
INTRODUCTION

Fast inductive charging, can dramatically change the “usability” and 

attractiveness of electric vehicles to consumers by improving both the 

charging duration and the convenience offered. Even though wireless 

charging technology is rather premature, there are already some 

commercially available solutions enabling slow charging (i.e. 3.3kW) 

which are compatible with specific car models (e.g. Nissan, Siemens, 
Bosch/Evatran [1] etc).

The operational principle of the Inductive Power Transfer Module 

(IPTM) resembles to the one of transformers; transferring energy 

from a primary to a secondary coil (usually referred to as “pick-up 

coil”) which are not physically connected as it is presented in [2]. In 

the majority of the IPTM designs proposed in the literature [3]-[12], 

ferrite is usually implemented for reinforcing the magnetic flux. The 
experience from the early IPTM design of double sided couplers 
introduced in [3]-[4] indicated that the magnetic losses are increased 

and suppression issues of the field leakage are raised [5]. In order to 

overcome such issues, new IPTM topologies were proposed with 

circular coils placed above a ferrite layer or ferrite strips organized in 

a circular arrangement [6]-[7]. The main disadvantages of such 
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topologies are the very limited power transfer rate in case of a large 

air gap and their quite low tolerance concerning the horizontal 

misalignment. The Double-D or DD pad introduced in [5], [8], 

enables the transfer of a greater amount of power compared to 

circular pads, while the DDQ pad and the bipolar pad [8]-[9], further 

increase the tolerance to misalignment.

Concerning dynamic inductive charging, two main design approaches 
exist. In the first one, the primary coil comprises a long coil going 
across a long ferrite track, while the secondary coil is much smaller. 

The design is characterized by the shape of the track it comprises, 

leading to the E, U or W-type coupler [10], or the newly introduced 

I-type coupler [11]-[12]. In the second design approach, the on-route 

inductive charging system comprises several successively placed 

“segments” [5] similar to the ones used in static inductive charging. 

The operation of each pad may be managed by separate power 

electronic interfaces increasing, thus, considerably the cost of such 

solution. In this respect, new control techniques have been proposed 

in the literature enabling the management of two or more pads by the 

same power electronic interface [13]-[14].

In order to provide a high frequency current to the primary coil, the 

AC power provided from the grid is converted to a DC power source 
which is then converted to a high frequency current through a DC/AC 
converter. The alternating magnetic field induces an AC voltage on 
the receiving coil, which is finally rectified to provide a DC voltage 
to the battery of the EV. Many control schemes have been proposed 
either limited to the primary [15]-[17] or the secondary side [18]-

[20], or applied to both sides of the IPT system [21]-[22]. In order to 

reduce the re-active power losses in the primary side and ensure a 

high output power and efficiency a compensation network is 
incorporated in the design. Depending on the way the capacitors are 

connected to the primary and secondary coils four basic topologies 

may exist: series-series (SS), series-parallel (SP), parallel-parallel 
(PP), parallel-series (PS) [2]. More complex methods for the 
compensation network have also been proposed in order to improve 

the tolerance to misalignment [23]-[24]. Variable tuning also appears 
as a compensation solution, allowing the control of the capacitance or 

inductance values [25]-[26].

The power transfer rate of an IPTM is subject to the relative 

positioning (i.e. vertical and horizontal misalignment) of the primary 

and secondary coils. Several approaches have been introduced aiming 
to achieve the optimal positioning of the Electric Vehicle and attain 
the maximum transfer power rate. The Unplugged project suggested a 
complicated positioning methodology of the vehicle with respect to 

an RFID system, a camera and the vehicle’s odometry data [27]. The 

Primove project suggests a lifting and lowering mechanism which is 

only applicable for buses. Furthermore, there are several patents 

[28]-[31] related to the positioning system which, however, allow for 

limited lateral displacement and comprise heavy materials and 

components requiring large space of the EV. The positioning 
mechanism that was developed and is introduced in this paper, is a 

fully functional system designed for commercial vehicles, enabling 

the continuous charging of the EV at high power transfer rate 
considering a realistic air gap between the coils.

