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Abstract
The widening gap between processor and memory speeds

renders data locality optimization a very important issue in
data-intensive embedded applications. Throughout the years
hardware designers and compiler writers focused on optimizing
data cache locality using intelligent cache management mech-
anisms and program-level transformations, respectively. Until
now, there has not been significant research investigating the in-
teraction between these optimizations. In this work, we investi-
gate this interaction and propose a selective hardware/compiler
strategy to optimize cache locality for integer, numerical (array-
intensive), and mixed codes. In our framework, the role of
the compiler is to identify program regions that can be opti-
mized at compile time using loop and data transformations and
to mark (at compile-time) the unoptimizable regions with spe-
cial instructions that activate/deactivate a hardware optimiza-
tion mechanism selectively at run-time. Our results show that
our technique can improve program performance by as much
as 60% with respect to the base configuration and 17% with
respect to a non-selective hardware/compiler approach.

1 Introduction and Motivation
To improve performance of data caches, several hardware

and software techniques have been proposed. Hardware ap-
proaches try to anticipate future accesses by the processor and
try to keep the data close to the processor. Software techniques
such as compiler optimizations [6] attempt to reorder data ac-
cess patterns (e.g., using loop transformations such as tiling)
so that data reuse is maximized to enhance locality. Each ap-
proach has its strengths and works well for the patterns it is
designed for. So far, each of these approaches has primarily
existed independently of one another. For example, a compiler-
based loop restructuring scheme may not really consider the ex-
istence of a victim cache or its interaction with the transfor-
mations performed. Similarly, a locality-enhancing hardware
technique does not normally consider what software optimiza-
tions have already been incorporated into the code. Note that the
hardware techniques see the addresses generated by the proces-
sor, which already takes the impact of the software restructuring
into account. Also, there is a promising aspect of combining the
hardware and software approaches. Usually compilers have a
global view of the program which is hard to obtain at run-time.
If the information about this global view can be conveyed to
the hardware, the performance of the system can be increased
significantly. This is particularly true if hardware can integrate
this information with the runtime information it gathers during
execution.

But, can we have the best of both worlds? Can we com-
bine hardware and software techniques in a logical and selec-
tive manner so that we can obtain even better performance than
either applying only one or applying each independently?

To answer these questions, we use hardware and software
locality optimization techniques in concert and study the inter-
action between these optimizations. We propose an integrated
scheme which selectively applies one of the optimizations and
turns off the other. Our goal is to combine existing hardware and

software schemes intelligently and take full advantage of both
the approaches. To achieve this goal, we also propose a region
detection algorithm, which is based on the compiler analysis
and that determines which regions of a given program are suit-
able for hardware optimization and subsequently, which regions
are suitable for software optimization. Based on this analysis,
our approach turns the hardware optimizations on and off. In
the following, we first describe some of the current hardware
and software locality optimization techniques briefly, give an
overview of our integrated strategy, and present the organiza-
tion of this paper.
1.1 Hardware Techniques

Hardware solutions typically involve several levels of mem-
ory hierarchy and further enhancements on each level. Re-
search groups have proposed smart cache control mechanisms
and novel cache architectures that can detect program access
patterns at run-time and can fine-tune some cache policies so
that the overall cache utilization and data locality are maxi-
mized. Among the techniques proposed are victim caches [10],
column-associative caches [1], hardware prefetching mecha-
nisms, cache bypassing using memory address table (MAT)
[8, 9], dual/split caches [7], and multi-port caches.
1.2 Software Techniques

In the software area, there is considerable work on compiler-
directed data locality optimizations. In particular, loop restruc-
turing techniques are widely used in optimizing compilers [6].
Within this context, transformation techniques such as loop in-
terchange [13], iteration space tiling [13], and loop unrolling
have already found their ways into commercial compilers. More
recently, alternative compiler optimization methods, called data
transformations, which change the memory layout of data struc-
tures, have been introduced [12]. Most of the compiler-directed
approaches have a common limitation: they are effective mostly
for applications whose data access patterns are analyzable at
compile time, for example, array-intensive codes with regular
access patterns and regular strides.
1.3 Proposed Hardware/Software Approach

Many large applications, however, in general exhibit a mix of
regular and irregular patterns. While software optimizations are
generally oriented toward eliminating capacity misses coming
from the regular portions of the codes, hardware optimizations
can, if successful, reduce the number of conflict misses signifi-
cantly.

