
An Integrated Approach for Model Driven Process

Modeling and Enactment

Rita Suzana Pitangueira Maciel

Computer Science Department

Federal University of Bahia

Salvador - Bahia - Brazil

 e-mail: ritasuzana@gmail.com

Bruno Carreiro da Silva, Ana

Patrícia Fontes Magalhães

Faculdade Ruy Barbosa

Salvador Bahia Brazil

e-mail:{brunocarreiro,

anapatriciamagalhaes}@gmail.com

Nelson Souto Rosa

Center of Informatics

Federal University of Pernambuco

Recife – Pernambuco - Brazil

e-mail: nsr@cin.ufpe.br

Abstract— The adoption of MDA in software development is

increasing and is widely recognized as an important approach

for building software systems. However, there´s a lack of

standard terminology and notation addressing design aspects

of an MDA process. The available MDA tools and

environments are particularly focused in defining and

executing model transformations, while a development process

involves other important definitions which should be carried

out during the process enactment. This paper presents an

integrated approach for MDA process modeling and

enactment based on specializations of some SPEM 2 concepts.

To support and evaluate our approach a tool was developed

and applied in two case studies.

Keywords-Model Driven Software Process; Software Process

Metamodel;Model Driven Development; SPEM 2.0; MDA

I. INTRODUCTION

The description of a software process is called a process
model. In many cases software processes adopted in
organizations are poorly documented, or not documented at
all. Even in cases where organizations keep their process
specification and documentation they maintain and define
process elements in ad hoc manner. The lack of a consistent
and standard terminology with distinct notations and natural
language negatively affects process comprehension and
communication among the stakeholders. In such context
process evolution is more difficult and enactment even more
distant from the specification. Consequently, the process
specification becomes obsolete and expensive to maintain.
This can also negatively affect the team productivity and the
quality of the software product [4; 23].

The need for a language or notation especially for
process modeling is not new. In recent years several
researchers have worked on the proposal of Process
Modeling Languages (PMLs). A PML is a particular
language to model and describe software processes. In this
context, PMLs can be used for different purposes [4]:
process understanding, design, training and education,
simulation and optimization, support and enactment.

Several PMLs, such as APEL [2], PROMENADE [3], E
3

language [9] etc. were proposed in the last decade. The most
recent initiative towards standardization is SPEM (Software

Process Engeneering Metamodel Specification) [18]. SPEM
2.0 is a standard proposed and maintained by the Object
Management Group (OMG). It is a metamodel based on
MOF (Meta Object Facility) used to specify software
processes. It also defines a UML profile in order to provide a
mechanism to model processes with the UML language.
There are well known development processes such as RUP
(Rational Unified Process) which have been modeled using
SPEM as a PML [11].

Another proposal focusing on software productivity and
quality is Model Driven Architecture (MDA) [17], which is
also an OMG standard. The MDA specification follows the
Model-Driven Engineering (MDE) philosophy which shifts
the focus of development activities to models and
transformations leading to code generation.

In contrast to traditional development process models, an
MDA process requires the selection of metamodels and
mapping rules for the generation of the transformation chain
which produces models and application code [14]. Thus,
such a kind of process is conceptually driven by process
automation. Once an MDA process is designed, it should be
enacted several times. However, current MDA supporting
tools are particularly interested just in defining and executing
transformations which produce code and deployment
artifacts from models (OptimalJ

1
, AndroMDA

2
, oAW

3
 and

others). Indeed, other activities in a software process are
usually not considered. Tools for process modeling and
specification (e.g. EPF

4
) are not integrated into a UML

modeling tool nor a model transformation engine.
The initiative to integrate process design and enactment

has been investigated [5]. Environments called PSEEs
(Process-Centered Software Engineering Environment) have
been proposed with different characteristics, features and
contexts [1; 5]. However, most of them have shortcomings
regarding process enactment. Some of them have enactable
but proprietary and non-standard PML [25]. In some cases
they have a restricted focus on the management view of a
software development process alone [12]. To the best of our

1
 Compuware Corporation Home Page - http://www.compuware.com/

2
 AndroMDA.org Home - http://www.andromda.org/

3
 Official openArchitectureWare Home page -

http://www.openarchitectureware.org/
4
 Eclipse Process Framework - http://www.eclipse.org/epf/

knowledge there is not a PSEE which supports the enactment
peculiarities of an MDA process, i.e. an integrated
environment including modeling and metamodeling,
definition and execution of model transformations.

