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Abstract. A patient-specific surface model of the proximal femur plays an 

important role in planning and supporting various computer-assisted surgical 

procedures including total hip replacement, hip resurfacing, and osteotomy of 

the proximal femur. The common approach to derive 3D models of the 

proximal femur is to use imaging techniques such as computed tomography 

(CT) or magnetic resonance imaging (MRI). However, the high logistic effort, 

the extra radiation (CT-imaging), and the large quantity of data to be acquired 

and processed make them less functional. In this paper, we present an integrated 

approach using a multi-level point distribution model (ML-PDM) to reconstruct 

a patient-specific model of the proximal femur from intra-operatively available 

sparse data. Results of experiments performed on dry cadaveric bones using 

dozens of 3D points are presented, as well as experiments using a limited 

number of 2D X-ray images, which demonstrate promising accuracy of the 

present approach.  

Keywords: surface reconstruction, surgical navigation, X-ray, point 

distribution model, statistical shape analysis. 

1   Introduction 

A patient-specific surface model of the proximal femur plays an important role in 

planning and supporting various computer-assisted surgical procedures including total 

hip replacement, hip resurfacing, and osteotomy of the proximal femur. The common 

approach to derive 3D models of the proximal femur is to use imaging technique such 

as computed tomography (CT) or magnetic resonance imaging (MRI). However, the 

high logistic effort, the extra radiation associated with the CT-imaging, and the large 

quantity of data to be acquired and processed make them less functional. The 

alternative presented here is to reconstruct the surface model using sparse input data 

consisting of dozens of surface points (e.g. 50 points) or a limited number of 

calibrated fluoroscopic images (e.g. 2 to 4 images). 

Constructing an accurate 3D surface model from sparse input data is a challenging 

task. Additionally, inherent to the navigation application is the high accuracy and 
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robustness requirements. When surface reconstruction is used for the purpose of 

surgical guidance, it requires that the algorithm satisfies the following criteria: (a) 

accurate geometrical information about the underlying anatomical structure can be 

derived from the reconstructed surface model; (b) target reconstruction error of the 

reconstructed surface model should be in the range of surgical usability, which is 

typically in the area of 1.5 mm average error (2 to 3 mm worst case) [1]; (c) 95% 

success rate is normally required, when an appropriate initialization is given [1]; (d) 

minimal user interaction during data acquisition and algorithm execution is highly 

appreciated for a sterilized environment; and (e) the algorithm should be robust to 

outlying data. In the present paper, we try to solve the problem in an accurate and 

robust way. At the heart of our approach lies the combination of sophisticated surface 

reconstruction techniques and a multi-level point distribution model (ML-PDM) of 

the target anatomical structure. 

The paper is organized as follows. Section 1 reviews the related work. Section 2 

presents the construction of the ML-PDM of the proximal femur. Section 3 describes 

the integrated approach combining our previous works on 3D-3D surface 

reconstruction [2, 3] and those on 2D-3D surface reconstruction [4, 5]. Experimental 

results using both 3D sparse point set as well as 2D X-ray images are described in 

Section 5, followed by conclusions in Section 6. 

2   Related Works 

Statistical shape analysis [6, 7, 8] is an important tool for understanding anatomical 

structures from medical images. A statistical model givens an effective 

parameterization of the shape variations found in a collection of sample models of a 

given population. Model based approaches [9, 10, 11] are popular due to their ability 

to robustly represent objects. Intraoperative reconstruction of a patient-specific model 

from sparse input data can be potentially achieved through the use of a statistical 

model. Statistical model building consists of establishing legal variations of shape 

from a training population. A patient-specific model is then instantiated through 

fitting the statistical model to intraoperatively acquired data. Thus, the aim of the 

statistical instantiation is to extrapolate from sparse input data a complete and 

accurate anatomical representation. This is particularly interesting for minimally 

invasive surgery (MIS), largely due to the operating theater setup. 

Several research groups have explored the methods for reconstruction a patient-

specific model from a statistical model and sparse input data such as digitized points 

[2, 3, 12, 13, 14, 15], a limited number of calibrated X-ray images [4, 5, 16, 17, 18, 

19, 20], or tracked ultrasound [21, 22, 23, 24]. Except the method presented by Yao 

and Taylor [17], which depends on a deformable 2D/3D registration between an 

appearance based statistical model [25] and a limited number of X-ray images, all 

other methods have their reliance on a point distribution model (PDM) in common. In 

Fleute and Lavallée [12], a statistical shape model of the distal femur was fitted to 

sparse input points by simultaneously optimizing both shape and pose parameters. 