These observations suggest that a combined hard-
ware/compiler approach to optimizing data locality may
yield better results than a pure hardware-based or a pure
software-based approach, in particular for codes whose access
patterns change dynamically during execution. In this paper,
we investigate this possibility. In particular, we make the
following major contributions:
• We present a compiler method that analyzes a given large

program and divides it into regions, each of which can be
optimized either using a software-based approach or using a
hardware-based approach.
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Figure 1. Overview of the compiler-related part of
our framework.

• We propose a selective hardware/compiler optimization
technique based on the analysis mentioned above.
• We present simulation results indicating that such a se-

lective optimization approach outperforms the pure hardware-
based or pure compiler-based approaches in various codes
(taken from different benchmarks such as SPEC, TPC, and oth-
ers). It also outperforms a straightforward combination of hard-
ware and compiler approaches (this corresponds to the case
when one uses the most aggressive compiler optimizations pro-
vided and the program runs with hardware optimizations turned
on all the times).

We believe that the proposed approach fills an important gap
in data locality optimization arena and demonstrates how two
inherently different approaches can be reconciled and made to
work together.
1.4 Paper Organization

The rest of this paper is organized as follows. Section 2 ex-
plains our approach for turning the hardware on/off. Section 3
explains the hardware and software optimizations used in this
study. In Section 4, we explain the benchmarks used in our sim-
ulations. Section 5 reports performance results obtained using
a simulator. Finally, in Section 6, we present our conclusions.

2 Program Analysis
2.1 Overview

Our approach combines both compiler and hardware tech-
niques in a single framework. The compiler-related part of the
approach is depicted in Figure 1. It starts with a region detection
algorithm (Section 2.2) that divides an input program into uni-
form regions. This algorithm marks each region with special ac-
tivate/deactivate (ON/OFF) instructions that activate/deactivate
a hardware optimization scheme selectively at run-time. Then,
we use an algorithm which detects and eliminates redundant ac-
tivate/deactivate instructions. Subsequently, the software opti-
mizable regions are handled by the compiler-based locality opti-
mization techniques. The remaining regions, on the other hand,
are handled by the hardware optimization scheme at run-time.
These steps are detailed in the following sections.
2.2 Region Detection

In this section, we present a compiler algorithm that divides
a program into disjoint regions, preparing them for subsequent
analysis. The idea is to detect uniform regions, where ‘uniform’
in this context means that the memory accesses in a given region
can be classified as either regular (i.e., compile-time analyz-
able/optimizable), as in array-intensive embedded image/video
codes or irregular (i.e., not analyzable/optimizable at compile
time), as in non-numerical codes (and also in numerical codes
where pattern cannot be statically determined, e.g., subscripted
array references). Our algorithm works its way through loops
in the nests from the innermost to the outermost, determining
whether a given region should be optimized by hardware or
compiler. This processing order is important as the innermost
loops are in general the dominant factor in deciding the type of
the access patterns exhibited by the nests.

The smallest region in our framework is a single loop. The
idea behind region detection can be best illustrated using an ex-
ample. Consider Figure 2(a). This figure shows a schematic
representation of a nested-loop hierarchy in which the head of
each loop is marked with its depth (level) number, where the
outermost loop has a depth of 1 and the innermost loop has a
depth of 4. It is clear that the outermost loop is imperfectly-
nested as it contains three inner nests at level 2. Figure 2(b)
illustrates how our approach proceeds.
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Figure 2. An example that illustrates the region
detection algorithm. (a) Schematic representa-
tion of a nested-loop hierarchy. (b) Steps taken
by our approach to insert ON/OFF instructions.
(c) The resulting structure after the elimination
of redundant ON/OFF instructions.