Our work presents an integrated approach for MDA
process modeling and enactment. In order to achieve a
standard notation we have specialized some of the SPEM 2.0
concepts to address MDA process definitions explicitly. We
also designate a set of diagrams to model the MDA process
structure and behavior. Therefore, during the process
enactment tools can provide specific features regarding an
MDA process (UML modeling, UML profile application,
model transformations and code generation) besides the
common features of any software process (role assignment,
monitoring management, configuration and change
management, measurement etc). Finally, we have developed
an environment to support our approach.

We have previously presented an approach for the
modeling of MDA processes [15], which was the first step in
the direction of this work. Here, we present the integration of
MDA process modeling with its enactment including a
supporting environment and case studies. The text is
organized as follows: in Section II we discuss the current
approaches and tools for MDA processes; then in Section III
we present our approach for MDA process modeling and
enactment, including a supporting environment; In Section
IV we describe two case studies we have carried out to
assess our approach and finally in Section V we present
conclusions and future works.

II. CURRENT APPROACHES, TOOLS AND ENVIRONMENTS

FOR MDA PROCESSES

In recent years a number of research initiatives related to
MDA have emerged. We divided these approaches in two
categories: processes and methodologies for MDA; and
languages and tools for model transformation.

Since the MDA standard does not define a software
process to apply its concepts, naturally several works have
concentrated on the specification of such processes including
the definition of metamodels, modeling levels (CIM –
Computational Independent Model, PIM – Platform
Independent Model and PSM – Platform Specific Model)
and model transformations. For instance, some of these
proposals include MDA process for middleware specific
services [14], MDD process for web applications [10], MDA
methodology for e-learning systems [24] and fault tolerance
distributed software families [6].

However, most of the approaches for MDA processes
and methodologies are defined using a non-standard notation
and language. Most of them are specified imprecisely in
natural language with supplementary pictures and diagrams.
In fact, there is a lack of consistent terminology since there is
no unified language to specify MDA processes: each one
adopts ad hoc notations and different concepts are used to
define the activities and artifacts for the software
development life cycle. Software process modeling using a
unified and consistent terminology should make
communication, understanding, reutilization, evolution,
management and standardization of the process possible [7].

There is also a model-driven development process called
OpenUP/MDD [19], which is a variation of the Open
Unified Process for MDD. This process was specified
according to the SPEM 2.0 standard using the EPF tool. The
EPF provides an environment for software process modeling
following SPEM. The OpenUP/MDD is a kind of generic
model-driven development process defined to be
customizable for each specific context. As a result, it is an
instance (i.e. a metamodel instance) of the SPEM
metamodel. Therefore, the only difference and advantage in
contrast with the aforementioned MDA process and
methodologies is that it is defined using the SPEM standard
terminology and notation.

The second research initiative is related to model
transformation, which is an essential activity for a model-
driven development. Several languages for model
transformation specification have been proposed and also a
number of transformation engines to carry out the
transformations. At present, there is a variety of open source
and proprietary MDD/MDA tools with different
characteristics and features. We can cite some interesting and
mature tools such as: ATL

5
 language and transformation

engine; Mofscript language and transformation engine
6

;
OptimalJ as a representative of a MDA proprietary tool;
oAW framework; AndroMDA for model to code
transformations, among others.

In spite of the high number of MDA tools already
proposed as well as those used both in academia and
industry, most particularly focus on model transformation
execution and not on process design aspects. In other words,
current MDA supporting tools are specifically interested in
defining and executing transformations which produce code
and deployment artifacts from models. As a result, users can
only access the transformation chain. However, a
development process involves other important definitions
which should be carried out during the process enactment
such as requirements analysis, testing, manual tasks etc. than
just execute model transformations.