Besides the social benefits, the integration of fast inductive chargers 
into power systems raises new grid operational challenges to the 

system operators. The nominal installed capacity of a fast inductive 

charger can be high enough (>30kW) resulting in a significant 
network load profile modification. The energy needs of dynamic 
inductive charging stations have been studied in [32]-[33], 

considering the traffic on the roads and based on theoretical scenarios 
regarding the operational characteristics of the stations, while a 

general scheme for the provision of real-time V2G services by 
dynamic inductive chargers is examined in [34]-[35]. In this paper, 

the power profile of dynamic inductive charging is estimated, 
considering parameters not just limited to road traffic, but also the 
probability of the need for fast charging, as well as the specifications 
of the proposed solution. An energy management system is also 
designed and developed in order to offer demand response services to 

the market operator in case of network operational issues arising due 

to the increased demand of the dynamic inductive charging stations.

The main contribution of the paper lies in the following aspects: 

• It introduces a complete dynamic inductive charging system 

(IPTM design, IPTM control, positioning mechanism, energy 

management system) 

• It provides an estimation of the additional charging demand 

which is expected to affect network operation. 
• A cost/benefit analysis, according to the Discounted Cash Flow 

(DCF) principles, is performed in order to asses the economic 
viability of the proposed fast dynamic inductive charging 

solution.

The rest of the paper is organized as follows: The overall architecture 

and the specifications of each module of the proposed dynamic 
inductive charging system are presented in Section II. The proposed 

dynamic infrastructure is demonstrated in real urban environment and 

the results are discussed in Section III. Furthermore, the simulation 

tool and the results from the demand profile analysis of a dynamic 
inductive charging network are analysed in Section IV. Moreover, the 

conclusions of the Cost/Benefit analysis are presented in Section V. 

Finally, the paper concludes in Section VI.

PROPOSED FAST INDUCTIVE CHARGING 

CONCEPT

Overall System Architecture

The main objective of the proposed fast dynamic inductive charging 

solution is to foster the democratization of EVs within the urban 
environment by developing a comfortable and easily implemented 

charging solution. Such a solution is expected to promote the use of 
EVs by the large public, while also facilitating their implementation 
in the urban grid.

The overall system architecture of the proposed fast inductive 

charging approach with the different modules and their interactions is 

illustrated in Figure 1. The black lines indicate the energy flow, while 
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the information exchange is indicated by the red ones. The red line 
boxes indicate the services offered by the proposed dynamic wireless 
charging system.

Figure 1. Overall view of the components and interfaces in the proposed fast 

dynamic inductive charging solution (Source: FastInCharge project)

IPT Module

The proposed dynamic inductive charging station, which is presented 

in Figure 2, comprises four successively placed primary coils. The 

power electronics topology consists of a common IGBT module and 
four IGBT modules, each one connected to one of the four primary 
coils (Figure 3 - [36]). The common IGBT module is continuously 
enabled given that the charging station is in operation. Concerning 
the other four modules, they are enabled successively such that only 

one module operates each time forming a full bridge converter with 

the common module (Figure 3). In order to ensure the activation of 

one primary coil at a time, magnetic sensors are placed before each 

primary coil which are activated as the EV passes over them. In order 
to reduce the voltage applied in the primary coils and assure their 

galvanic isolation, the converter is connected to each one of the 

charging coils with a set of two parallel connected transformers 

TR3||TR4… TR9||TR10. Moreover, a series-series compensation 
scheme is applied to the design (CS3-CS4…CS9-CS10 for each one 
of the four primary coils). In order to reduce the high voltage across 

the compensation capacitors, a set of two capacitors (Csec1-Csec2 for 
the secondary coil) is used.

The frequency shift control method [36] is adopted in the inverter 

allowing the control of the output parameters of the IPTM (voltage, 

current and power supplied to the battery) according to the air-gap 

and misalignment between the primary and the secondary coil. In 

order to efficiently allow greater variations in the high frequency 
voltage supplied by the converter, the phase shift PWM technique 

[36] is also incorporated in the design.

Figure 2. Fast dynamic inductive charging approach (Source: FastInCharge 
project)

Figure 3. Power electronics topology of the inductive charging station

The IPT module is illustrated in Figure 4. Ferrite is adopted in the 

coil design in order to enhance and guide the magnetic flux. More 
specifically, MnZn ferrite plates are implemented due to their 
relatively high permeability, their excellent mechanical and electrical 
properties and the fact that they can be easily combined into many 

possible shapes. In addition, in order to reduce the increased 

conduction losses due to the high frequency required for the 

operation of the IPTM, litz wires are used in the design.