We start with the innermost loops and work our way out to
the outermost loops. First, we analyze the loop at level 4 (as
it is the innermost), and considering the references it contains,
we decide whether a hardware approach or a compiler approach
is more suitable ( Step 1). Assume for now, without loss of
generality, that a hardware approach is more suitable for this
loop (how to decide this will be explained later). After placing
this information on its loop header (in the form of an activate
(ON) instruction), we move ( Step 2) to the loop at level 3 which
encloses the loop at level 4. Since this loop (at level 3) contains
only the loop at level 4, we propagate the preferred optimization
method of the loop at level 4 to this loop. That is, if there are
memory references, inside the loop at level 3 but outside the
loop at level 4, they will also be optimized using hardware. In
a similar vein, we also decide to optimize the enclosing loop
at level 2 using hardware ( Step 3). Subsequently, we move to
loop at level 1. Since this loop contains the loops other than the
last one being analyzed, we do not decide at this point whether
a hardware or compiler approach should be preferred for this
loop at level 1.

We now proceed with the loop at level 3 in the bottom ( Step
4). Suppose that this and its enclosing loop at level 2 ( Step 5)
are also to be optimized using a hardware approach. We move
to the loop at level 2 in the middle ( Step 6), and assume that
after analyzing its access pattern we decide that it can be opti-
mized by compiler. We mark its loop header with this informa-
tion (using a deactivate (OFF) instruction). The leftmost part
of Figure 2(b) shows the situation after all ON/OFF instructions
have been placed.

Since we have now processed all the enclosed loops, we can
analyze the loop at level 1 ( Step 7). Since this loop contains
loops with different preferred optimization strategies (hardware
and compiler), we cannot select a unique optimization strat-
egy for it. Instead, we need to switch from one technique to
another as we process its constituent loops: suppose that ini-
tially we start with a compiler approach (i.e., assuming that as
if the entire program is to be optimized in software), when we
encounter with loop at level 2 at the top position, we activate
(using a special instruction) the hardware locality optimization
mechanism (explained later on). When we reach the middle
loop at level 2, we deactivate the said mechanism, only to re-
activate it just above the loop at level 2 at the bottom of the
figure. This step corresponds to the elimination of redundant
activate/deactivate instructions in Figure 1. We do not present
the details and the formal algorithm due to lack of space. In
this way, our algorithm partitions the program into regions, each
with its own preferred method of locality optimization, and each
is delimited by activate/deactivate instructions which will ac-
tivate/deactivate a hardware data locality optimization mecha-
nism at run-time. The resulting code structure for our example
is depicted in Figure 2(c).
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The regions that are to be optimized by compiler are trans-
formed statically at compile-time using a locality optimization
scheme (Section 3.2). The remaining regions are left unmodi-
fied as their locality behavior will be improved by the hardware
during run-time (Section 3.1). Later in the paper, we discuss
why it is not a good idea to keep the hardware mechanism on for
the entire duration of the program (i.e., irrespective of whether
the compiler optimization is used or not).

An important question now is what happens to the portions
of the code that reside within a large loop but are sandwiched
between two nested-loops with different optimization schemes
(hardware/compiler)? For example, in Figure 2(a), if there are
statements between the second and third loops at level 2 then
we need to decide how to optimize them. Currently, we assign
an optimization method to them considering their references.
In a sense they are treated as if they are within an imaginary
loop that iterates only once. If they are amenable to compiler-
approach, we optimize them statically at compile-time, other-
wise we let the hardware deal with them at run-time.
2.3 Selecting an Optimization Method for a Loop

We select an optimization method (hardware or compiler) for
a given loop by considering the references it contains. We di-
vide the references in the loop nest into two disjoint groups, an-
alyzable (optimizable) references and non-analyzable (not op-
timizable) references. If the ratio of the number of analyzable
references inside the loop and the total number of references in-
side the loop exceeds a pre-defined threshold value, we optimize
the loop in question using the compiler approach; otherwise, we
use the hardware approach.