Despite the existence of these tools, some problems
emerge due to the lack of integration among them. For
instance, tools for process modeling and specification such
as EPF can not be integrated into a UML modeling tool nor a
model transformation engine. Furthermore, tools for UML
modeling and model transformations encounter limitations in
working together. They are usually restricted in terms of the
interchangeability of models from different versions of the
modeling language created in a bunch of available UML
modeling tools.

5
 ATL Project - http://www.eclipse.org/m2m/atl/

6
 Mofscript Home Page - http://www.eclipse.org/gmt/mofscript/

Figure 1. OMG model layers (adapted from [18]).

III. MDA PROCESS MODELING AND ENACTMENT

According to the OMG model layers shown in Fig. 1, a
specific software development project is placed at level M0,
i.e. the layer where a development team works on a project
enacting a process which is specified in the level above
(M1). RUP, XP, OpenUP/MDD and other processes are
situated at M1. Process models in M1 are designed according
to a process metamodel (i.e. a metalanguage to specify
process models) which corresponds to level M2. For
instance, SPEM was used to design the well-known RUP
process model. As highlighted in Fig. 1, our approach is
placed in level M2. Thus, an MDA process model (located in
level M1), can be designed and will be available on the
development of new projects in level M0. The proposed
approach includes the following elements: (1) SPEM
metamodel slice with a specialization of some concepts
according to MDA; (2) indication of a set of diagrams for
modeling the process structure and behavior.

The definition of MDA process concepts at metamodel
level (M2) is important to provide a meaningful way to
design software processes with explicit characteristics of an
MDA process. Unlike the OpenUP/MDD process, we
decided to add the MDA concepts at the metamodel level.
Consequently, any MDA process definition modeled in M1
can be used during the process enactment in M0 providing
specific features according to it. The MDA process
metamodel, which is placed in level M2 is detailed in the
next subsection.

A. MDA Process Modeling

Our approach is based on the metamodel illustrated in
Fig. 2. This metamodel extends some of the SPEM 2
concepts specializing them for the MDA context.

The process specification needs static and reusable
definitions such as Disciplines, Tasks, Roles and
WorkProducts (from the method content package in Fig. 2).
A Role defines a set of related skills, competencies and
responsibilities of an individual or a set of individuals.
Individuals should play their Roles performing Tasks that

can be associated to input and output WorkProducts. A Task
may comprise many Steps to describe a meaningful and
consistent part of the overall work. The Discipline represents
a collection of Tasks which are related to a major ‘area of
concern’ within the overall project. WorkProducts are in
most cases tangible artefacts consumed, produced, or
modified by Tasks.

In our approach, the WorkProduct is specialized into four
kinds of artefacts: the UMLModel, produced by a process
role or automatically generated by a transformation during
the process execution; TransformationRule contains the rules
for model transformation and code generation during the
process execution; ExtraModel, used only for documentation
and are based on text or supplementary notations; and Profile
to represent an UML profile to base the modeling on each
phase. Transformation rules are used in MDA process to
automatically transform UML models. Each transformation
rule should refer to at least one source model and generate
one or more target models. Based on the above definitions,
the MDA process structure is specified according to the
metamodel shown in the second part of Fig. 2. As illustrated,
a Process has a life cycle composed of a set of sequential
Phases performed in Iterations. In terms of MDA, these
phases represent the modeling of CIM (Computational
Independent Model), PIM (Platform Independent Model),
PSM (Platform Specific Model) and Codification. Each
Modeling Phase can be associated to UML profiles defined
to address specific characteristics of a particular domain or
platform.

Based on the metamodel presented in Fig. 2, an MDA
process should be specified by the construction of three
kinds of UML diagrams: class, use case and activity
diagrams.

Table 1 presents the SPEM 2 stereotypes [18] (second
column) extended in our metamodel and their usage in the
three indicated UML diagrams (first column). The third
column refers to the UML base element according to each
SPEM stereotype. For example, in a use case diagram Tasks
are modeled as use cases, while in the activity diagram they
are modeled as actions.

.

Figure 2. Specialized metamodel from some SPEM 2 concepts.