Figure 4. IPTM Coil construction (Source: FastInCharge project)
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Aluminum shielding is used in the proposed design in order to 
significantly reduce the emitted EM field, and improve the coefficient 
of the magnetic coupling between the transmitting and receiving side. 

In case of a horizontal misalignment between the primary and 

secondary coil, an asymmetric leakage of electromagnetic radiation 

can be observed Although the leakage close to the primary coil does 
not indicate any threat to objects or humans nearby, since the coil is 

buried underground, the leaked radiation close to the secondary coil 

could negatively affect nearby objects. Such results indicate that all 
elements close to the secondary winding, including the positioning 

mechanism, shall comprise nonmagnetic materials.

Based on simulations results examining various coil dimensions, it is 
concluded that when the horizontal misalignment is greater than one 

quarter of the winding size, the coupling coefficient, as well as the 
efficiency of the whole system significantly decreases. Furthermore, 
the maximum efficiency is inversely proportional to the air-gap; 
therefore, the operational air-gap of the IPT system must be selected 

very carefully. In this respect and in order for the IPTM to transfer a 

power of 30 kW at a horizontal misalignment of ± 20 cm and an 

air-gap of 80±10mm (Figure 5), the dimensions for the primary and 

secondary winding were defined as “700mm x 800mm x 90mm” and 
“700mm x 800mm x 60mm” respectively.

The proposed air-gap has been selected in order to ensure a high 

transferred power of 30kW, which is essential in the case of dynamic 

inductive charging, while maintaining a high efficiency of around 
90%. The selection of a greater air-gap is achievable, yet it would 

lead to a smaller system’s efficiency as well as limited amounts of 
transferred power.

Figure 5. IPTM efficiency Vs. Output power and X&Y alignment (Source: 
FastInCharge project)

The efficiency from the mains to the battery is 90-92%. Therefore, 
the losses of the system are around 8 to 10% and are expected to be 
distributed among the high frequency (HF) inverter, the IPT module 

(comprising the primary and the secondary coil) and the output 

rectifier. More specifically, the losses for each specific module of the 
system are as follows: 

a. HF inverter: 2-3%; 

b. IPT module: 5-6 %: 

 ◦ Primary: 3-4 % (approximately 2 % at wires and 2% at the 
ferrite plates) 

 ◦ Secondary: 2-3% (approximately 1 % at wires and 2% at the 
ferrite plates) 

c. Output rectifier: 1-2 %

The power transferred to the vehicle while it moves over the station is 

expected to vary as depicted in Figure 6. Moreover, the technical 

specifications of the developed IPTM are tabularised in Table 1.

Figure 6. Power transferred to the vehicle while it moves over the station 

(Source: FastInCharge Project)

Table 1. Technical specifications of the IPTM

Positioning Mechanism

The air-gap of around 9cm cannot be considered suitable for an EV 
while moving in roads not specifically designed for wireless dynamic 
charging. For this reason a positioning mechanism has been 

developed, which lowers the secondary coil when the EV moves over 
the charging station, in order to guarantee that the required air gap for 

wireless charging is achieved. The positioning mechanism lifts the 

secondary coil as soon as the EV moves away from the station to 
ensure the right clearance from the ground, while the EV moves in 
regular roads.

The mechanical system for the secondary coil was designed 

considering all the different elements that should be integrated in the 

demonstration electric vehicle i.e. the secondary coil and the AC-DC 
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rectifier. A lightweight design for the positioning mechanism was 
considered as the main driver for the design, as it is illustrated in 

Figure 7.

Figure 7. Secondary module integrated in the vehicle (Source: FastInCharge project)

The Vehicle structure (i.e. longitudinal parts related to the structure of 
the EV in which the design will be integrated) is considered in order 
to assemble the secondary module. The AC-DC rectifier for the 
secondary coil illustrated in Figure 3 is also integrated in the design.

