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Abstract. Agents (hardware or software) that act autonomously in an environment have to be able to
integrate three basic behaviors: planning, execution, and learning. This integration is mandatory when
the agent has no knowledge about how its actions can affect the environment, how the environment
reacts to its actions, or, when the agent does not receive as an explicit input, the goals it must achieve.
Without an “a priori” theory, autonomous agents should be able to self-propose goals, set-up plans
for achieving the goals according to previously learned models of the agent and the environment,
and learn those models from past experiences of successful and failed executions of plans. Planning
involves selecting a goal to reach and computing a set of actions that will allow the autonomous
agent to achieve the goal. Execution deals with the interaction with the environment by application
of planned actions, observation of resulting perceptions, and control of successful achievement of
the goals. Learning is needed to predict the reactions of the environment to the agent actions, thus
guiding the agent to achieve its goals more effi iently.

In this context, most of the learning systems applied to problem solving have been used to learn
control knowledge for guiding the search for a plan, but few systems have focused on the acquisition
of planning operator descriptions. As an example, currently, one of the most used techniques for the
integration of (a way of) planning, execution, and learning is reinforcement learning. However, they
usually do not consider the representation of action descriptions, so they cannot reason in terms of
goals and ways of achieving those goals.

In this paper, we present an integrated architecture, LOPE, that learns operator def nitions, plans
using those operators, and executes the plans for modifying the acquired operators. The resulting
system is domain-independent, and we have performed experiments in a robotic framework. The
results clearly show that the integrated planning, learning, and executing system outperforms the
basic planner in that domain.

Key words: autonomous intelligent systems, embedded machine learning, planning and execution,
reinforcement learning, theory formation, theory revision, unsupervised machine learning.

1. Introduction

Autonomous intelligent behavior is an area with an emerging interest within Ar-
tif cial Intelligence researchers (Fritz et al., 1989; Mahavedan and Connell, 1992;
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Simmons andMitchell, 1989; Stone and Veloso, 1998; Matellán et al., 1998; Ashish
et al., 1997), ranging from work on autonomous robotic agents to Web-based soft-
ware agents. It integrates many areas, such as robotics, planning, and machine
learning. This integration opens many questions that arise when designing such
systems, such as how operator descriptions can be incrementally and automatically
acquired from the planning/execution cycle, or how a planner can use incomplete
and/or incorrect knowledge, as mentioned in (Wang, 1996). With respect to learn-
ing, autonomous systems must generate theories of how their environment reacts
to their actions, and how the actions affect the environment. Usually, these theories
are partial, incomplete and incorrect, but they can be used to plan, to further modify
those theories, or to create new ones.

Among the different types of machine learning techniques, those based on ob-
servation and discovery are the best modelers for human behavior (Falkenhainer,
1990). Thus, it is interesting to study how an autonomous system can automatically
build planning operators that model its environment (Fritz et al., 1989; García-
Martínez, 1993; García-Martínez, 1997). In this context, machine learning applied
to planning has mainly focused on learning control knowledge in many different
ways such as: macrooperators (Fikes et al., 1972), control rules (Minton, 1988;
Borrajo and Veloso, 1997), control knowledge into operator descriptions (Lang-
ley, 1983) or cases (Veloso, 1994). There is also currently a big trend on learning
which actions to apply in any state in the context of reinforcement learning (Sutton,
1990; Watkins and Dayan, 1992). However, very few have approached the general-
ized operators acquisition problem (Carbonell and Gil, 1990; Wang, 1996), which
is crucial when dealing with systems that must autonomously adapt to a changing
environment.

We present in this paper a system, LOPE,? that integrates planning, learning, and
execution in a closed loop, showing an autonomous intelligent behavior. Learning
planning operators is achieved by observing the consequences of executing planned
actions in the environment (García-Martínez, 1993).?? In order to speed up the
convergence, heuristic generalizations of the observations have been used. Also,
probability distribution estimators have been introduced to handle the contradic-
tions among the generated planning operators. The learning mechanism allows
not only to acquire operator descriptions, but also to adapt those descriptions to
changes in the environment. The results show how the learning mechanism outper-
forms the behavior of the base planner with respect to successful plans (plans that
achieve self-proposed goals). We also present an extension of the learning mecha-
nism that allows knowledge to be shared among several LOPE agents. The results of
using this multi-agent scheme show how the interaction with other learning agents
greatly improves learning convergence and successful behavior.

? LOPE stands for Learning by Observation in Planning Environments.
?? When we talk about environment, we do not refer to a unique setup, but to the generic concept

of environment.
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Section 2 describes the general architecture of the LOPE system, def ning its
architecture and top-level algorithm. Section 3 def nes the representation that will
be used in the paper for situations, observations and planning operators. Section 4
presents the learning model and its components (heuristic generalizations and prob-
abilities estimation). Section 5 def nes the planner and how probabilities estima-
tions allow to perform a stochastic analysis for each plan. Section 6 describes how
several LOPE agents can cooperate to converge faster to an environment model.
Section 7 explains the performed experiments and their results that show how the
overall behavior outperforms a simpler planner. Section 8 describes the relation
with other approaches. And, f nally, Section 9 draws the conclusions of the work.

2. General System Description

The objective of the LOPE system is to autonomously plan for achieving self-
proposed goals, executing plans, f nding out deviations from the plans or correct
behavior, and learning operators (models) that predict the effects of actions in the
environment, by observing the consequences of those actions. The system can
be described as an agent that receives perceptions from the environment, called
situations, applies actions, and learns from its interaction with the world. Figure 1
shows a schematic view of the architecture, and Figure 2 presents the high level de-
scription of the algorithm. Sections 4 and 5 will present in more detail the functions
learning and plan, respectively.

At the beginning, the system does not have any knowledge, so it perceives the
initial situation, and selects a random action to execute in the environment. Then,
it loops by executing an action, perceiving the resulting situation and utility of the
situation (explained in Section 3), learning from observing the effect of applying

Figure 1. Architecture of the integrated system.
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Function Lope (n,A)

n: number of execution cycles
A: Set of possible actions
S, S′: Perceived situations
O: Set of learned operators, initially empty
P : Current plan in execution, initially empty

S:=perceive-situation
A:=random-selection(A)
Repeat n times
execute-action(A)
S′:=perceive-situation
U :=perceive-utility
O:=learning(S,A, S ′ , U,O,false)
If P = ∅ OR operator.conditions(O)6⊆ S′
Then P :=plan(S ′,O,A)
O:=pop(P )
A:=operator.action(O)
S := S′

Figure 2. Top level algorithm of the whole architecture.

the action in the environment, and planning for further interactions with the envi-
ronment when the previous plan has f nished its execution, or the system observes
a mismatch between the predicted situation by the agent operators and the situation
it perceived from the environment. In the latter case, it re-plans for achieving a high
utility goal from the current situation.