TABLE I. STEREOTYPES OF SPEM 2 ASSOCIATED TO UML DIAGRAMS

AND ELEMENTS

Diagram SPEM Stereotype
UML

Element

Class

Package, Role, WorkProduct, Task,

Step, Discipline, Phase, Iteration,

TaskUse

Class

Use Case
Role Actor

Task, WorkProduct Use Case

Activity
Task Action

Workproduct Object

In this case, the class diagrams are used to specify the

elements of a knowledge base (method content) and the
process life cycle overall static structure. This is the first
diagram that should be constructed as the elements are used
to elaborate later diagrams. The use case diagrams are used to
provide a specific view associating Roles to perform Tasks
and also the used/produced WorkProducts.

The activity diagrams are used to model the process
workflow, i.e, the behavior associated to the process
execution in terms of Phase/Iterations and the selected Steps
(TaskUse). This last diagram is also important because it
defines when the transformations should be applied
according to the workflow of tasks.

In summary, the model of an MDA process should
contains definitions about phases and iterations, process
roles, tasks, workproducts (consumed and produced) from
different kinds, metamodels and transformation rules. All

these definitions are input information for the process
enactment supported by automation.

B. MDA Process Enactment

An MDA process is a software process too. There are
manual, semi-automatic and automatic activities involved in
the enactment of an MDA process. The use of a PML is
essential to enable the process enactment with automation.
Our approach provides a meaningful way to design MDA
processes using a PML enabling further enactment of such a
process with automated support. An environment for the
enactment of a software process model is important to
provide a variety of features such as software developer
assistance, automation of routine tasks, invocation and
control of software development tools, and enforcement of
mandatory rules and practices [1].

The metamodel extension of the SPEM standard
(explained in section III subsection A) was essential to
enable the elaboration of process models with necessary and
explicit information about MDA processes. By the definition
of the process structure and behavior the enactment can be
supported by a tool environment providing responsibilities
assignment by roles definition to specific professionals in the
software team, guidance to perform process tasks,
management control, measurement, execution of model
transformations, code generation and so on. All the necessary
process information should be available in the MDA process
model, which should follows the extended metamodel (Fig.
2) and the indicated diagrams (Table 1).

Figure 3. The Transforms Tool Overview.

C. Transforms: Supporting Environment for MDA Process

Modeling and Enactment

An environment called Transforms has been developed
to support the modeling and enactment of MDA processes
according to our approach. This environment is divided into
two main modules as illustrated in Fig. 3.

The first module provides design and customization of
MDA processes offering a graphic editor to model the
process structure and behavior. The set of graphic editors
allows engineers to model their processes according to the
proposed approach. It is also possible to specify a process
using a breakdown structure and automatic generate
diagrams to represent it graphically.

Besides these features, we integrated editors for two
model transformation languages to write model-to-model
and model-to-text transformations, and a UML profile editor
to be used during the process specification. In this way, a
user can create their own UML profiles and/or write their
own transformation rules without going to other tools. All
the process specification is stored in a process repository and
so it becomes available to be enacted with automated
support.

The other module is for the MDA process enactment. At
this stage our environment provides the registration of
professionals of a software team and the roles assigned to
each one of them, the possibility to view all the process
definitions (phases, iterations, artifacts etc.) including the
tasks and their status, an integrated environment for UML
modeling and model transformation execution, and a
management view of process tasks and artifacts during the
MDA software project execution. At the end of the process
enactment the Transforms should provide all the created
models by the project team, generated code and models by
transformations, and the history of tasks (manually or

automatically executed). Some screenshots and examples
from a case study using our approach and the Transforms
environment are presented in section IV.

IV. CASE STUDIES

This section presents two case studies we performed to
evaluate the applicability of our approach in two different
situations. First, in section IV subsection A we explain the
modeling and enactment of an MDA process for
development of specific middleware services. This case
study was an initial effort to verify the feasibility of our
approach. In section IV subsection B we present part of the
experience in modeling a process of a real company which
was important to assess the applicability of our work.