Their technology has been incorporated into a system for computer-assisted anterior 

cruciate ligament surgery and preliminary results were published in [13]. Chan et al. 

[21, 22] used a similar algorithm, but optimized the shape and pose parameters 
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separately. Tracked ultrasound was used as the input in their work to instantiate 3D 

surface models of the complete femur and pelvis from their associated statistical 

shape models. Following the seminal work of Blanz and Vetter for the synthesis of 

3D faces using a morphable model [26], Rajamani et al. [14, 15, 23] incorporated a 

Mahalanobis prior for a robust and stable surface model instantiation. In our recent 

work [2, 3], we proposed to use the dense surface point distribution model (DS-PDM) 

and a reconstruction scheme combining statistical instantiation and kernel-based 

deformation for an accurate and robust reconstruction of a patient-specific surface 

model of the proximal femur from dozens of points. This reconstruction scheme has 

also been combined with a novel 2D-3D correspondence establishing algorithm [27] 

for reconstructing surface model of the proximal femur from a limited number of 

calibrated X-ray images [4, 5]. 

3   Multi-level Point Distribution Model Construction 

The ML-PDM used in this paper was constructed from a training database consisting 

of 30 proximal femoral surfaces from above the lesser trochanter. In the coarsest 

level, a sequence of correspondence establishing methods presented in [28] was 

employed to optimally align surface models segmented from CT volume. It started 

with a SPHARM-based parametric surface description [29] and then was optimized 

using Minimum Description Length (MDL) based principle as proposed in [30]. 

Following the alignment, the PDM in this level is constructed as follows. Let 
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Where x  and D  represents the mean vector and the covariance matrix respectively.  
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The vertices for constructing the denser point distribution model in a finer 

resolution are then obtained by iteratively subdividing the aligned surface model in 

the coarser resolution. The basic idea of subdivision is to provide a smooth limit 

surface model which approximates the input data. Starting from a mesh in a low 

resolution, the limit surface model is approached by recursively tessellating the mesh. 

The positions of vertices created by tessellation are computed using a weighted stencil 

of local vertices. The complexity of the subdivision surface model can be increased 

until it satisfies the user’s requirement. 

In this work, we use a simple subdivision scheme called Loop scheme, invented by 

Loop [31], which is based on a spline basis function, called the three-dimensional 

quartic box spline. The subdivision principle of this scheme is very simple. Three new 

vertices are inserted to divide a triangle in a coarse resolution to four smaller triangles 

in a fine resolution. 

Loop subdivision does not change the positions of vertices on the input meshes. 

Furthermore, positions of the inserted vertices in a fine resolution are interpolated 

from the neighboring vertices in a coarse resolution. As the input surface models have 

been optimized for establishing correspondences, it is reasonable to conclude that the 

output models are also aligned. Principal component analysis can be applied on these 

dense surface models to establish a dense surface point distribution model (DS-PDM). 

In our previous work [2], we found that a single level subdivision is enough for our 

purpose, which results in 16386 vertices for each surface model. We thus created a 

two-level point distribution model (TL-PDM). 

4   The Integrated Surface Model Reconstruction Approach 

Based on the two-level point distribution model, we developed an integrated surface 

model reconstruction approach which can seamlessly handle both 3D sparse points and 

a limited number of X-ray images. When a set of 3D points are used, the fine level 

point distribution model (FL-PDM) will be chosen, which facilitates the point-to-

surface correspondence establishment. But if the input is a limited number of calibrated 

X-ray images, we will use the coarse level point distribution model (CL-PDM) to 

speed up the computation. For completeness, we will briefly present these two methods 

below. Details can be found in our previously published works [2, 3, 4, 5]. 

3D-3D Reconstruction Method [2, 3]: The reconstruction problem is formulated as a 

three-stage optimal estimation process. The first stage, affine registration, is to 

iteratively estimate the scale and the 6 degree-of-freedom rigid transformation 

between the mean shape of the PDM and the sparse input data using a correspondence 

building algorithm and a variant of iterative closest point (ICP) algorithm [32]. The 

estimation results of the first stage are used to establish point correspondences for the 

second stage, statistical instantiation, which optimally and robustly instantiates a 

surface model from the PDM using a statistical approach [14]. The instantiated 

surface model is taken as the input for the third stage, deformation, where the input 

surface is further deformed by an approximating thin-plate spline (TPS) based vector 

transform [33] to refine the statistically instantiated surface model. 
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2D-3D Reconstruction Method [4, 5]: Our 2D-3D reconstruction approach 

combines statistical instantiation and regularized shape deformation as described 

above with an iterative image-to-model correspondence establishing algorithm [27]. 