Suppose i, j, and k are loop indices or induction variables
for a given (possibly nested) loop. The analyzable references
are the ones that fall into one of the following categories:
• scalar references, e.g., A
• affine array references, e.g., B[i], C[i+j][k-1]
Examples of non-analyzable references, on the other hand,

are as follows:
• non-affine array references, e.g., D[i2][j], E[i/j],

F[3][i*j]
• indexed (subscripted) array references, e.g.,

G[IP[j]+2]
• pointer references, e.g., *H[i],*I
• struct constructs, e.g., J.field, K->field
Our approach checks at compile-time the references in the

loop and calculates the ratio mentioned above, and decides
whether compiler should attempt to optimize the loop. After an
optimization strategy (hardware or compiler) for the innermost
loop in a given nested-loop hierarchy is determined, the rest of
the approach proceeds as explained in the previous subsection
(i.e., it propagates this selection to the outer loops).

3 Optimization Techniques
In this section, we explain the hardware and software opti-

mizations used in our simulations.
3.1 Hardware Optimization

The approach to locality optimization by hardware concen-
trates on reducing conflict misses and their effects. Data ac-
cesses together with low set-associativity in caches may exhibit
substantial conflict misses and performance degradation. To
eliminate the costly conflict misses, we use the strategy pro-
posed by Johnson and Hwu [8, 9]. This is a selective variable
size caching strategy based on the characteristics of accesses to
memory locations. The principle idea behind the technique pre-
sented in [8] is to avoid such misses by not caching the memory
regions with low access frequency, thereby keeping the highly
accessed regions of the memory in cache. And in the case where
spatial locality is expected for the fetched data, fetch larger size
blocks. The overall approach is illustrated in Figure 3.

The scheme has two crucial parts – (1) a mechanism to track
the access frequency of different memory locations and detect
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Figure 3. Hardware locality optimization scheme.

spatial locality, and (2) a decision logic to assist the cache con-
troller to make caching decisions based on the access frequen-
cies and spatial locality detection. To track the frequency of
access to memory locations, the memory is divided into groups
of adjacent cache blocks, called macro-blocks [8]. A Mem-
ory Access Table (MAT) captures the access frequencies of the
macro-blocks. An additional table called Spatial Locality De-
tection Table (SLDT) is used to detect spatial locality. Each
entry in the SLDT tracks spatial hits and misses for the block
and stores this information by incrementing or decrementing the
Spatial Counter. Exact mechanism of detecting spatial hits can
be found in [9]. It is also possible to use victim caches to reduce
the number of conflict misses. In this approach, a small fully-
associative cache is used for the blocks to be replaced from the
cache. If a block is to be replaced, then it is put in the victim
cache. If a request comes to the block while it is still residing
in the victim cache, the request is completed without going to
the next level in memory hierarchy. Detailed information about
victim caches can be found in [10].

3.2 Compiler Optimization

Compiler techniques for optimizing cache locality use loop
and data transformations. In this section, we revise a technique
that optimizes regular nested loops to take advantage of a cache
hierarchy. The compiler optimization methodology used in this
work is as follows:
• Using affine loop and data transformations, we first opti-

mize temporal and spatial locality aggressively.
• We then optimize register usage through unroll-and-jam

and scalar replacement.
For the first step, we use an extended form of the approach

presented in [5]. We have chosen this method for two reasons.
First, it uses both loop and data transformations, and is more
powerful than pure loop ([13]) and pure data ([12]) transforma-
tion techniques. Secondly, this transformation framework was
readily available to us. It should be noted, however, that other
locality optimization approaches such as [12] would result in
similar output codes for the regular, array-based programs in
our experimental suite. The second step is fairly standard and
its details can be found in [4]. A brief summary of this compiler
optimization strategy follows. Consider the following loop nest:

for(i=1;i<=N;i++)
for(j=1;j<=N;j++)