The top-level goal of the planning algorithm is implicit in the system: achieving
a situation with the highest utility, so the goal is not an input to the system. This
fact does not remove generality to the overall architecture, since the function that
computes the utility can be changed (even dynamically) to the one that ref ects
other types of goals, as in classical planning.

3. Representation

As it was mentioned before, the architecture is domain-independent. However, in
order to explain its behavior, we will refer throughout this paper to the application
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we developed in a robotic domain. In this domain, the agent plans, learns, and
executes in a simulated world according to the robot model described and used by
many authors, such as (Mahavedan and Connell, 1992; Shen, 1993). Thus, a model
of the environment refers to a mapping between perceived situations, performed
actions, and expected new situations. This representation would be closer to the one
used in reactive planners (Brooks, 1986), than to high-level models of the environ-
ment used by deliberative planners, such as the STRIPS representation (Fikes and
Nilsson, 1971). However, we believe that for real intelligent behavior, some kind
of collaboration between these two levels is needed, by allowing reactive behavior
on one side, and high-level planning on the other. Therefore, we propose an in-
termediate representation by allowing the basic reactive representation (perceived
situation, action, and resulting situation) to be extended by generalized operators,
and search-based planning, as discussed later. The autonomous agent type of world
that we used for the experiments is a two-dimensional grid, where each position of
the grid can have different elements, such as robots (agents), obstacles, energy
points, or be empty. For generality purposes, we used many different grids as
explained in Section 7.

For LOPE, as for many other systems, there is a difference between the world
states, common to classical planning, and the observations it perceives. While clas-
sical planners are mainly interested in the high-level descriptions of the states (e.g.,
on (A,B) in the blocksworld), LOPE builds its operators based on the perceptions it
receives from its sensors;? its “states” are the inputs it receives from its sensoring
system. Any post-processing of its inputs in order to translate them into high-level
descriptions can be done without affecting the overall behavior. Because of the
natural limitations of the sensory system, the agents map different states of the
environment into a single one, even if they would not be equivalent in terms of the
best action to perform. Then, we developed a way of taking this into account, by
associating probability estimations to operators. Therefore, our system implicitly
manages noisy domains and hidden states.

We are using propositional logic as the underlying representation formalism
given that we have found it powerful enough for the type of problem solving that
each agent is performing (stochastic planning). Most of the learning algorithms can
be easily extended to predicate logic, with the known exponential increase on com-
putational cost. One advantage of propositional logic on the types of tasks we are
applying it to (robotic tasks) is that it allows to have reasonable good performance
on most tasks in comparison with higher level systems (such as STRIPS).

In previous work of the authors (García-Martínez, 1997), the representation of
operators was based on the model proposed in (Fritz et al., 1989), in which an
observation (also called experience unit) had the following structure:

[Initial Situation, Action, Final Situation],

? Here, the word sensors refer to the generic idea of input, so this is applicable to non robotic
domains.
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Table I. Representation of a planning operator

Planning operator: Oi

Feature Description Type of values
C Initial situation (conditions) p-list
A Action action
F Final situation p-list
P Times that the operator Oi was successfully applied integer

(the expected f nal situation, F , was obtained)
K Times that the action A was applied to C integer
U Utility level reached applying the action to real [0, 1]

the initial situation C of the operator

where initial and f nal situations are lists of propositions that can be either true or
false. Observations were directly used as planning operators. In this paper, while
the concept of observation does not change, the representation of operators is ex-
tended, by the addition of features that allow to determine their planning/execution
acceptability. This provides also a solution to noise in sensors/actuators, and the
hidden state problem. The proposed planning operator model has the structure and
meaning described in Table I, where p-list, action and U are domain-dependent
and have the following meaning:

– p-list is a list of propositions, that can be preceded by the ¬ symbol, denoting
negation. If a proposition does not appear on that list, it is assumed that its
value does not matter.

– action can be any of the set of allowed actions that each agent can perform. For
instance, in our robotic domain, it can be one of go, turn-left, turn-right,
and stop, while in the Robosoccer domain, it would be one of dash, turn,
kick or catch (Kitano et al., 1995).

– U is a function that measures how useful the current situation is for the agent,
and refers implicitly to the distance to the agent’s goal (similar concept to the
reward in reinforcement learning (Watkins and Dayan, 1992)). As an exam-
ple, in the performed experiments, it has been measured as a function of the
distance of a robot (agent) to the closest energy point, E.
As shown in Figure 1, this measure is given to the system as an input. This
function could be changed to allow different behaviors (achievement of dif-
ferent goals) for the agent. For instance, in a robotic soccer domain, we could
have different players with different behaviors, each one depending on their
specif c goals (Matellán et al., 1998). Examples of such goals are “being close
to the ball”, “scoring a goal”, or “being in front of an opponent”.
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The parameters P and K allow the architecture to decrease the effect of noise
in the sensors or in the environment, and hidden state problems. This is possible
due to the underlying bias of the system which assumes that the environment can
be dynamic, noisy, and there can be features of the state that are not captured
by the sensoring system, and, therefore, not handled by the planning or learning
mechanisms.

4. Learning planning operators

We will f rst def ne the concepts of similar and equal operators needed for the
learning method, to further detail the learning method, present an example, and
discuss the generalization heuristics.

4.1. DEFINITIONS

Given two operators O1 = [C1, A1, F1, P1,K1, U1] and O2 = [C2, A2, F2, P2,
K2, U2], and an observation o = [Si,A, Sf ], we provide the following def nitions:
DEFINITION 1. If the conditions and actions of two operators are equal, then the
two operators are similar.

(C1 = C2) ∧ (A1 = A2)→ similar-op(O1,O2).

DEFINITION 2. If the conditions, actions, and f nal situations of two operators
are equal, then the two operators are equal.

(C1 = C2) ∧ (A1 = A2) ∧ (F1 = F2)→ equal-op(O1,O2).

DEFINITION 3. If the actions of an operator and an observation are equal, and
the formula describing the initial situation of the observation includes the condi-
tions of the operator (the conditions of the operator are true in the initial situation
of the observation)), then the observation is similar to the operator.

(C1 ⊆ Si) ∧ (A1 = A)→ similar-ob(o,O1).

For instance, if situations are represented by the presence or not of obstacles
in the right (r), left (l), or in front (f) of a robot, and the system observes o =
[(l,f),turn,(l,r)], this observation would be similar to operator:

O1 = [(f), turn, (l), P1,K1, U1]
given that (f)⊆(l,f), and both have the same action.
DEFINITION 4. If the actions of an operator and an observation are equal, the
initial situation of the observation includes the conditions of the operator, and the
f nal situation of the observation includes the f nal situation of the operator (the
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expected f nal situation of the operator is true in the observed f nal situation), then
the observation is equal to the operator (conf rms it).