A. An MDA Process for Specific Midleware Services

Services Specific middleware services consist of a layer
above the common middleware services that embody
knowledge of a specific domain within the middleware.
Domain-specific middleware services are not standardized.
Their implementations are usually tightly coupled to the
middleware platform. This implementation modeling
requires considerable effort that certainly would not be
rewarded if the service use were restricted to a specific
middleware platform [21]. The MDA process goals
presented in [13] encompass the specification and
implementation of portable specific middleware services.
This process was applied to the development of the InterDoc
(Reference Architecture for Interoperable Services in
Collaborative Writing Document Environments) [13; 14].

Figure 4. CIM phase static structure.

This MDA process includes the following elements:

(1) Three modeling phases according to the MDA
specification (CIM, PIM and PSM) (2) part of the EDOC
(Enterprise Distributed Object Computing) [16] and UML
for RM-ODP (Reference Model Open Distributed
Processing) [8] metamodels (3) indication of a set of
diagrams for each modeling phase (4) workflows to guide
the modeling tasks and (5) mapping rules among the UML
models to carry out the model transformations.

According to the MDA concepts the CIM Phase, called
Domain Model, corresponds to the context in which the
service should be applied. This category includes
Enterprise and Information viewpoints. The PIM phase,
called Design Model, describes the Computational view of
the specified Domain model. The services to be offered
and their operations are defined in this model. The
Operational Model describes the application execution
environment in a specific platform and corresponds to the
specification of Engineering and Technology viewpoints.
At this stage, the MDA process allows the definition of
specific middleware services for CCM and EJB platforms.

The MDA process for specific middleware services
was originally described without any standard language.
Tables, illustrations and textual documents were used to
represent the process specification. Tools were developed
to support the automation of model transformations related
to the process [22; 20]. However, the difficulty in
understanding, reusing and evolving the process structure
and behavior across development teams became evident.

In order to adopt the approach presented in section III,
we mapped the process characteristics to the concepts and
associations of the metamodel in Fig. 2. Six disciplines
were defined to group related tasks: Enterprise View;
Information View; Computational View; Engineering
View; Technology View; and Services Implementation.

As described in section III, subsection A the class
diagram is the first to be specified. It defines the overall
structure of the MDA process. Two class diagrams were
designed: one representing the method content and the
other representing the process structure. Due to lack of
space here, we present the method content class diagram
for only a piece of the Enterprise View discipline and
some of their related Tasks, Roles and WorkProducts in
Fig. 4. Two UML profiles are used in the domain
modeling (see their stereotype in the illustrated diagram):
the UML profile for RM-ODP, and the EDOC UML
profile. There might also be transformation rules to map
elements from one phase to another, for example the
RM_ODPtoBP_EDOC transformation. The Enterprise
View discipline includes five tasks (not all illustrated in the
diagram): Community and Objective Description, Main
Policies and Constraint Definition, Business Process
Composition, Activities Definition and Behavior
Definition. Moreover, each activity may use one or more
WorkProducts as input and/or produce new ones as output.
For example, a use case and a class diagram are produced
(see the UmlModel stereotype) as a result of the
community and objective description.

Fig. 4 also illustrates the class diagram editor. The
right palette organizes the necessary buttons to model the
structural and static view of the method content. The editor
only allows the modeling according to the metamodel
defined in Fig. 2. The process life cycle is divided into
three modeling phases (CIM. PIM, PSM) and codification.
Each phase may comprise several iterations allowing
incremental process development. TaskUses were selected,
according to the steps previously defined in the method
content, to be performed during the iterations. Fig. 5
shows the activity diagram for the CIM phase which is
composed of a rich variety of Tasks, represented by their
TaskUses and associated WorkProducts.

Figure 5. An activity diagram for the CIM phase.

The Tasks presented in Fig. 5 are included in the

Enterprise View Discipline required to perform the CIM. The
activity diagram starts with the domain Objective Definition,
followed by the domain Community Description, which
produces a WorkProduct (see the UmlModel stereotype).
This artifact is a use case diagram related to the Community
Description. Afterwards, the domain Main Policies
Constraints Definition should be defined producing an
artifact as result (see the ExtraModel stereotype in the
illustrated diagram), which can be a text document or a
diagram in any other additional notation. Concurrently, the
Process Composition Diagram should be defined using a
top-down approach, i.e. the business process is gradually

broken down into fine-grained activities. The final task maps
the models defined using the RM-ODP metamodel to a new
representation based on the metamodel of the
BusinessProcess profile. This last task comprises the
execution of the model transformation.