U[j] = V[j][i] + W[i][j];

The approach detects that the loop j (and consequently the
loop i) can be optimized by the compiler. Informally, the ap-
proach optimizes the nest (containing the loops i and j) as
follows. It first determines the intrinsic temporal reuse in the
nest. In this example, there is temporal reuse for only the ref-
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Table 1. Base processor configuration.
Issue width 4
L1 (data) size 32K, 4-way set-associative, 32-byte blocks
L1 (instruction) size 32K, 4-way set-associative, 32-byte blocks
L2 size 512K, 4-way set-associative, 128-byte blocks
L1 access time 2 cycle
L2 access time 10 cycles
Memory access time 100 cycles
Memory bus width 8 bytes
Number of memory ports 2
Number of RUU entries 64
Number of LSQ entries 32
Branch prediction bi-modal with 2048 entries
TLB (data) size 512K, 4-way associative
TLB (instruction) size 256K, 4-way associative

erence U[j];1 the other references exhibit only spatial reuse
[13]. Therefore, in order to exploit the temporal reuse in the in-
nermost position, the loops are interchanged, making the loop i
innermost. Now this loop accesses the array V along the rows,
and the array W along the columns. These access patterns re-
sult in selection of a row-major memory layout for the array V
and a column-major memory layout for the array W. Once the
memory layouts have been determined, implementing them in
a compiler that uses a fixed default layout for all arrays (e.g.,
row-major in C) is quite mechanical [12]. After this step, de-
pending on the architectural model (e.g., number of registers,
pipeline structure, etc.), the compiler applies scalar placement
and unroll-and-jam.

4 Methodology
4.1 Setup

The SimpleScalar [3] processor simulator was modified to
carry out the performance evaluations. SimpleScalar is an
execution-driven simulator, which can simulate both in-order
and out-of-order processors. The baseline processor configura-
tion for our experiments is described in Table 1. The simulator
was modified to model a system with the hardware optimization
schemes described in Section 3.1. The bypass buffer is a fully–
associative cache with 64 double words and uses LRU replace-
ment policy. The MAT has 4, 096 entries and the macro-block
sizes are set to 1 KB (as in [8]). When simulating victim caches,
we used a victim cache of 64 and 512 entries for level 1 and
level 2 caches, respectively [10]. In addition, a flag indicated
whether to apply the hardware optimization or not. The instruc-
tion set was extended to include activate/deactivate instructions
to turn this optimization flag ON/OFF. When the hardware op-
timization is turned off, we simply ignore the mechanism.

After extensive experimentation with different threshold val-
ues, a threshold value (Section 2.3) of 0.5 was selected to de-
termine whether a hardware or a compiler scheme needs to be
used for a given inner loop. In the benchmarks we simulated,
however, this threshold was not so critical, because in all the
benchmarks, if a code region contains irregular (regular) access,
it consists mainly of irregular (regular) accesses (between 90%
and 100%). In all the results presented in the next section, the
performance overhead of ON/OFF instructions have also been
taken into account.

4.2 Benchmarks
Our benchmark suite represents programs with a very wide

range of characteristics. We have chosen three codes from
SpecInt95 benchmark suite (Perl, Compress, Li), three codes
from SpecFP95 benchmark suite (Swim, Applu, Mgrid), one
code from SpecFP92 (Vpenta), and six other codes from sev-
eral benchmarks: Adi from Livermore kernels, Chaos, TPC-C,
and three queries from TPC-D (Q1, Q3, Q6) benchmark suite.
For the TPC benchmarks, we implemented a code segment per-
forming the necessary operations (to execute query).