(C1 ⊆ Si) ∧ (A1 = A) ∧ (F1 ⊆ Sf )→ equal-ob(o,O1).

It can also be def ned in terms of similarity as: an observation is equal to an
operator if it is similar and the expected f nal situation of the operator is true in
the observed f nal situation.

similar-ob(o,O1) ∧ (F1 ⊆ Sf )→ equal-ob(o,O1).

Following the previous example, the observation would also be equal to the
operator (the observation conf rms the operator), given that they are similar, and
(l)⊆(l,r).

4.2. HIGH LEVEL LEARNING ALGORITHM

Suppose a situation Si is perceived by the system, and there is a set of operators, O,
such that each operator is of the form Oi = [C,A,F, P,K,U ]. If the system
applies the action A, arriving at a situation Sf , the learning method processes this
new observation by the algorithm shown in Figure 3. When a new observation
arrives at the learning module, it checks if a similar operator exists.

– If there is such similar operator, it checks to see if the observation is equal to
any operator. Then, it rewards all such operators and punishes similar ones. If
a similar operator exists, but there is none that is equal to the observation, it
creates a new operator, punishes similar operators to the new one, and gener-
alizes those similar operators. The operators generated by the generalization
procedure reward equal operators and punish similar ones (recursive call).

– If it does not f nd a similar operator for the input observation, it creates a new
one.

The function heuristic-generalization is explained in more detail in Sec-
tion 4.4. Function punish-operator increments the number of times that the pair
(condition,action) of similar operators to the observation (generalized or not) has
been observed.? The effect of incrementing theirK is equivalent to punishing them,
since their probability of success decreases. Its algorithm is shown in Figure 5.
Similarly, function punish-similar-operators punishes all operators in a set
that are similar to a new one, including itself (see Figure 4).

Function reward-operator increments the P of a successful operator, with the
equivalent effect of rewarding it, since its probability of success increases. Figure 6
shows its high level description. The algorithm for computing the K and P of
? In single agent conf gurations, it gets incremented in one. In multi-agent conf gurations, it will

be greater than one, as explained in Section 6.
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Function Learning (o,U,O,generalized?): O

o: observation made. o = [Si,A, Sf ]
Si : Initial situation of the observation
A: Applied action of the observation
Sf : Observed f nal situation

U : Observed utility
O: Set of operator descriptions
generalized?: true if o is a generalized observation. Otherwise, false

If exists Oi ∈ O such that similar-ob(o,Oi )
Then If exists Oi ∈ O such that equal-ob(o,Oi )

Then Forall Oi ∈ O such that equal-ob(o,Oi ) do
reward-operator(Oi ,1)
UOi :=max(UOi , U)
Forall Oj ∈ O such that similar-ob(o,Oj ) do

punish-operator(Oj ,1)
Else On:=[Si,A, Sf , 1,KOi , U ]

O:=O∪{On}
punish-similar-operators(On,O,1)
If not(generalized?)
Then M:=heuristic-generalization(Si ,A, Sf ,O)

Forall Om ∈M do learning(Om,U,O,true)
Else O:=O∪{[Si,A, Sf , 1, 1, U ]}
Return O

Figure 3. Algorithm that modif es the operators descriptions after having seen a new
observation.

each operator preserves some formal properties. For instance, it preserves that the
sum of the quotient P/K of all similar operators is equal to one, for each pair
(condition,action).

With respect to the utility, the function learning records, for each operator, the
utility of the highest-utility situation achieved by applying the operator action to
the operator condition situation.?

? Since the fi al situation can be generalized, there might be more than one utility. Only the
highest one is stored.
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Function Punish-similar-operators (O,O,i)

O: New operator
O: Set of operators
i: Increment to be applied to operatorsKs

Forall Oi ∈ O such that similar-op(O,Oi ) do
punish-operator(Oi , i)

Figure 4. Algorithm that punishes the operators similar to O.

Function Punish-operator (O,i)

O: New operator
i: Increment to be applied to operatorsKs

operator.K(O):=operator.K(O)+i

Figure 5. Algorithm that punishes the operator O.

Function Reward-operator (O, i)

O: Successful operator
i: Increment to be applied to operators P s and Ks

operator.P(O):=operator.P(O)+i

Figure 6. Algorithm that rewards a successful operator.

4.3. EXAMPLE OF LEARNING EPISODES

Let us def ne a domain in which a robot explores a two-dimensional grid with
obstacles, and energy points as shown with an example in Figure 7.? Initially, it
does not have any knowledge of how the environment will react to the actions that
the robot can apply: go and turn. Its only goal will be to maximize the utility (to
minimize the Manhattan distance to the closer energy point in this example, E) as
def ned in Equation (1).

U(S,E) = 1
|1+ d(S,E)| , (1)

? This is an oversimplifi ation in terms of size of the grids used in the experiments (700×1000).
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Figure 7. Example of an exploratory robot in a 2-dimensional grid. The robot orientation is
represented by the small grey circle. Energy points are represented by plugs.

where S is the robot position, and d(S,E) is the distance between S and E.
Its inputs are what the robot sensors perceive at any moment. As an example,

suppose that it can only “see” the positions that are directly to the right (r) and
left (l), and the ones that are directly in front of him: front (f), front-left (fl),
and front-right (fr). They will be represented by the propositions that appear in
parenthesis. If a proposition appears in any list of propositions, it means that the
corresponding sensor has detected an obstacle in that position. If it appears negated,
it means that the position is empty. And, if it does not appear in the list, it means
that it does not matter what it contains.

We will see now how the system builds a set of operators from the follow-
ing observations o1, o2, o3 and o4, whose graphical representation can be seen in
Figure 7(a)–(e).

o1 = [(l, fl,¬r,¬f,¬fr), go, (l, fl,¬r, f, fr)], U = 1/3,
o2 = [(l, fl,¬r, f, fr), turn, (l, fl,¬r,¬f,¬fr)], U = 1/3,
o3 = [(l, fl,¬r,¬f,¬fr), go, (l, fl,¬r,¬f,¬fr)], U = 1/4,
o4 = [(l, fl,¬r,¬f,¬fr), go, (l, fl,¬r, f, fr)], U = 1/5.

After observing o1, according to the algorithm in Figure 3, it generates a new
operator:

OG1 =
[
(l, fl,¬r,¬f,¬fr), go, (l, fl,¬r, f, fr), 1, 1, 1/3].

The observation o2 refers to another action, turn, which def nes a new operator:

OT 1 =
[
(l, fl,¬r, f, fr), turn, (l, fl,¬r,¬f,¬fr), 1, 1, 1/3].

