

3. ACF (t) ≥ RCF (t) ≥ BRCF (t) for 0 ≤ t ≤ H .

4. ACF (H) = RCF (H) = BRCF (H).

5. At most ACF (t) cycles can be executed up to time
t. If

∫ t

0
S(x)dx > ACF (t), there are

∫ t

0
S(x)dx −

ACF (t) idle cycles.
6. At least BRCF (t) cycles should be executed up to

time t. If
∫ t

0 S(x)dx < BRCF (t), there are missed
deadlines.

7. If ACF (t) ≥ ∫ t

0 S(x)dx ≥ RCF (t) at all time t, no
job misses its deadline.

8. If ACF (t) = RCF (t) during a time period (t1, t2],
then S(t) = 0 during the period.

In the next section, we shall propose an algorithm to
find the static speed function that minimizes energy con-
sumption of a hyper period. Since the definition of ACF
and RCF separates the real-time scheduling issue from the
derivation of a DVS speed function, we can apply the algo-
rithm to any scheduling policy. Better energy savings than
previous research or optimal energy savings can be achieved
with appropriate RCF s.

5 An Optimal Static Algorithm

In this section, we formulate the energy minimization
problem as a nonlinear optimization problem and propose
an algorithm to derive the optimal speed function.

5.1 The Energy Optimization Problem
Suppose ACF and RCF are given. The energy op-

timization problem can be formulated as follows, where
0 ≤ t ≤ H :

minimize : E(S) =
∫ H

0
P (S(x))dx

subject to : 0 ≤ S(t) ≤ 1,
RCF (t) ≤ ∫ t

0 S(x)dx ≤ ACF (t).
This is a nonlinear optimization problem. The solution

of the problem is an optimal speed function.

Definition 6 We call a valid speed function that minimizes
energy consumption an optimal speed function.

Since P (S) is a strictly convex function of S, we can
prove the following lemmas.

Lemma 4 ( [15]) The energy consumption E(S) is a
strictly convex function of S.

Lemma 5 ( [15]) The optimal speed function is unique.
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Lemma 6 ( [15]) The optimal speed function is a piece-
wise linear function that changes speed only at the time
when ACF or RCF changes.

By Lemma 6, we know that the optimal speed func-
tion consists of a sequence of constant speed segments that
change at the time points where ACF or RCF increases.
Thus, we simplify our optimization problem as following.

Let a0, ..., am be a sorted sequence of time when ACF or
RCF increases. Let a0 = 0. Let Sj be the constant speed
segment in the period (aj−1, aj ].

minimize : E(S) =
∑m

j=1 P (Sj) ∗ (aj − aj−1)
subject to : 0 ≤ Sj ≤ 1 for 1 ≤ j ≤ m

RCF (ak) ≤ ∑k
j=1 Sj ∗ (aj − aj−1) at deadline ak,

ACF (al) ≥
∑l

j=1 Sj ∗ (aj − aj−1) at avail. time al.

Next, we consider the algorithm listed in Figure 2 for
solving this optimization problem with time complexity
polynomial in m. Consider the 2-dimensional plane whose
axes are time and CPU cycles. The algorithm tries to ex-
tend a straight line as long as possible from coordinate (0, 0)
to (H,AFC(H)) that lies within the region delineated by
ACF and RCF . This line can only touch either the pre-
step point of ACF or the post-step point of RCF . (By
pre-step or post-step point, we refer to the points immedi-
ately before or after a step function changes its value.) Let
the point P = (t, c) be the last RCF point, or ACF point
if no RCF point is on the line. A straight line denoted
a constant speed. This speed is assigned to the time pe-
riod (0, t]. The algorithm then tries to find the next such
straight line starting at point P . This procedure repeats un-
til it reaches (H,AFC(H)) and produces the speed func-
tion from 0 to H . The main function of the algorithm is
called speedFunctionForPeriod which tries to find the
next straight line, ı.e., the next constant speed.

The optimality of the algorithm can be proven by the
following Lemma.

Lemma 7 ( [15]) A valid speed function is an optimal
speed function iff for any time value t1 < t2, the follow-
ing is true: if the speed during the period (t1, t2] is not a
constant, then the constant speed is not constrained by ACF
or RCF.