1This reuse is carried by the outer loop i. The locality optimizations in
general try to put as much of the available reuse as possible into the innermost
loop positions.

An important categorization for our benchmarks can be
made according to their access patterns. By choosing these
benchmarks, we had a set that contains applications with reg-
ular access patterns (Swim, Mgrid, Vpenta, and Adi), a set with
irregular access patterns (Perl, Li, Compress, and Applu), and
a set with mixed (regular + irregular) access patterns (remain-
ing applications). Note that there is a high correlation between
the nature of the benchmark (floating-point versus integer) and
its access pattern. In most cases, numeric codes have regular
accesses and integer benchmarks have irregular accesses.

Table 2 summarizes the salient characteristics of the bench-
marks used in this study, including the inputs used, the total
number of instructions executed, and the miss rates (%). The
numbers in this table were obtained by simulating the base con-
figuration in Table 1. For all the programs, the simulations were
run to completion. It should also be mentioned, that in all of
these codes, the conflict misses constitute a large percentage of
total cache misses (approximately between 53% and 72% even
after aggressive array padding).

4.3 Simulated Versions
For each benchmark, we experimented with four different

versions — (1) Pure Hardware – the version that uses only hard-
ware to optimize locality (Section 3.1); (2) Pure Software – the
version that uses only compiler optimizations for locality (Sec-
tion 3.2); (3) Combined – the version that uses both hardware
and compiler techniques for the entire duration of the program;
and (4) Selective (Hardware/Compiler) – the version that uses
hardware and software approaches selectively in an integrated
manner as explained in this paper (our approach).

4.4 Software Development
For all the simulations performed in this study, we used two

versions of the software, namely, the base code and the opti-
mized code. Base code was used in simulating the pure hard-
ware approach. To obtain the base code, the benchmark codes
were transformed using an optimizing compiler that uses ag-
gressive data locality optimizations. During this transformation,
the highest level of optimization was performed (O3). The code
for the pure hardware approach is generating by turning of the
data locality (loop nest optimization) using a compiler flag.

To obtain the optimized code, we first applied the data lay-
out transformation explained in Section 2.1. Then, the resulting
code was transformed using the compiler, which performs sev-
eral locality-oriented optimizations including tiling and loop-
level transformations. The output of the compiler (transformed
code) is simulated using SimpleScalar. It should be emphasized
that the pure software approach, the combined approach, and
the selective approach all use the same optimized code. The
only addition for the selective approach was the (ON/OFF) in-
structions to turn on and off the hardware. To add these instruc-
tions, we first applied the algorithm explained in Section 2 to
mark the locations where (ON/OFF) instructions to be inserted.
Then, the data layout algorithm was applied. The resulting code
was then transformed using the compiler. After that, the output
code of the compiler was fed into SimpleScalar, where the in-
structions were actually inserted in the assembly code.

5 Performance Results
All results reported in this section are obtained using the

cache locality optimizer in [8, 9] as our hardware optimization
mechanism. The detailed results obtained using a victim cache
strategy as our hardware mechanism are omitted due to lack
of space, but they are summarized later in Table 3 and in Sec-
tion 5.2.

5.1 Results for Cache Bypassing
Figure 4 shows the improvement in terms of execution cycles

for all the benchmarks in our base configuration. The improve-
ments reported here are relative to the base architecture, where
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Figure 4. Base configuration.
Larger Memory Latency
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Figure 5. Larger memory latency (200 cycles).
Larger L2 Size
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Figure 6. Larger L2 cache size (1 MB).
Larger L1 Size
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Figure 7. Larger L1 cache size (64 KB).
Higher L2 Associativity
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Figure 8. Higher L2 associativity (8).
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Figure 9. Higher L1 associativity (8).

Table 2. Benchmark characteristics. ’M’ denotes
millions.