When it observes o3, it f nds out that there is a similar operator, OG1, (equal
conditions and action, but differs in the predicted effects). Thus, it f rst includes the
new operator

OG2 =
[
(l, fl,¬r,¬f,¬fr), go, (l, fl,¬r,¬f,¬fr), 1, 1, 1/4]

into the set of operators O. Then, it punishes all similar operators, including itself
(OG1 and OG2 in this case), changing them to be:

OG1 =
[
(l, fl,¬r,¬f,¬fr), go, (l, fl,¬r, f, fr), 1, 2, 1/3],

OG2 =
[
(l, fl,¬r,¬f,¬fr), go, (l, fl,¬r,¬f,¬fr), 1, 2, 1/4].
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After this, it calls the generalization heuristics to create generalized observa-
tions, as described in the following section. The inputs to the generalization proce-
dure are the initial situation, (l,fl,¬r,¬f,¬fr), the action, go, the f nal situation,
(l,fl,¬r,¬f,¬fr), and the set of operators O = {OG1,OT 1,OG2}. Among other
heuristics, the retraction generalization heuristic would generate the following gen-
eralized observation m = [(l, fl,¬r,¬f,¬fr), go, (l, fl,¬r)]. Then, it recur-
sively calls the learning function, and, since it now f nds that there are similar
(but not equal) operators, OG1 and OG2, it adds a new (generalized) operator,

OG3 = [(l, fl,¬r,¬f,¬fr), go, (l, fl,¬r), 1, 2, 1/4
]
,

and punishes all similar operators by incrementing their K, leaving O as:

OG1 =
[
(l, fl,¬r,¬f,¬fr), go, (l, fl,¬r, f, fr), 1, 3, 1/3],

OT 1 =
[
(l, fl,¬r, f, fr), turn, (l, fl,¬r,¬f,¬fr), 1, 1, 1/3],

OG2 =
[
(l, fl,¬r,¬f,¬fr), go, (l, fl,¬r,¬f,¬fr), 1, 3, 1/4],

OG3 =
[
(l, fl,¬r,¬f,¬fr), go, (l, fl,¬r), 1, 3, 1/4].

For LOPE, the new generalized operator OG3 predicts what the f nal situation
will be after applying the action go to the initial situation (l,fl,¬r,¬f,¬fr) as
well as OG1 and OG2 do. This is why POG3 = 1. When it observes o4, which
is a confir ation of operators OG1 and OG3, it rewards all operators equal to the
observation (OG1 andOG3), and punishes all operators that are similar (OG1,OG2,

andOG3). Since it rewards both operators OG1 andOG2, theK of all operators gets
increased to 5. If it would not be increased in one for each equal operator, the sum
of quotients P/K for similar operators would not be one, and it would not fulf ll
the requirement of being formally sound. The f nal set of operators is:

OG1 =
[
(l, fl,¬r,¬f,¬fr), go, (l, fl,¬r, f, fr), 2, 5, 1/3],

OT 1 =
[
(l, fl,¬r, f, fr), turn, (l, fl,¬r,¬f,¬fr), 1, 1, 1/3],

OG2 =
[
(l, fl,¬r,¬f,¬fr), go, (l, fl,¬r,¬f,¬fr), 1, 5, 1/4],

OG3 =
[
(l, fl,¬r,¬f,¬fr), go, (l, fl,¬r), 2, 5, 1/4].

4.4. HEURISTIC GENERALIZATION OF OPERATORS

The heuristic generalization of operators is based on the heuristics def ned in
(Hayes-Roth, 1983) and (Salzberg, 1985). Hayes-Roth proposed a set of heuristics
for revising a faulty (buggy) theory, in the framework of theory revision. Salzberg
heuristics are used to correct prediction violations. The next two subsections de-
scribe those heuristics in relation to the proposed learning mechanism. The gener-
alization algorithm just applies in a sequence the heuristics described below to the
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observation, producing a set of new generalized observations, M, whose elements
have the following structure:

[C,A,F ],
where C is the generalized initial situation, A is the action, and F is the generalized
predicted situation. For the following discussion, the new observation is described
by (Si,A, Sf ), the domain operator is described by [C,A,F, P,K,U ], and the
new mutated observation (m) is [Cm,Am,Fm]. In order to apply a heuristic, there
had to be a fault in using the corresponding operator in the observed initial and
resulting situation.

4.5. HAYES-ROTH HEURISTICS

Hayes-Roth proposed a superset of the following heuristics for generating new
generalized observations from the new observation and the previous set of domain
operators. In the case of the application to our robot model, we selected which
heuristics were applicable for the chosen representation, and transformed those for
correcting violated expectations of plans. In other domains and representations, the
heuristics will have to be revisited for validity or create new ones.

– Retraction: it generalizes an operator predicted situation so that it is consis-
tent with the new observation. If F 6⊆ Sf , then m = [C,A,F ′], where F ′
is a generalization of F and Sf . The algorithm for generalizing is similar to
the one used by Mitchell in the version spaces method (Mitchell, 1977). For
instance, if F = (l, r,¬fr) and Sf = (l, r, fr, f,¬fl), then F ′ could be
(l,r).

– Exclusion: it restricts the conditions of the operator, so that it does not apply
in the observed situation again. Given that C ⊆ Si and F 6⊆ Sf , then m =
[C′, A, F ], where C′ is built by selecting a proposition that does not belong
to C (does not matter) and change it to the negation of what appears in the
observation. For instance, if C = (l, r,¬fr) and Si = (l, r,¬fr, f,¬fl),
C ′ could be (l,r,¬fr,fl).

– Inclusion: it generalizes the operator conditions, so that it will later apply
in the observed situation. If F ⊆ Sf and C 6⊆ Si , then m = [C′, A, F ],
where C′ is a generalization of C and Si . For instance, if C = (l, r,¬fr) and
Si = (l, r, fr, f,¬fl), then C ′ could be (l,r).

4.6. SALZBERG HEURISTICS

Salzberg proposed a superset of the following heuristics for revising predicting
rules in a racing domain, and we also transformed those heuristics to the represen-
tation that we used for observations situations and operator conditions and effects.
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As in the previous case, we did not implement all heuristics, given that some of
them do not have an equivalent when one does not have a knowledge-rich domain
theory as Salzberg had.

– Inusuality: it restricts the condition of an operator, so that it will not longer
apply to the observed initial situation. If C ⊆ Si and F 6⊆ Sf , then m =
[C′, A, F ], where C′ is a specialization of C, adding all propositions not
appearing in C (does not matter) by the negation of their value in Si . It dif-
fers from Hayes-Roth exclusion, in that it adds all propositions to C. For
instance, if C = (l, r,¬fr) and Si = (l, r,¬fr, f,¬fl), C ′ would be
(l,r,¬fr,¬f,fl).

– Conservationism: it is a meta-heuristic that selects the generalization heuris-
tic (from the Salzberg ones), that proposes less modif cations in the conditions
of an operator.