Fig. 6 illustrates an ATL model transformation rule being
edited on the Transforms MDA Process Editor. The left side
depicts the process breakdown structure with its definitions,
while in the right side the editor area is open with an ATL
transformation rule called BPtoCCA.

Figure 6. Creating a transformation rule on Transforms MDA Process Editor

Figure 7. Creating a transformation rule on Transforms MDA Process Editor.

Fig. 7 shows a screenshot of the Transforms MDA
Process Executor taken during the case study. The
breakdown structure on the left side represents the project
execution in terms of the process definitions previously
specified using the Transforms Pocess Editor. Tasks marked
in green were already performed, while tasks in red have not
been started. The right side of the Transforms executor is
used to edit UML model (as shown in the Fig. 7) and to
describe the tasks execution. Also, it is possible to execute
model transformations by just clicking on the corresponding
tasks.

B. PRODEB Process for Web Applications

We have performed a case study with the Data-
Processing Company of Bahia State in Brazil (PRODEB).
This study involved the modeling of the PRODEB process
for the development of web applications using the MDA
approach.

PRODEB had been using the AndroMDA tool for a
couple of months during the development of a web-based

application. However, they encountered limitations related to
the tool environment and especially because the process
definitions (phases, activities, artifacts, roles, transformations
etc.) were not specified and documented. Therefore, the
process knowledge had not been registered so far.
Furthermore, as MDA is an emerging technology, not all
professionals were familiar wiht it. Most of the PRODEB
staff did not know the reason why they had to stereotype
UML elements or why to elaborate some models, which are
necessary activities for the AndroMDA tool. In this context,
we worked together with the professionals from PRODEB
team for a couple of months in order to model the PRODEB
process using our approach.

The class diagram in Fig. 8 partially illustrates the
PRODEB process structure. In this figure, we show the CIM
phase called Business, two iterations – Data Collection and
Documentation Refinement, and also the tasks used in each
iteration.

Figure 8. Partial class diagram for the business modeling phase.

Figure 9. Activity diagram referring to the business modeling phase (CIM).

The activity diagram in Fig. 9 shows the workflow of

tasks designed for the Business phase. All the tasks compose
the behavior of the Business phase corresponding to the
structural definition of the class diagram in Fig. 8. On the left
side of Fig. 9, we organized the tasks from the Data
Collection iteration, while on the right side we put the tasks
from the Documentation Refinement iteration. The activity
diagram initiates with the task Plan Project. Afterwards, the
tasks Elicit Requirements and Build Prototype can be
performed concurrently. Finally, the tasks Verify Artifacts
and Validate Artifacts should be executed respectively in
sequence. In the same phase, another iteration should be
taken into account. The Documentation Refinement iteration
comprises five tasks which are performed sequentially
(Define Architecture, Detail Requirements, Elaborate Tests,
Verify Documents and Finalize CIM).

C. Results and Lessons Learned

Based on the case studies, we have observed that
difficulties in process comprehension, mostly in relation to
the execution sequence of activities, were eliminated. At
several moments developers gave suggestions on how to
improve the specification of the current MDA process [20].
In particular, in the PRODEB case study, as the process was
designed the professionals from PRODEB could better
understand their own work and they used our meetings to
discuss new definitions and elements to improve their
process.

Additionally, we applied a questionnaire with 6 questions
to collect data from their experience. The questionnaire was
answered by professionals with different skills and functions
in the company, such as business and system analysts,
software designers and quality analysts. The results are
summarized in Fig. 10.

We concluded that the results depicted in Fig. 10 were
positive. Most of the answers ranged from Good to Very
Good. There were only two absent answers and the
Insufficient alternative wasn’t checked for any question.
Besides, we also collected commentaries which were
optionally filled by the participants. Of course it is clear that
this numbers are by no means statistically relevant.
However, it represents just one of the important feedbacks
we have gathered from the study. Also, we are considering
new cooperative work to be conduced with PRODEB
regarding another case study.