Benchmark Input Number of L1 L2
Instructions Miss Miss

Executed Rate [%] Rate [%]
Perl primes.in 11.2M 2.82 1.6

Compress training 58.2M 3.64 10.07
Li train.lsp 186.8M 1.95 3.73

Swim train 877.5M 3.91 14.42
Applu train 526.0M 5.05 13.22
Mgrid mgrid.in 78.7M 4.51 3.34
Chaos mesh.2k 248.4M 7.33 1.82
Vpenta Large enough to fill L2 126.7M 52.17 39.79

Adi Large enough to fill L2 126.9M 25.02 53.49
TPC-C Generated using TPC tools 16.5M 6.15 12.57

TPC-D,Q1 Generated using TPC tools 38.9M 9.85 4.74
TPC-D,Q3 Generated using TPC tools 67.7M 13.62 5.44
TPC-D,Q6 Generated using TPC tools 32.4M 4.20 10.98

the base code was simulated using the base processor configu-
ration (Table 1).

As expected, the pure hardware approach yields its best per-
formance for codes with irregular access. The average improve-
ment of the pure hardware is 5.07%, and the average improve-
ment for codes with regular access is only 2.19%. The average
improvement of pure software approach, on the other hand, is
16.12%. The pure software approach does best for codes with
regular access (averaging on a 26.63% percent improvement).
The improvement due to the pure software approach for the rest
of the programs is 9.5%. The combined approach improves
the performance by 17.37% on the average. The average im-
provement it brings for codes with irregular access is 13.62%.
The codes with regular access have an average improvement of
24.36% when the combined approach is employed.

Although, the naively combined approach performs well for
several applications, it does not always result in a better per-
formance. These results can be attributed to the fact that the
hardware optimization technique used is particularly suited for
irregular access patterns. A hardware mechanism designed for a
set of applications with specific characteristics can adversely af-
fect the performance of the codes with dissimilar locality behav-
ior. In our case, the codes that have locality despite short term
irregular access patterns are likely to benefit from the hardware
scheme. The core data structures for the integer benchmarks
have such access patterns. However, codes with uniform access
patterns, like numerical codes are not likely to gain much out
of the scheme. This is because these codes exhibit high spa-
tial reuse which can be converted into locality by an optimizing
compiler, or can be captured by employing a larger cache. The
pure software approach has, on the other hand, its own limita-
tions. While it is quite successful in optimizing locality in codes
with regular access such as Adi, Vpenta, and Swim, (averaging
33.3%) average improvement it brings in codes with high per-
centage of irregular accesses is only 0.8%.

Our selective approach has an average improvement of
24.98%, which is larger than the sum of the improvements by
the pure-hardware and pure-software approaches. Note that,
although the combined approach performs well, our selective
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approach has better or (at least) the same performance for all
the benchmarks. On the average, the selective strategy brings a
7.61% more improvement than the combined strategy.

Why does the selective approach increase the performance?
The main reason is that many programs have a phase-by-phase
nature. History information is useful as long as the program is
within the same phase. But, when the program switches to an-
other phase, the information (used by the hardware mechanism
employed) about the previous phase slows down the program
until this information is replaced (i.e., until new information
is collected). If this phase is not long enough, the hardware
optimization actually increases the execution cycles for the cur-
rent phase. Intelligently turning off the hardware eliminates this
problem and brings significant improvements.

To evaluate the robustness of our selective approach, we also
experimented with different memory latencies, cache sizes, and
associativities. The average improvements with these variations
are summarized in Table 3. In the following, we discuss the sen-
sitivity of our approach and the other versions to each hardware
configuration in detail.

Figure 5 shows the effect of increased memory latency. It
gives the percentage improvement in execution cycles where
the cost of accessing the main memory is increased to 200 cy-
cles. The rest of the configuration is similar to that given in
Table 1. As expected, the improvements brought by our scheme
have increased. On the average, the selective scheme improved
the performance by 28.52%, 22.27%, and 19.94% for integer,
numerical and mixed codes, respectively.