– Simplicity: it is a generalization of the Hayes-Roth retraction heuristic in
that it generalizes several operators into one. If several operators have the
same conditions and actions, but differ in the predicted situation, then a new
generalized observation is generated in which the predicted situation is the
generalization of the predicted situations of the operators. For instance, if
F1 = (l, r,¬fr, f), F2 = (¬l, r,¬fr), and F3 = (l, r,¬fr,¬f) are the
predicted effects of three operators that share the same action and conditions,
then F ′ = (r,¬fr).

– Adjustment:when the P/K ratio of an operator falls below a given threshold,
it is very unlike that the operator will correctly predict any situation. If it is a
generalization of a set of operators (for instance, by application of the simplic-
ity heuristic), this heuristic generates other combinations of those operators
that will increase the ratio.

5. Planning

The planner builds a sequence of planning operators? that allows to eff ciently reach
the top-level goal. This goal is implicit in the system and depends on the measure
of utility. At each planning cycle, the system receives the highest utility (as, for
instance, being on top of an energy point, or, in the case of robotic soccer, scoring
a goal) if it reaches a situation yielding such utility. In case another domain requires
a more classical high-level set of goals (as in the case of the blocksworld or logistics
transportation), a richer representation would be needed. The planning and learning
components would have to be changed accordingly, but the overall architecture and
techniques would still be valid.

Since each operator has its own utility, the planner will try to build plans that
transform each current situation into the situation described by the condition of
? In this case, the term operator and action are equivalent with respect to planning and execution,

given that operators do not have variables as in the case of classical planning (Fikes et al., 1972).
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the operator with the highest utility; that is, the operator that achieves the highest
utility situation (its f nal situation). Therefore, these conditions are subgoals of the
top-level goal. The resulting plan will allow the execution module to perform a
set of actions that interact with the environment in such a way that it arrives to a
situation in which the action of the highest utility operator can be executed (the
conditions are met), thus achieving that level of utility.

5.1. BUILDING A PLAN

The planning algorithm proceeds as follows (also shown in Figure 8). At the be-
ginning, there are no operators, so the system generates a default plan using the
algorithm shown in Figure 9. Default planning randomly selects whether to act
randomly, or to act by approaching a close obstacle. Since the planner should return
a list of operators, and default-plan only selects actions randomly, this function
creates for each action in the returned plan a dummy operator.

If the system already has some operators, the function generate-goals builds a
list of goals, each of them is a pair (situation,operator), where situation is the f nal
situation of the operator. This list is ordered by decreasing values of the utility of
their respective operators. For each subgoal, the planner tries to f nd a plan that can

Function Plan (S,O,A): P

S: Current situation (8-bit vector)
O: Set of operators
A: Set of actions
P : Plan (list of operators)
G: List of pairs (situation,operator)

If O = ∅
Then P :=default-plan(S,A)
Else G:=generate-goals(O)

P := ∅
While G 6= ∅ AND P = ∅ do

g:=pop(G)
P :=build-plan(S, g,O)

If P = ∅
Then P :=default-plan(S,A)

Return P

Figure 8. Algorithm that obtains a plan to be executed in the environment.
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Function Default-plan (S,A): P

S: Current situation (8-bit vector)
A: Set of possible actions
A: List of actions that conform the plan
P : Plan (list of operators)

r:=random(0,1)
If r ≥ 0.5
Then A:={random-selection(A)}
Else A:=goto-closest-obstacle(S,A)
Forall a ∈ A do
P :=P ∪ {[S, a, ?, ?, ?, ?]}
S:=?

Return P

Figure 9. Algorithm that selects a random action or goes to the closest obstacle.

transform the current situation S into one of the subgoals (function build-plan
explained below). Since it f rst tries the goals with higher utilities, and it stops
when it f nds a plan, the planner will f nd a plan for achieving the highest utility
reachable goal. If the planner cannot f nd a plan for any goal, it generates a default
plan according to the default planning procedure described above.

The function build-plan creates a graph by backward chaining on the goal.
Since the goals are pairs (situation,operator), the root of the search tree will be
the situation, that will only have one successor labeled with the operator of the
goal. For each situation in the search tree, it creates a node, and a successor for
each operator whose f nal situation matches that situation, and continues backwards
until it cannot expand more nodes. Goal loops (repetition of the same situation in
the path from a node to the root) are detected and search stops under those nodes.
When it f nishes the expansion of the tree, if the current situation appears in the
graph, there exists at least one plan that can achieve the goal from the current
situation. This algorithm can be easily changed to f nd the f rst plan, instead of
exploring the whole search tree. In the reported experiments, we found that for that
domain it was not needed to stop before completing the whole search tree.

5.2. EXAMPLE OF PLANNING EPISODE

As an example of how this algorithm proceeds, suppose that the system already
built the following set of operators:

O1 = (S1, A1, S2, 3, 4, 0.6),
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Figure 10. Example of graph of planning operators.

O2 = (S1, A1, S4, 1, 4, 0.4),
O3 = (S2, A2, S3, 3, 4, 0.4),
O4 = (S2, A2, S5, 1, 4, 1),
O5 = (S3, A1, S1, 3, 3, 0.4),
O6 = (S4, A2, S2, 1, 1, 0.8),
O7 = (S5, A1, S4, 1, 1, 0.2).

where there are two actions A1 and A2, and f ve situations S1 to S5.? The search
space corresponding to those operators is shown in Figure 10, where each node
represents a situation, and each arc is labeled with a tuple (A,P,K,U ), where A
is the action of the operator, that transforms a situation into another, P and K are
the features that capture the information on success probability (explained below),
and U is the operator utility.

Given that search space, if the planner tries to f nd a plan to achieve the higher
utility reachable goal from the current situation S1, it would f rst generate the
following list of pairs (situation,operator) in descendent order of utility:

[(S5,O4)(S2,O6)(S2,O1)(S4,O2)(S3,O3)(S1,O5)(S4,O7)].

As (S5,O4) has the highest utility level, the system builds the search tree shown
in Figure 11, where the root is the situation S5, its only successor is the condition
part of the operator O4, situation S2, and the arcs are labeled with the actions
and operators that transform a situation into another. Search stops under nodes of
situations S3 (twice) and S5, since the only way to obtain those situations is from
situation S2 which would cause a goal loop in both cases.

? In this example, we use situations instead of conditions to simplify the explanation. One can
think of situations as instantiated conditions.

17



R. GARCIA-MARTINEZ AND D. BORRAJO

Figure 11. Search tree generated when planning to achieve situation S5 from S1.

There are two plans that reach S5 (auto generated goal) from S1 (current situa-
tion): O1 ◦ O4

? (actions A1 and A2) and O2 ◦ O6 ◦ O4 (actions A1, A2, and A2).
The planner selects the shortest plan, which is O1 ◦O4 (A1 ◦ A2).