We can also compare an MDA process designed with
SPEM 2.0 – e.g. the OpenUP/MDD - with those MDA
processes we have presented in Section IV. In contrast to the
OpenUP/MDD process, we found that our metamodel
provides greater flexibility in the specification of MDA
process elements. First, as we mentioned in Section III, the
OpenUP/MDD is a process model at level M1, while our
approach address the MDA process concepts at level M2. As
a result, with OpenUP/MDD there is a process to be
executed in a model driven development context, while with
our approach there is a PML to specify model driven
development processes according to some organization
needs including the OpenUP/MDD itself.

Additionally, we found benefits during the enactment of
the case study described in Section IV, subsection A. We
could handle the process definitions designed based on our
metamodel providing specific support for modeling, UML
profile application, code generation, model transformation,
task management and so on, using our environment.
Therefore, we can conclude that our approach has
contributed to the comprehension, evolution, reuse and
enactment of the MDA processes we have worked on.

Figure 10. Results from the questionnaire.

V. CONCLUSIONS AND FUTURE WORKS

This paper has presented an approach for software
process modeling and enactment based on the concepts of
the SPEM 2 and MDA standards. We have specialized some
of the SPEM 2 metamodel elements to provide a specific
language to define model-driven processes according to the
MDA. As the SPEM metamodel has a UML profile, our
metamodel can be used through any UML modeling tool.

Our approach is based on several OMG standards (SPEM
2, UML 2, XMI and MDA), which guarantee the
interoperability of models proposed by MDA. Therefore the
methodologies and tools that assist in the development of
applications and use these standards will have the same
conceptual and notational framework. This aspect facilitates
the understanding of models both by development teams and
by process automation tools.

Moreover, we have developed an environment divided
into two main parts. One for process modeling including:
graphic editors specific for process modeling according to
our metamodel, transformation rule editors, and also graphic
forms and a breakdown structure as an alternative to process
elaboration and organization. The second part of the
environment is dedicated to the MDA process enactment
which includes registration of the software team and role
assignments, registration of task status, an integrated UML
modeling tool and also engines for model transformation.

The contributions achieved in this current work represent
a first effort towards a PSEE (Process-Centered Software
Engineering Environment) for MDA software processes. Our
ongoing and future work encompasses support for
configuration management, providing traceability
mechanisms across the process artifacts, and integrating an
approach for model-driven testing. We are also planning new
case studies to perform more in depth evaluations involving
quantitative assessment with new goals and new target
processes.

ACKNOWLEDGMENT

We would like to thank the PRODEB team and all the
professionals who collaborated to us during the case study.

This work is partially funded by Fapesb, project number
8694/2006, and grant number 0020/2006.

REFERENCES

[1] Ambriola, V., Conradi, R., and Fuggetta, A. (1997). Assessing
process-centered software engineering environments. ACM Trans.
Softw. Eng. Methodol. p. 283-328.

[2] Dami, S., Estublier, J. and Amiour, M. (1998) APEL: a Graphical Yet
Executable Formalism for Process Modeling. Automated Soft. Eng..
Vol 5, January, pp. 61-96.

[3] Franch, X. and Ribó, J. M. (1999). “Using UML for Modelling the
Static Part of a Software Process”. In: UML99 - Beyond the Standard
2nd Int’l Conf., Fort Collins - USA, October 28-30.

[4] Fuggetta, A. (2000). “Software Process: A Roadmap”. In:
Proceedings of the Intl. Conference on the Future of Software
Engineering. ACM, New York, NY, p. 25-34.

[5] Gruhn, V. (2002). Process-Centered Software Engineering
Environments, A Brief History and Future Challenges. Ann. Softw.
Eng. 14, 1-4 (Dec. 2002), 363-382.

[6] Guelfi, N. et al. (2003) “DRIP Catalyst: An MDE/MDA Method for
Fault-tolerant Distributed Software Families Development”. In:
OOPSLA Workshop on Best Practices for Model Driven Software
Development. Canada.