Figure 8. Black-box wires: a) Scheme of internal components wired; b) 
Connectors to EV (Source: FastInCharge project)

The Black-Box interconnects all internal devices (drivers, limit 
switch, electromagnetic blocks, motors, etc.), while also allowing the 

connection of those devices to the EV (Figure 8). It contains a system 

based on pulleys which is governed by two MAxon EC motors for 
vertical movement, coupled to the shaft with a GP52C 30NM 4ST 
gear and an ENC MILE 1600IMP 2K encoder (Figure 9a). A Locking 
System incorporating two electromagnetic solenoid blocks (Figure 

9b) has been used to lock the platform containing the secondary coil 

(integrated in the lower part of the secondary module) in the 

black-box housing. There is an ultrasonic sensor, which is necessary 
for the system to detect the ground during the downward movement 

is illustrated in Figure 9c. The control of the motion of the Black-box 
is performed by an Electronic Control Unit (ECU - TTTech, Figure 

9d), which is programmed in MatLab®-Simulink (with the addition 
of I/O Libraries for MPC555 and TTC 200), including the necessary 
functions to communicate via CAN bus with the EV.

The Pick-Up Mechanism allows translations in the direction 
perpendicular to the vehicle movement in order to achieve the 

appropriate air-gap between the two coils. The motor and pulley 

system is accompanied with a Guidance System comprising a slider 
and guiding arms, so as to ensure a good positioning while the 

secondary coil is moving upwards. A Rolling System of 4 wheels has 

been implemented close to the secondary coil in order to ensure the 

functionality of the system while the EV is moving. The wheels are 
also provided with a Damping System which absorbs the roughness 
of the road, and minimizes the rolling noise.

Figure 9. a) Maxon motor EC 90 flat with encoder and gearhead, b) 
Electromagnetic solenoid blocks, c) Ultra-sonic sensor, d) ECU TTTech 200 
(Source: FastInCharge project)

EV Modification

One of the challenges of developing a complete fast dynamic 

inductive charging solution was the integration of the wireless 

charging device and all the related services to an existing vehicle, 
which is not specifically designed for this functionality. The battery 
characteristics and limits of a Light Commercial Vehicle (LCV) in 
BEV configuration were considered, in order to implement and 
optimize the design of the IPTM.

The electrical integration is based on the Electrical/Electronic (E/E) 

architecture of the baseline vehicle with the integration of the devices 

required to host the wireless charging (power devices and ancillary 

modules), as illustrated in Figure 10. The components coming from the 

original boardnet are just the powertrain components, namely the 

traction inverter and motor, the battery pack and the DC/DC converter.

Figure 10. E/E architecture (focused on the High Voltage section and wireless 
charging) (Source: FastInCharge project)
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The modified architecture requires the addition of the wireless 
charging device, which incorporates in a single box the part of the 
IPT system to be installed in the EV and the positioning mechanism 
that controls the air-gap between the primary and the secondary coil.

On the Low Voltage (LV) side, a dedicated Vehicle Management Unit 
(VMU) is installed for interfacing the original vehicle’s CAN bus 
with the new equipment, and coordinating the charging process on 

the vehicle side. A Wireless Communication Module (WCM) is also 
required, in order to establish a Wi-Fi communication channel 

between the EV and EV Supply Equipment (EVSE) side during the 
charging process. Concerning the interaction of the user with the 
charging device, a specific tablet-based HMI has been developed, 
communicating with the vehicle (via Bluetooth channel by means of 

a Bluetooth Communication Module - BCM), and with the 
management servers (via 3G channel).

Energy Management System

The overall system architecture of the energy management system 

developed for the proposed dynamic inductive charging approach is 

illustrated in Figure 11 [37]. The proposed management system can 

fit to any (static and dynamic) charging network since all 
functionalities are realized via web services, which can be easily 

updated or enhanced, and it adopts international standards for the 

interaction among different stakeholders.

More specifically, the energy management system is capable of 
offering the abovementioned services: 

a. Monitoring the operation of the charging stations: The energy 

management system allows the operator of the charging stations 

to monitor the consumption of the charging stations in real-time. 

The interaction adopts the principles of OCPP protocol1 

b. User awareness of the location, the availability and the electricity 
cost of the fast inductive charging stations: A graphical user 
interface has been developed in order to facilitate the interaction 

between the user interface and the energy management system. 