Theorem 1 ( [15]) Given ACF and RCF, the algorithm
listed in Figure 2 is an optimal algorithm; the speed func-
tion derived from the algorithm is the optimal speed func-
tion.

Next, we use the algorithm to derive the optimal speed
function for two of the most popular schedulers used in a
real-time system, EDF and RM.

5.2 EDF Scheduler
Using our approach, we can verify the result in [18, 2].

1 DVS SpeedSchedule () {
2 startT ime = 0; startV alue = 0;
3 do{
4 speedItem =speedFunctionForPeriod
5 (startT ime, startV alue,H);
6 if speedItem.speed > 1
7 exit (TASK SET NOT SCHEDULABLE);
8 startV alue+ = speedItem.speed∗
9 (speedItem.endT ime− startT ime);

10 startT ime = speedItem.endT ime;
11 } until (speedItem.endT ime == H);
12 }

�Let d be any RCF step point in (startT, endT ] .
�Let a be any ACF step point in (startT, endT ].
�Let b be any ACF step point in (startT, d∗].

13 speedFunctionForPeriod (startT, startV, endT ) {
14 for each d, RCSlope(d) = RCF (d)−startV

d−startT ;

15 for each a, ACSlope(a) = ACF (a)−startV
a−startT ;

16 speedreq = maxRCSlope(d);
17 speedavail = minACSlope(a);
18 if speedavail ≥ speedreq

19 return (speedreq, endT );
20 else { // speedreq cause idle cycles in (startT, endT ]

21 d∗ = max{d : speedreq = RCSlope(d)};
22 speedavail = minACSlope(b);
23 if speedavail ≥ speedreq

24 return (speedreq, d
∗);

25 else { // speedreq cause idle cycles in (startT, d∗]
26 a∗ = max{b : speedavail = ACSlope(b)};
27 RCF (a∗) = ACF (a∗);
28 s=speedFunctionForPeriod (startT, startV, a∗);
29 reset RCF (a∗); return s; }}
30 }

Figure 2. Optimal Algorithm

Theorem 2 ( [15]) For EDF, the optimal speed function is
S(t) = BRCF (H)

H =
∑n

i=1
ci

pi
.

Figure 3 (a) shows the EDF optimal speed function for
the given task set example.

Since BRCF is the lower bound of any RCF , we prove
that EDF is an optimal real-time scheduler with any speed
function, which means that if a task set can be scheduled
with a speed function by any scheduler, it can be scheduled
with the same speed function by EDF.

Theorem 3 ( [15]) EDF is an optimal real-time scheduler
with any speed function.

5.3 RM Scheduler
Consider the RM scheduler. We define RCFRM by

borrowing the idea from scheduling soft aperiodic tasks in
fixed-priority preemptive systems [13].

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03) 
1080-1812/03 $17.00 © 2003 IEEE 



0

2

4

6

8

10

12

14

16

18

0 5 10 15 20

cy
cl

e

time

ACF
BRCF

speed function
0

2

4

6

8

10

12

14

16

18

0 5 10 15 20

cy
cl

e

time

ACF
BRCF

RCF_RM
speed function

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20

cy
cl

e

time

ACF
RCF_RM

static speed function
one step

two steps
three steps

Figure 3. Speed function: (a)EDF static; (b)RM static (c) RM dynamic

First, we follow the method developed by Lehoczky and
Ramos-Thuel [13] to generate a special job schedule. In-
stead of scheduling the soft aperiodic tasks as early as pos-
sible as is in [13], we let the CPU idle as early and as much
as possible and schedule the jobs of the periodic tasks as
late as possible. The details can be found in [15]. Given the
task set {T1(4, 2), T2(5, 1), T3(10, 1)}, Figure 4 shows the
special job schedule generated by using the method.