5.3. STOCHASTIC PLANNING

In order to estimate the probability of success of plans, the planner is based on
an extension of the theory of stochastic automata. The knowledge that the system
has at a given time, the set of planning operators, can be viewed as a model of
how its environment will react to the system’s actions. The quotient POi/KOi of a
given operator Oi , is the probability estimator of the fact that given the action AOi
applied to a situation Sj that matches the operator conditions (COi ⊆ Sj ) results
in a situation Sk that verif es the predicted effects of the operator (FOi ⊆ Sk).
In (García-Martínez, 1997), it is shown that this estimator is an unbiased estimator
that follows a multinomial probability distribution. Therefore, the knowledge that
the system has about the effects of an action Ai at a given instant can be represented
by the transition matrixMAi , that has, in the (j, k) position, the quotient PO/KO of
operators O whose action is Ai , its conditions are Sj , and the predicted effects Sk
(Calistri-Yeh, 1990).

The P s and Ks of the plan operators can be used in the evaluation of the plans
that are generated. This “a priori” estimation of the plan success probability allows
to discard plans with a low probability of success (P/K < τ ), where τ is a
predef ned threshold. This property is critical when the system must act without
supervision.

? ◦ represents the composition of actions.
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As an example, in the previous plan, the transition matrixMA1 associated to the
action A1, the transition matrixMA2 associated to the action A2, and the transition
matrixMP of the plan P = A1 ◦ A2 are:

MA1 =

S1 S2 S3 S4 S5

S1 0 3
4 0 1

4 0
S2 0 0 0 0 0
S3 1 0 0 0 0
S4 0 0 0 0 0
S5 0 0 0 1 0

MA2 =

S1 S2 S3 S4 S5
S1 0 0 0 0 0

S2 0 0 3
4 0 1

4
S3 0 0 0 0 0
S4 0 1 0 0 0
S5 0 0 0 0 0

MP = MA1 ×MA2 =

S1 S2 S3 S4 S5

S1 0 1
4

9
16 0 3

16
S2 0 0 0 0 0
S3 0 0 0 0 0
S4 0 0 0 0 0
S5 0 1 0 0 0

From the analysis of MP , the probability that the plan P applied to the situ-
ation S1 achieves the situation S2 is 1

4 , the probability that the plan P applied to
the situation S1 achieves the situation S3 is 9

16 , and the probability that the plan P
applied to the situation S1 achieves the situation S5 is 3

16 .

6. Learning by Sharing

After performing experiments that conf rmed that the overall architecture performed
very well, as described in Section 7, we decided to experiment with the inclusion
of new agents of the same type (García-Martínez and Borrajo, 1998). These agents
learn and share what they learn in the same grid conf guration. Agents cannot oc-
cupy the same position in the grid, and the sensors of one agent consider the other
agents as obstacles. Under this framework, each agent continuously learns, plans
and executes. However, when they were close to another agent, they were allowed
to communicate in order to interchange what they learned, operator descriptions.
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Figure 12. Architecture of a group of LOPE agents.

Function Complete-sharing (O1,O2): O1

O1: Set of operators of agent 1
O2: Set of operators of agent 2

Forall Oi ∈ O2 do
If exists Oj ∈ O1 such that similar-op(Oj ,Oi)
Then punish-similar-operators(Oi ,O1,KOi)

If exists Ok ∈ O1 such that equal-op(Oi ,Ok)
Then reward-operator(Ok , POi )
Else KOi := KOj

O1 := O1∪{Oi}
Else O1 := O1∪{Oi}

Return O1

Figure 13. Algorithm that integrates the operators of two agents.

Figure 12 shows a schematic view of the architecture, where there can be n LOPE
agents. Each of the agents receives as input: perceptions from the environment
(situations and utilities); set of actions that it can perform; and operators learned
by other agents. The output of each agent is a sequence of actions over time (for
the environment), and, regularly, the set of operators that it learned (for the other
agents).

We devised two types of knowledge sharing strategies:
– Complete sharing. Every pair of agents integrates their respective theories

(set of operators) using all operators in the sets. The algorithm is shown in
Figure 13. For each operator of another agent (a2), an agent (a1) looks for
similar operators in its theory. If there is no such similar operator, then the a2’s
operator is included in the set of operators of a1. If a similar operator is found,
then all such operators are punished with the K of the operator of a2. Then,
if an equal operator of a1 exists, it is rewarded with the P of a2’s operator. If

20



AN INTEGRATED APPROACH OF LEARNING, PLANNING, AND EXECUTION

there is no equal operator, then it is included in a1’s operators with the K of
its similar operators in a1’s theory.

– Most reliable operator sharing. Every time two agents share their knowledge,
only the most liable operators are shared (the ones that maximize the quotient
P/K). The only difference with the prior algorithm is that instead of providing
it as input withO2, the algorithm is called with the set of most liable operators.
This set is computed by selecting from each set of similar operators of an
agent, the one with maximum P/K.

7. Experiments and Results

We tested LOPE in different environments. In each environment, it learns models
that predict the effects of applying actions to situations. This allows LOPE to plan
for achieving its goals: arriving at points where batteries can be charged (energy
points).

The general setting for the experiments can be described as follows:
1. Generate 50 experiments by:

(a) Randomly choosing an environment (grid). The sizes of the grids were
700 × 1000 pixels. Each pixel could be empty, or have an obstacle, an
energy point, or a robot. In the f rst three experiments reported, we used a
10%–20% randomly chosen occupancy of the grid by obstacles. In the last
one, we varied the percentage of obstacles in the environment to see how
that affected its performance. Also, energy points were placed randomly
(their number being randomly chosen between 10 and 20);

(b) Randomly choosing an initial position of the robot in the chosen environ-
ment;

(c) Executing LOPE for 8,000 cycles. One cycle means the pair perceive/act;
and

(d) Recording the state of the main variables every 500 cycles
2. Compute the average of each variable recorded (every 500 cycles) with the 50

experiments
We performed four experiments to test the behavior of LOPE: performance of the

learning and planning system in a single environment; generalization over different
environments; knowledge sharing among different agents; and importance of the
percentage of obstacles in the environment.

7.1. RESULTS ON LEARNING AND PLANNING

In the f rst experiment, our goal was to test f rst the performance of the system. We
compared four versions of the system:

– The base planner, in which operators are created directly from the obser-
vations, following Fritz et al. work (Fritz et al., 1989). This conf guration
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Figure 14. Results of comparing four versions of the system: the base planner, the base
planner with generalization applied to operators, the base planner with probabilities estima-
tions associated to operators, and the base planner with mutated operators and probabilities
estimations.

is better than the simplest ones, which would act randomly, or by curiosity
(always approaching the closest obstacle).