The user interface makes EV drivers aware of the locations and 
availability of the existing fast inductive charging infrastructures 
in order to be able to decide the most convenient place for 

charging their EV in respect to their trip destination. Finally, a 
pricing policy (multi-tariff pricing) should be adopted in order to 

incentivize charging during off-peak hours. 

c. Remote control of the maximum charging rate of the stations 
under emergency network operational conditions: In case that 

the network operation is close to its capacity limits (equipment 

overloading) due to the increased demand of the fast inductive 

charging stations, the energy management system should enable 

the remote control of the maximum charging rate of the stations 
located at the specific part of the grid where the operational 
issue lies. 

d. Offer booking services to EV owners enabling them to book 
the most suitable charging station at the most convenient time, 

considering their trip destination as well as the electricity energy 

prices. The service can be applied only in case of static charging.

1. http://www.openchargealliance.org/?q=node/9

Figure 11. Overall outline of the energy management system (Source: 
FastInCharge project)

DEMONSTRATION RESULTS

The proposed fast dynamic inductive charging infrastructure has been 

successfully demonstrated in the city of Douai in France, in June 

2015. The demonstration results regarding each component of the 

infrastructure are presented in detail in the following sub-sections.

IPT Module

The proposed dynamic inductive charging station with the four 

primary coils “buried” in a road of Douai city (France) is illustrated 

in Figure 12. Since the transferred power and efficiency greatly 
depend on the misalignment between the primary and the secondary 

coils, the optimal charging path was marked by white lines (Figure 

12) assisting EV users for the correct coils placement while driving.

The demonstration of inductive charging was performed at a 

maximum vehicle speed of 15km/h and the obtained results are 
presented in Table 2. Although the charging infrastructure is 
capable of providing 30kW to the vehicle, due to EV battery 
operational constraints, an average power of 23.73kW was 

achieved during the demonstration.

Figure 12. Dynamic inductive charging installed in Douai, France. (Source: 
FastInCharge project)
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Table 2. Average Results for the charging coils in the dynamic charging station.

Concerning the electromagnetic safety, the magnetic flux density was 
measured equal to 13.8μT at a distance of 60cm from the center of 
the primary coil (Figure 13), which is well below the limits set by the 

ICNIRP guidelines (27μT and 100 μT for the general public and the 
occupational exposure to EM fields respectively) [38]. The magnetic 

flux density is further reduced when considering a greater distance 
from the center of the coil (Figure 13).

Figure 13. Magnetic flux density measured at various distances from the 
center of the primary coil

Position Mechanism

The demonstrated positioning mechanism is displayed in Figure 14. 

The positioning mechanism, alongside with the secondary coil, was 

installed at the rear end of the vehicle (Figure 14a). As soon as the 
vehicle approaches the station and when charging is requested by the 

EV user, the secondary coil is lowered until the required air-gap with 
the primary coil is achieved (Figure 14b).

The positioning mechanism was installed in a commercial vehicle 

in order to transfer high amounts of power, requiring, quite a 

small air-gap as well as a large secondary coil. A positioning 
system, however, with such dimensions and weight is not suitable 

for passenger cars. Nevertheless, in the case of light passenger 
vehicles, the EV battery capacity is much lower than the one 
demonstrated. Thus, lower charging power transfer rates can be 

accepted. It was determined that a reduction of around 39% in the 

dimensions of the secondary coil, which is translated in a charging 

power rate of 25kW, makes this solution also suitable for lighter 

passenger cars. The proposed positioning mechanism can be 

further improved by incorporating it in the damping system of the 

EV without significant modifications.

Figure 14. Positioning mechanism in the (a) up and (b) down position (Source: 
FastInCharge project)

Energy Management System

The user interface for the energy management system is illustrated in 

Figure 15.

The left-hand picture in Figure 15 shows the first screen of the 
user-interface which makes EV users aware of the location of the 
charging stations and their availability via the colour- indexing 
(green-available, orange-unavailable and red-not in operation). The 

right-hand picture in Figure 15 provides more details for each station 

separately enabling EV user to book available timeslots (15-minutes) 
for charging.

Figure 15. User interface of the energy management system (Source: 
FastInCharge project)

POWER DEMAND PROFILE OF DYNAMIC 

INDUCTIVE CHARGING

In order to define the dynamic inductive charging needs, two 
parameters are taken into account: 1) the need for fast charging and 

2) the mobility pattern. The first parameter is simulated via the 
distribution function illustrated in Figure 16a [39], based on data 

from real fast conductive chargers. The mobility pattern in Figure 16b 

is defined based on the official data published from the transport 
department of Great Britain2.