0 J(1,1) 2 J(2,1)J(1,2) 5 J(2,2)J(3,1) 8 9 J(1,3) 11 J(1,4) 13 J(2,3) 15 J(1,5) 17 J(2,4)J(3,2) 20

time

TASK 1 TASK 2 TASK 3

Figure 4. The special job schedule
Based on this special job schedule, we define RCFRM

to be a step function that can increase at each deadline. The
value at each deadline is the total cycles scheduled in the
job schedule before the deadline. We can see that RCFRM

is a valid required cycle function for the RM scheduler. We
can also prove thatRCFRM defined in this way is the lower
bound of any RCF for RM and the speed function found by
our algorithm is optimal. [15].

Theorem 4 ( [15]) For RM, using the RCFRM defined
above, our algorithm derives the optimal speed function.

Consider our task set example. The derived RCFRM

and the optimal speed function based on it are shown in
Figure 3 (b).

6 Online Reclaim Algorithm

The off-line algorithm is based on the worse-case budget.
At runtime, slack cycles are generated if a job uses less than
the worst-case budget. We can easily adopt our technique
to reclaim slack cycles.

The idea is that, when a job finishes with δ less cycles
compared with the static schedule at time t, this can be in-
terpreted as if

∫ t

0
S(x)dx is increased by δ. Beginning at

time t, we have the same speed optimization problem with
ACF and RCF constraints. In other words, a new optimal
solution can be found at any time during run time. Based
on the off-line speed function, faster algorithms can be used
online. We propose such an algorithm which has time com-
plexity O(1).

First, we need to save some additional information: the
current speed which may be different from the off-line
speed, the accumulated cycles FC up to the curren time
and SC which is the accumulated cycles calculated from the
off-line speed function. The algorithm follows the off-line
speed function and updates the information at each schedul-
ing point; we use scheduling point to refer to any time when
a job becomes available, is completed, or is preempted.

Normally,FC is increased by the CPU cycles supplied at
the current speed. However, when a job finishes earlier, we
increase FC further with the slack cycles δ defined above.
Thus, FC − SC represents the slack cycles at current time
t0. At this point ACF (t0) ≥ FC still holds. If FC > SC,
we reduce CPU speed so that FC will approach SC. Once
FC = SC again, we can follow the off-line speed function
from then on. Since we keep FC ≥ SC all the time and
SC ≥ RFC, no job will miss its deadline as long as we
keep ACF ≥ FC. Note that the online algorithm tries to
find a new speed in the range constrained by ACF and SC.

When defining the new speed, we can look ahead at any
number of future ACF step points to find a new speed. The
more ACF points we check, the smoother the new speed is
and the more energy is saved. If we check all ACF points up
to the end of a hyper period, we have the optimal solution.
This is a trade-off between runtime cost and energy savings.
To keep the runtime cost constant, we look at a fixed number
of ACF points and assign a constant speed to the new speed.

Let t be a decision time. Consider the first ACF step
point (r, ACF (r)) after t. Let speeds be the off-line speed
during (t, r]; speeds is constant. If FC = ACF (r),
the new speed is 0 during (t,r]. If FC < ACF (r),
the new speed during (t, r] can be any speed between
max{0, SC(r)−FC

r−t } and min{speeds,
ACF (r)−FC

r−t }. One
option is to keep the current speed if possible. Another op-
tion is SC(r)−FC

r−t if it is bigger than 0. We can look ahead
at more points in a similar way.

Consider our task set {T1(4, 2), T2(5, 1), T3(10, 1)}.
Suppose J(1, 1) is finished earlier at time 1.5. We have
FC − SC = 2− 0.875 ∗ 1.5 = 11

16 slack cycles at the time.
Figure 3(c) shows the new speed derived by checking one,
two or three future ACF step points. We use the second op-
tion above to define a new speed. We are unable to look at
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more than three points in the example because we cannot
find a constant new speed that causes no extra idle cycles.

To our best knowledge, we note that in previous research,
a reclaim algorithm can look ahead only one task period.
Our method has no such limit, hence more energy reduction
can be achieved by our approach. Also note that our algo-
rithm reclaims slack cycles from multiple jobs of different
task.

Our algorithm depends on ACF and a off-line speed
function. Besides the optimal speed function, it applies to
any valid speed function defined off-line, including what we
call the speculative speed function [15].