The image-to-model correspondence is established using a non-rigid 2D point 

matching process, which iteratively uses a symmetric injective nearest-neighbor 

mapping operator and 2D thin-plate splines based deformation to find a fraction of 

best matched 2D point pairs between features detected from the fluoroscopic images 

and those extracted from the 3D model. The obtained 2D point pairs are then used to 

set up a set of 3D point pairs such that we turn a 2D-3D reconstruction problem to a 

3D-3D one, which can be solved by the 3D-3D reconstruction approach as described 

above. 

5   Experimental Results 

We designed and conducted experiments on 18 cadaveric femurs (Note: none of them 

has been included for constructing the TL-PDM) with different shape to validate the 

present integrated approach. 3D point sets as well as calibrated X-ray images were 

used.  

Reconstruction error measurement: To quantify the reconstruction error, Target 

Reconstruction Error (TRE) was used. The TRE is defined as the distance between 

the actual and the reconstructed position of selected target features, which can be 

landmark points or bone surfaces themselves. 

Validation experiments: Two different types of sparse data were explored in two 

experiments: (1) using clinically relevant sparse points directly acquired from the 

surfaces of 7 cadaveric femurs; (2) using a limited number of calibrated fluoroscopic 

images of the other 11 cadaveric femurs. To evaluate the reconstruction error, we 

acquired another set of landmarks from each surface of the dry cadaveric femurs 

(Please note that these landmarks were not used in the reconstruction procedures but 

for the accuracy evaluation purpose). Then, the TRE was measured by calculating the 

distances between these landmarks and the associated reconstructed surface model. 

Results of the first experiment: Total hip replacement and hip resurfacing 

procedures operated with posterior approach were identified as the potential clinical 

applications. At one stage of such surgeries, after internal rotation and posterior 

dislocation of the hip, most of the femoral head, neck, and some part of trochantric 

and intertrochantric (crest and line) regions are exposed [34]. Obtaining sparse 

surface points from these intraoperatively accessible regions and reconstructing a 

patient-specific 3D surface model of the proximal femur with reasonable accuracy 

will be useful for the above mentioned surgeries. In this experiment, one set of 50 

points was used to reconstruct the surface model of each cadaveric bone and the other 

set consisted of 200 points was used to evaluate the reconstruction errors. The results 

of surface reconstruction using clinically relevant sparse points are presented in  

Fig. 1. For each case, the overall execution time was less than one minute. 
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Results of surface construction using clinically relevant data
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Fig. 1. Errors of reconstructing surface models of seven cadaver femurs using clinically 

relevant data 

Results of the second experiment: In this experiment, two studies using different 

number of images were performed for each bone. In the first study two images 

acquired from anterior-posterior (AP) and lateral-medial (LM) directions were used to 

reconstruct the surface model of each cadaveric femur. In the second one, an image 

acquired from oblique direction was additionally used together with the above 

mentioned AP and LM images.  

The reconstruction accuracies were evaluated by randomly digitizing 100 – 200 

points from each surface of the cadaveric specimen and then computing the distance 

from those digitized points to the associated surface reconstructed from the images. 

The median and mean reconstruction errors of both experiments are presented in 

Table I. An average mean reconstruction error of 1.2 mm was found when only AP 

and LM images were used for each bone. It decreased to 1.0 mm when three images 

were used. Different stages of one reconstruction example are presented in Fig. 2. 

Table 1. Reconstruction errors when different number of images were used 
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Fig. 2. Different stages of reconstruction. First: one of the acquired images. Second: the 

initialization of the mean model of the PDM. Third: after establishing image-to-model 

correspondence. Fourth: after 3D paired point matching. Fifth: after re-establishing 

correspondence; Sixth: the final reconstruction result after a series of computations. 

6   Conclusions 

We have presented an integrated approach using the ML-PDM for robust and accurate 

anatomical shape reconstruction from sparse input data. Based on the modalities of 

the input data, the appropriate level point distribution model was used. In this 

approach, the 3D-3D reconstruction problem is formulated as a three-stage optimal 

estimation process. In each stage, the best result is optimally estimated under the 

assumption for that stage, which guarantees a topologically preserved solution when 

only sparse points are available. The FL-PDM is employed in all stages to facilitate 

the correspondence establishment. When a limited number of calibrated X-ray images 

are used, the CL-PDM is employed to speed up the computation. A 2D-3D 

correspondence establishing algorithm based on a non-rigid 2D point matching 

process is applied to convert a 2D-3D problem to a 3D-3D one. 

The proposed approach is generic and can be easily extended to other rigid 

anatomical structures, though in this paper we only demonstrate its application for 

reconstructing surface models of the proximal femur.  
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