[7] Humprey, W., Kelner,M. (1989). “Software Modeling: Principles of
Entity Process Models”. SEI. Software Engineering Institute,
Carnegie Mellon University. Pittsburgh, Pennsylvania, (CMU/SEI-
89-TR-2).

[8] ISO. (2004). Use of UML for ODP system specification. Working
Draft. ISO/IEC JTC1/SC7, 2004.

[9] Jaccheri, M. L., Baldi M., Divitini M. (1999). “Evaluating the
requirements of software process modeling languages and systems”.
In: Process Support for Distributed Team-based Software
Development. In: PDTSD99, Orlando, Florida, p. 570-578, August.

[10] Koch, N. (2006). “Transformation Techniques in the Model-Driven
Development Process of UWE”. In: Workshop Proc. of the 6th intl.
Conference on Web Engineering (Palo Alto, California). ICWE '06,
vol. 155. ACM, New York, NY, 3.

[11] Kroll, P. (2003). “The RUP: An Industry-wide platform for Best
practices”. Available at:
http://www.ibm.com/developerworks/rational/library/873.html.

[12] Lima, A. et al. (2006). Gerência Flexível de Processos de Software
com o Ambiente WebAPSEE. In 20º Simpósio Brasileiro de
Engenharia de Software – Sessão de Ferramentas, Florianópolis -
Brasil.

[13] Maciel, R., Ferraz, C., Rosa, N. (2005). “An MDA Domain Specific
Architecture to Provide Interoperability Among Collaborative
Environments”. In 19th Brazilian Symposium on Software
Engineering, PUC-RIO, p. 120-135.

[14] Maciel, R., Silva, B. C. and Mascarenhas, L. A. (2006). “An Edoc-
based Approach for Specific Middleware Services Development”. In:
4th Workshop on MBD of Computer Based Systems, Postdam,
Germany. Proc. IEEE Press, p:135–143.

[15] Maciel, R., Silva, B., Magalhães, A. and Rosa, N. (2009). “An
Approach to Model-Driven Development Process Specification”. In:
11th International Conference on Enterprise Information Systems,
Milan. Proc. ICEIS’09. p. 27-32.

[16] OMG. (2002). EDOC - UML Profile for Enterprise Distributed
Object Computing Specification. OMG Adopted Specification
(ptc/02-02-05).

[17] OMG (2003). MDA Guide. Version 1.0.1 (omg/2003-06-01).

[18] OMG (2008). Software Process Engineering Metamodel
Specification, Version 2.0, (formal/08-04-01).

[19] OpenUP Component – MDD (2008). Available at:
http://www.eclipse.org/epf/openup_component/mdd.php.

[20] Pasini, K. et al. (2008). “Uma Solução para Apoiar um Processo de
Desenvolvimento Dirigido a Modelos Usando
openArchitectureWare”. In: IX Free Software Workshop / 9th Intl.
Forum of Free Software, Porto Alegre, Brazil, p. 121-126.

[21] Schantz, R., Schmidt, D. (2001). Middleware for Distributed
Systems: Evolving the Common Structure for Network-centric
Applications. Encyclopedia of Software Engineering, Wiley & Sons.

[22] Silva, B., Maciel, R. and Mascarenhas, L. (2006). “Transforms: Uma
Ferramenta MDA/EDOC para Desenvolvimento de Serviços
Específicos de Middleware”. In: 20th Brazilian Symposium on Soft.
Eng. – Tools Session. Florianópolis, p. 19-24.

[23] Sommerville, I. (2006). Software Engineering. 8th edition, Pearson
Education.

[24] Wang, H., Zhang, D. (2003). “MDA-based Development of E-
Learning System”. In: 27th International Computer Software and
Applications Conference, Texas. Proc. California: IEEE Press, p.
684.pi.

[25] Zamli, K. Z. and Lee, P. A. (2001). “Taxonomy of Process Modeling
Languages”. In: Proceedings of the ACS/IEEE international
Conference on Computer Systems and Applications. IEEE Computer
Society, Washington, DC, 435.