7 Evaluations

We use simulations to evaluate our algorithms. The
periodic task model is used in the simulations. The pe-
riod of each task is uniformly distributed between 20 and
100 units. The worst-case computation time (WCET) of
each task is uniformly distributed between 1 and 20 units.
The best-case execution time (BCET) is defined to be from
10% to 100% of WCET. The actual execution time of each
job is generated using a normal distribution. The mean of
the distribution is BCET+WCET

2 ; the standard deviation is
WCET−BCET

6 . We assume that the processor has continu-
ous available speed, and P = S3. For each experiment, we
repeat 100 times and report the average.

We first compare our RM static algorithm with the algo-
rithm of Pillai and Shin [18] which uses a constant speed
for the whole task set. This constant speed is derived by an-
alyzing critical instants of the tasks and cannot be smaller.
We vary the task set utilization and experiment with task
sets consisting of 5, 10 or 15 tasks. We measure our perfor-
mance improvement by the ratio of the energy consumption
of our algorithm to that of the compared algorithm. Figure 5
shows the result. We observe that our static algorithm can
save up to 40% of energy better than the algorithm in [18].
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Figure 5. Evaluation of RM static algorithm
We next demonstrate the energy savings of the dynamic

reclaim algorithm. We report the ratio of the energy cost
of the dynamic algorithm to that of our static algorithm. In
the first set of experiments, we fix BCET

WCET = 0.1 and vary
the task set utilization. We only look ahead one ACF step
point in the simulations. Figure 6(a) and 6(b) shows the
result for RM and EDF, respectively. We observe that the

energy savings of the dynamic algorithm is almost indepen-
dent of task set utilization. This is because our optimal static
algorithm explores the energy savings when the utilization
is less than 1 and is already very effective. We also observe
that the energy savings is similar between EDF and RM.
This is because our algorithm reclaims slack cycles based
on the optimal static speed and ACF ; it does not depend on
any specific scheduler directly.

In the second set of experiments, we fix task set utiliza-
tion at 50% and vary the ratio BCET

WCET . Figure 6(c) shows the
result. We observe that our algorithm saves quite a signifi-
cant amount of energy, up to 75%. We also observe that the
energy savings decreases as BCET

WCET increases. Since fewer
slack cycles are available when the ratio increases, it is ex-
pected that the energy savings by reclaiming slack cycles
will decrease.

We do not investigate the effects when the processor is
not ideal, such as, the shutdown energy cost is not 0, only
discrete speeds are available, or speed switching overhead
can not be ignored. We leave the topics to our next paper.

8 Conclusion

In this paper, we have proposed an intergrated apporach
for applying DVS to real-time systems. We define two
functions, ACF and RCF, to capture the workload charac-
teristics of a real-time system. Once ACF and RCF are
defined, we formulate DVS scheduling of a real-time sys-
tem as a constrained nonlinear optimization problem. For
strictly convex power functions, which are the case for all
known power models, we simplify the formulation of the
problem and propose an algorithm to solve it. We demon-
strate the approach by using the periodic task model under
both EDF and RM scheduling policies. We define the ap-
propriate RCF for EDF and RM; we derive the optimal
off-line speed function that minimizes energy consumption
for them. We showed by simulation that the RM algorithm
can save up to 40% energy compared with another algo-
rithm [18].

Since a job’s actual execution demand is sometimes
much shorter than the worst-case budget, we propose a dy-
namic algorithm to reclaim slack cycles. The dynamic algo-
rithm works with different schedulers. It can reclaim cycles
from multiple jobs of different tasks, and it can look ahead
at more than one task period to reduce the speed. This al-
gorithm has time complexity O(1) and it can trade runtime
cost for energy savings. The optimal solution can be found
at any time during a computation. By using simulation, we
show that our dynamic algorithm can save up to 75% of en-
ergy when BCET

WECT = 0.1 compared with the static optimal
algorithm.

For future work, we would like to extend our approach
to other task and processor models. We shall also look into
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Figure 6. Evaluation of dynamic algorithm: (a)(b) BCET
WCET = 0.1; (c) Utilization=50%.

the effect of discrete CPU speeds and speed switching over-
head.
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