Figure 6 gives the results for larger L2 size. In the exper-
iments, the L2 size is increased to 1 MB. The rest of the pa-
rameters remains as in Table 1. Our selective strategy brings
a 22.25% improvement over the base configuration. Although,
it may look like the improvement has dropped, this is not the
case. When we look at the relative improvement versus the pure
hardware, pure software and combined approaches, we see that
the relative performance remains the same. Figure 7 shows the
percentage improvement in execution cycles when the size of
the L1 data cache of the machine described in Table 1 is in-
creased to 64K. On the average, the selective optimization strat-
egy brings a 24.17% improvement.

Figure 8 shows the percentage improvement in execution cy-
cles when the associativity of L2 data cache of the machine de-
scribed in Table 1 is increased to 8, keeping its size constant at
512K. We note that although the overall impact of our approach
decreases with the increased associativity, it still performs the
best. It improves the performance by average 21.22%, which
is 3.5% better than the combined approach. Similarly, Figure 9
gives the results for improved L1 cache associativity. Increasing
L1 associativity has an effect similar to increasing L2 associa-
tivity. The second, third, fourth, and fifth columns in Table 3
give the average improvements due to the pure software, pure
hardware, combined, and selective approaches, respectively, for
different hardware configurations.

5.2 Results for Victim Cache
All the simulations performed for cache bypassing were also

performed with the victim caches. Although victim caches per-
formed better than the cache bypassing method for some bench-
marks, the average improvement is less with victim caches. Vic-
tim caches, on the other hand, performed always better than the
base configuration (see the sixth column in Table 3), whereas
the cache bypassing decreased the performance up to a 12% for
some ill cases. The difference between the naively combined
approach and our selective approach was also usually less in
victim caches. This is due to the low overhead of victim caches.
The average improvements due to the combined and selective
strategies when they are used in conjunction with victim cache
are given in columns seven and eight of Table 3.

The results show that, we can improve the performance of
even a passive method like victim caches. So, we do not only

Table 3. Average improvements.
Pure Cache Combined Selective Victim Combined Selective

Experiment Software Bypass (bypass+ (bypass+ Caches (victim+ (victim+
software) software) software) software)

Base Confg. 16.12 5.07 17.37 24.98 1.38 16.45 23.82
Higher Mem. Lat. 15.82 7.69 17.66 26.07 4.52 16.24 24.88
Larger L2 Size 14.81 4.75 15.79 22.25 0.80 14.05 20.10
Larger L1 Size 17.42 4.94 17.04 24.17 1.16 16.45 22.55
Higher L2 Asc. 14.05 4.82 15.00 21.22 0.92 13.12 19.39
Higher L1 Asc. 13.96 3.96 14.51 20.93 2.14 12.06 19.21

decrease the penalty of the hardware method for the applica-
tions that it is not suitable for, but we also increase the benefits
of the hardware method for many applications. This can be ex-
plained by the following scenario. Assume that there is a nest
that contains two “for loops”, one of them being larger then the
other. When we run the hardware for both of the loops, the
smaller for loop will be able to evict the elements in the vic-
tim cache from the larger for loop. Since the loop is small, the
execution of the large loop is going to start before we can take
advantage of the data in victim cache. But, if we turn the vic-
tim cache off for the small loop, the elements of the large loop
will remain in the victim cache, reducing the amount of conflict
misses in the victim cache. This, in turn, increases the perfor-
mance of the victim cache.

6 Conclusions
In this paper, we presented a selective cache locality opti-

mization scheme that utilizes both an optimizing compiler tech-
nique and a hardware-based locality optimization scheme. This
scheme combines the advantages of both the schemes. Our sim-
ulation results also confirm this. Also, under different architec-
tural parameters, our scheme consistently gave the best perfor-
mance.
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