– The base problem solver using operators learned using heuristic generaliza-
tion (García-Martínez, 1993).

– The base problem solver estimating for each operator its probability of suc-
cess (García-Martínez and Borrajo, 1996).

– The base problem solver, in which operators are mutated, and a probability
estimator is assigned to each operator (García-Martínez, 1997).

We used the percentage of successful plans when comparing these four versions
of the system, and the results of the experiment are shown in Figure 14. These re-
sults clearly show that the combination of generalization and probability estimation
outperform the base planner behavior, and, also, the separate use of any of them.
The combined use of generalization and probabilities make the system converge
towards a 80% of success plans, while the base planner converges towards around
40%. We believe this is caused by the cooperation between: the generalization
effect that the heuristic generalization has; and the incorporation of the weighting
mechanism for planning that allows to specify the plans acceptability, increasing
the number of successful plans.

Figure 15 shows how the number of observed situations and generated operators
evolved during learning.
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Figure 15. Evolution of the number of situations and operators with respect to time.

Figure 16. Results of comparing four versions of the system with respect to learning
convergence.

7.2. RESULTS ON GENERALIZATION

The second experiment was performed to show that the introduction of initial
knowledge to the system improved the behaviour with respect to learning conver-
gence, while leaving intact the relative differences between the four conf gurations.
We randomly generated a set of environments, E , and averaged the results of run-
ning 50 times the following experiment: an environment e was randomly selected
from E ; 8000 cycles were run on e; another environment e′ 6= e was chosen from

23



R. GARCIA-MARTINEZ AND D. BORRAJO

Figure 17. Results of comparing the convergence on two different grids.

the set E ; 8000 cycles were run on e′, using the learned operators in e; and results
were collected. The results are shown in Figure 16 where it can be observed that the
use of previously learned knowledge, even in another environment, continues im-
proving the behavior of the system with learning and stochastic planning. Also, and
more importantly, the convergence towards a very good percentage of successful
plans improved, with respect to the results in Figure 14. For instance, while, in the
f rst experiment, the 70% of successful plans was achieved at around 3200 cycles,
in the second experiment, the same success ratio was achieved at 1500 cycles.

This phenomenon can be better seen in Figure 17, where the convergence ef-
fect is compared. It shows the comparison among: the base planner in the second
grid e2 without initial knowledge; learning in e1 without initial knowledge; the
base planner without learning in e2 using as initial knowledge the learned operators
in e1; learning in e2 without initial knowledge; and learning in e2 using the learned
operators in e1 as initial knowledge. As it can be seen, if the base planner does
not learn, using the initial knowledge from another grid, improves the behaviour,
but not as much as learning also in the second grid. If it learns using that initial
knowledge, the convergence of the learning phase improves radically. Also, as it
should be expected, the learning rates in both grids without prior knowledge are
almost identical, given that each point in the graphic has been generated from an
average of 50 experiments.

We also performed a similar experiment to the previous one in which a third grid
was introduced to test further knowledge transfer and learning convergence. In this
case, we compared the behaviour in a third grid e3 of learning in that grid using
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Figure 18. Results of comparing convergence on three different grids.

previously learnt knowledge in e1 and e2 (e3 using e2 and e1), with the behaviour
in e3 without learning of: no previous knowledge (base e3); knowledge learned
in e1 and ref ned in e2 only through changing probabilities and not learning new
operators (e3 using e1); knowledge learned in e1, ref ned both by learning new
operators and probabilities through its use in e2 (e3 using e2).

As it can be seen, the best behaviour is obtained by learning in each grid, using
what was learned in the previous ones. Also, learning new operators and proba-
bilities in e2 using what was learned in e1 is clearly better (when used in e3) than
not learning new operators in e2 using what was learned in e1. This is due to the
fact that observations made in e1 are rarely seen again in e2, and their probabilities
(P/K) will be reduced while learning probabilities in e2. This causes that plans
will have very low success probability in e3, and will be scarcely used in that grid.

7.3. RESULTS ON SHARING KNOWLEDGE

In order to test the effect of sharing the knowledge among the agents, we performed
new experiments which we then compared with a summary of the best results of
the previous ones. In the multiple agents setup, the agents shared their knowledge
when they were 20 pixels away from another. We compare here six experiments:

– BP: the base planner as explained before.
– SS: a single LOPE agent learning in a single grid, in which operators are

generalized, and a probability estimator is assigned to each operator (García-

25



R. GARCIA-MARTINEZ AND D. BORRAJO

Figure 19. Results of comparing different versions of the system with respect to sharing
knowledge among several agents.

Martínez and Borrajo, 1997). This estimator is the quotient P/K of each
learned operator. Also, it is used to assign a conf dence to the generated plans,
so that plans with low conf dence are discarded.?

– SM: a single LOPE agent that learns in a grid conf guration g1, ref nes its
knowledge both by learning new operators and probabilities through its use
in another conf guration g2, and using this prior knowledge to learn in a third
grid g3 as described in the previous experiment.

– MSP: a set of LOPE agents (we used two for these experiments) learning at
the same time in the same grid conf guration with the partial sharing strategy.

– MSC: a set of LOPE agents learning at the same time in the same grid conf g-
uration with the complete sharing strategy.

– MM: a set of LOPE agents learning at the same time in three different grid
conf gurations in the same way as the experiment of a single agent in three
different grids.

We used the percentage of successful plans when comparing these versions of
the system, and the results of the experiment are shown in Figure 19. First, these
results clearly show that the combination of generalization and probability estima-
? The decisions of the agent are based on sensory input only when there is no plan on execution.

We have shown previously that the P/K of similar operators follows a multinomial distribution
of probability and that is an unbiased estimator of the probability. Also, when an exact theory of
the domain exists, the operators that have been built applying the learning mechanism based on
observations converge to the exact ones.
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Figure 20. Results of comparing different environment types.

tion outperforms the base planner behavior even in the simplest case: a single agent
learning in a single conf guration (SS case). The combined use of generalization
and probabilities makes the system converge towards a 80% of success plans, while
the base planner converges towards around 40%.

Using the initial knowledge from another grid, radically improves the behavior
and convergence of a single agent (SM case). This case turns to behave better than
using two agents in a single grid with partial sharing (MSP case). However, using
two agents in a single grid with complete sharing (MSC) improves in convergence
rate with respect to the SM case, but it is worse in the long run, since it converges to
a lower percentage rate than the SM case. It means that sharing knowledge among
agents at the beginning is better than using different grids, but, at the end, using
more than one grid is better. Finally, the multiple agents multiple grids case (MM)
outperforms all other conf gurations in convergence and in f nal percentage rate.
See, for instance, that the percentage rate after 500 cycles is above 60% (62%),
while in the BP case is around 10%, and the second best convergence rate is around
54%. Also, it is the only experiment that reaches a percentage rate of above 90%.