2. https://www.gov.uk/government/collections/road-traffic-statistics
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Figure 16. Parameters to define the demand of dynamic inductive charging: 

(a) charging needs and (b) Percentage of vehicles moving on the roads.

Based on the aforementioned parameters and the input charging 

power in Table 2, the load profile for different numbers of inductive 
charging stations is presented in Figure 17. It is concluded that a quite 

high demand is introduced during the morning and middle day hours. 

In case that the charging demand peak (for instance 3.9MW in case of 

150 stations) is synchronized with the high domestic consumption, 

grid operational issues may be noticed, such as network equipment 

overload, requesting grid reinforcement. The demand response 

services offered by the proposed energy management system are 

capable of preventing/postponing premature grid investments.

Figure 17. Power demand profile considering the case of 50, 100 and 150 

dynamic inductive charging stations installed in the grid.

COST/BENEFIT ANALYSIS

In order to assess the economic viability of the proposed fast dynamic 

inductive charging solution, a cost/benefit analysis is performed 
based on the principles of the Discounted Cash Flow (DCF) 
approach. Since fast dynamic inductive charging is a premature 
technology, complicated evaluation methods are not appropriate for 

the cost benefit analysis. Thus, the free cash flow approach is adopted 
which is a trustworthy measure that almost eliminates the 

arbitrariness and "guesstimates" involved in reported earnings. 
Regardless of whether a cash outlay is counted as an expense or 
turned into an asset on the balance sheet, free cash flow tracks the 
money left over for investors.

A realistic scenario of 5% of growth in the first year and up to 20% of 
growth in the fifth year is considered. Such a scenario shall not be 
regarded as a risky one, since Frost&Sullivan have predicted an 
annual growth for inductive charging market of 126.6% from 2012 to 

20203. The discount rate is set at 7.10%, which is the cost of equity 

that has been calculated. Considering a decrease of operating costs 
every year, and an investment made every two years, the Net Present 
Value (NPV) calculated for the first year is -940,400€. A positive 
NPV is reached in year 12, which indicates the time that the project 
becomes profitable.

Considering a probability of 50 and 60% for the accurate forecast of 
the benefits and costs respectively, the Benefit Cost Ratio (BCR) 
reaches 2.5 in 15 years, meaning that for a euro invested, 2.5€ is 
earned. Furthermore after the 5th year, the BCR is stable and 
increasing, indicating the time that the project will become profitable.

A sensitivity analysis has also been performed taking into account the 
parameters that are most likely to change during the project: the net 

investment, the operating costs and the electricity price. The analysis 

suggests that the terminal value is affected by the net investment, as an 

increase of 40% in the net investment decreases the terminal value by 

16%. Furthermore, an increase of 25% or 10% in the operating costs or 

the electricity price, respectively, reduces the NPV by 8%. In the 
aforementioned cases, the break-even point is reached during year 14 

instead of 12, which can still be considered as an acceptable alternative.

CONCLUSIONS

A complete dynamic inductive charging solution has been developed, 
comprising the IPT module, which allows the transfer of 30kW of 

power at an air-gap of up to 9cm and a maximum misalignment of 
20cm. Moreover, the proposed positioning mechanism successfully 

proved to assure the operation of the system at the desired air-gap. 

Regarding the EV side, modifications shall be made to the E/E 
architecture of the baseline vehicle, in order to incorporate the power 

devices and ancillary modules related to wireless charging. The load 

profile analysis implied that the additional charging demand can 
significantly modify system demand profile in case of mass 
deployment. However, the proposed energy management system can 

effectively address this issue, by adjusting the charging power rate of 

specific charging stations located within the problematic grid area. 
The cost/benefit analysis that was performed indicates that the project 
can become profitable, even in the case where versatile parameters, 
like the net investment, the operating costs and the electricity price, 

are considered.

Although the proposed positioning mechanism was developed for a 
commercial vehicle, appropriate modifications to reduce its size, 
alongside with alternative techniques to ensure the desired air-gap, 

suggest the use of the system in passenger cars.

3. http://www.frost.com/sublib/frost-content.do?sheetName=report-
overview&sheetGroup=M9B8-01-00-00-00&viewName=virtual-brochure&repid=M
9B8-01-00-00-00
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