One aspect that would have to be better studied when dealing with real robots is
the fact that the sensors of two robots are never exactly equal, so the representations
developed by one robot may not have the same effects on another robot. Since our
model accounts for a probability of success for each operator that would allow to
reduce the impact of those different mappings from sensors into representations.
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7.4. RESULTS ON VARYING THE PERCENTAGE OF OBSTACLES

In order to see how the percentage of obstacles in the domain affected the system,
we performed a last experiment in which we varied this percentage from 10% up
to 50%. The results are shown in Figure 20. We used multiple agents, learning
in multiple grids, that interchange all their models everytime they communicate.
As it can be seen, this model performs better in dense environments than in sparse
environments. This can explained by the fact that dense environments provide more
information with respect to different types of sensory inputs, which allows to learn
better models.

8. Related Work

Currently, the most related work is the one on reinforcement learning techniques
within the Markov Decision Processes (MDP) paradigm (Mahavedan and Connell,
1992; Sutton, 1990; Watkins and Dayan, 1992). Also, current techniques that deal
with Partially Observable Markov Decision Processes (POMDP) are very close
to this approach (Cassandra et al., 1994). Usually, they integrate reinforcement
learning, planning and execution based on approximated dynamic programming.
There are some differences between this type of approaches and our approach:

– Representation of action descriptions. In the case of classical reinforcement
learning techniques, there is no representation of the actions, since they are
not used for explicit planning. It is only needed to keep the action name,
and the procedure for executing each action in the environment. However,
in our case, since we perform an explicit backward search over the operator
descriptions, we need an explicit representation on how those actions change
the environment.

– Global vs. local reinforcement. The reinforcement procedure for most tech-
niques is local to an operator (the term operator is understood here as the
connection between two states through the execution of an action). While, in
our case, the reinforcement of an operator explicitly implies the punishment
of similar ones, so there is a global reinforcement of the same action.

– Representation of states. We use symbolically generalized states, instead
of instantiated states as most other work in reinforcement learning, or non-
symbolically based generalized states (such as neural networks (Lin, 1993) or
mechanisms based on vector quantization (Fernández and Borrajo, 1999)).
In fact, our approach can be viewed as a method for producing a virtual
generalized Q table using global reinforcement. Similar approaches, group
sets of similar states and/or actions on big state/action spaces (Boutilier et al.,
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1995; Dean and Givan, 1997; Fernández and Borrajo, 1999). Most of this
work uses different representation schemas, such as belief networks.

– Type of planning scheme. While reinforcement learning has been usually
applied for reactive planning (with some exceptions), our approach lies closer
to the classical planning approach (plans are generated in a search-based
fashion and later monitored for divergences between predicted and observed
states) (García-Martínez and Borrajo, 1997).

– Handling of the temporal credit assignment problem. For classical rein-
forcement learning techniques, the concept of time delayed reward is very
important. Therefore, their algorithms concentrate on how to assign credit
to actions whose reward is only known after some time has passed. In our
approach, each learning episode is handled independently of what happened
before.

Within the classical reinforcement learning framework, the work by Tan (Tan,
1993) could be considered a predecessor of our work. He explores the coopera-
tion among agents by sharing instantaneous information (perceptions, actions or
rewards), sequences of perception-action-reward, and learned policies.

Other approaches that integrate planning, learning and execution are:

– OBSERVER (Wang, 1996) integrates planning and learning. Wang proposes
an incremental approach for operators revision, where operators evolve dur-
ing the execution of the system. However, there is no memory of past ver-
sions of the operators as in LOPE. Another difference relies in the represen-
tation language for operators. Her work used the representation language of
PRODIGY4.0 operators (Veloso et al., 1995) that is based on predicate logic,
since its goal is to perform classical high-level planning. Our approach uses
a representation that is closer to the inputs and outputs of a more reactive
(robotic) system, with low-level planning.

– The GINKO system (Barbehenn and Hutchinson, 1991), the LIVE system (Shen,
1993), and the work of (Safra and Tennenholtz, 1994). They differ from the
proposed architecture in the fact that they do not take into account reinforce-
ment nor heuristic-based ref nement of operators.

– Christiansen (Christiansen, 1992) also addresses the problem of learning op-
erators (task theories) in a robotic domain. However, in his work there is no
revision process as our heuristic-based ref nement process.

– Other systems for robotic tasks are (Bennet and DeJong, 1996) and (Klingspor
et al., 1996). The f rst one deals with the concept of permissiveness, that
def nes qualitative behavior for the operators. The second one uses Induc-
tive Logic Programming for learning the operators of the domain by doing a
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transformation from the sensor data into predicate logic. They both differ from
our approach in that they need some type of prior background knowledge,
either a predef ned domain theory in the form of initial operators, or external
instruction and knowledge on how to perform the transformation.

9. Conclusions

There are many real world problems where there is no domain theory available,
the knowledge is incomplete, or it is incorrect. In those domains, autonomous
intelligent systems, def ned as systems that learn, self-propose goals, and build
plans to achieve them, sometimes are the only alternative to acquire the needed
domain description.

In this paper, we have presented an architecture that learns a model of its en-
vironment by observing the effects of performing actions on it. The LOPE system
autonomously interacts with its environment, self-proposes goals of high utility
for the system, and creates operators that predict, with a given probability estima-
tor, the resulting situation of applying an action to another situation. Learning is
performed by three integrated techniques: rote learning of an experience (observa-
tion) by creating an operator directly from it; heuristic generalization of incorrect
learned operators; and a global reinforcement strategy of operators by reward-
ing and punishing them based on their success in predicting the behavior of the
environment.

The results show that the integration of those learning techniques can greatly
help an autonomous system to acquire a theory description that models the environ-
ment, thus achieving a high percentage of successful plans. The use of knowledge
sharing strategies among the agents have shown that sharing the learned knowledge
can greatly help an autonomous system to acquire a theory description that models
the environment, thus achieving a high percentage of successful plans, and also
improving the convergence rate for obtaining a successful theory.

An important issue when allowing sharing of operators among agents, is re-
lated to the differences on their sensors, which causes different ways of perceiving
the world, and, therefore, different biases towards the generation of operators. We
have not yet studied this effect, although one possible way of solving it could be
by learning other agents biases, in order to perform a more informed sharing of
knowledge.

With respect to the scalability of the approach, we are now performing ex-
periments in a much more complex, noisy, with hidden states, and multi-agent
domain, such as the Robosoccer. We believe that through the use of the probabil-
ities estimations, and the heuristic generalisation of operators, we will be able to
cope with the complexity of that domain. Another domain we have also shown
elsewhere that we can apply this architecture to has been a subset of matrices
algebra (García-Martínez, 1997).
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