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Abstract 

Complex traits and diseases can be influenced by both genetics and environment. However, given 

the large number of environmental stimuli and power challenges for gene-by-environment testing,

remains a critical challenge to identify and prioritize specific disease-relevant environmental 

exposures. We propose a novel framework for leveraging signals from transcriptional responses to

environmental perturbations to identify disease-relevant perturbations that can modulate genetic ri

for complex traits and inform the functions of genetic variants associated with complex traits. We 

perturbed human skeletal muscle, fat, and liver relevant cell lines with 21 perturbations affecting 

insulin resistance, glucose homeostasis, and metabolic regulation in humans and identified 

thousands of environmentally responsive genes. By combining these data with GWAS from 31 

distinct polygenic traits, we show that heritability of multiple traits is enriched in regions 

surrounding genes responsive to specific perturbations and, further, that environmentally responsiv

genes are enriched for associations with specific diseases and phenotypes from the GWAS 

catalogue. Overall, we demonstrate the advantages of large-scale characterization of transcriptiona

changes in diversely stimulated and pathologically relevant cells to identify disease-relevant 

perturbations.  

 

Keywords: Co-localization, Gene expression, Gene-by-environment interactions, GWAS 
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Introduction 

Genome-wide association studies (GWAS) have identified thousands of genetic variants 

associated with complex diseases and traits1. The majority of these variants fall into non-coding 

regions of the genome and, as a result, their mechanism of action remains largely unknown2. In 

recent years, researchers have gained an increasingly clear picture of which parts of the genome are 

active in a range of tissues and cell types3–6. Integrating such information with results from GWAS 

has identified cell types, tissues, and regulatory elements relevant to specific diseases and 

phenotypes and moved the field towards mechanistic understanding of GWAS hits7–9. In addition, 

genomic colocalization and transcriptome-wide association studies combining results from GWAS 

and expression quantitative trait loci (eQTL) studies have identified candidate causal genes and their 

mechanisms of action10–12.  

Despite these advances, a modest fraction of GWAS associated variants and eQTLs 

colocalize for any trait13,14 providing the perspective that many disease-relevant effects are 

modulated by yet-to-be-discovered environmental factors. To address this challenge, multiple 

studies have mapped eQTLs in vitro that are responsive to the environment15–26. For example, the 

Immune Variation project identified eQTLs in human CD4+ T lymphocytes with different effects 

across distinct immune states17. These previously unknown, immune state-specific eQTLs were 

enriched for autoimmune disease-associated variants, underscoring the importance of exploring 

contexts beyond tissues and cell types to reveal the specificity of genetic associations. Although 

there is mounting evidence that environment modulates genetic effects, GWAS and eQTL studies 

rarely measure and test for genetic interactions with environment exposures. This is, in part, due to 

the difficulty of identifying and collecting information on the most relevant environmental 

exposures in GWAS cohorts and performing eQTL studies in contexts that are relevant for the 

specific trait or disease.  

In this study, we extend the current understanding of inherited variation in complex traits by 
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implementing a novel framework to model signals from transcriptional responses to environmental 

perturbations in order to identify and prioritize disease-relevant environments that can modulate 

genetic risk for complex traits and inform the functions of genetic variants and genes associated 

with complex traits. Specifically, we first assessed environmental effects on gene expression levels 

in three metabolic human cell lines by performing RNA-seq in muscle-, fat-, and liver-relevant cell 

lines treated with 21 different environmental perturbations related to aspects of glucose and insulin 

metabolism, kinase inhibitors, inflammation, fatty acid metabolism, etc. (N=234 samples). We 

identified thousands of environmentally responsive genes underlying disease-associated response 

pathways and characterized the specificity and sharing of these effects across perturbations and cell 

lines. Next, to identify disease-relevant perturbations, we coupled our gene expression data with 

GWAS summary statistics of 31 complex traits and diseases as well as associations from the GWAS 

catalogue. We confirmed several well-established environmental-phenotype associations, e.g., the 

role of TGF-β1 on asthma27 and provided additional evidence for recent and less well-understood 

associations, e.g., the role of leptin on major depressive disorder28. Last, to further illustrate how 

perturbation experiments inform the functions of complex trait associated variants, we integrate our 

perturbation data with genomic colocalization studies and show that the effects of these 

perturbations in the relevant tissues identifies context-specific molecular mechanisms of GWAS hits 

for diverse cardiometabolic traits.   

This resource characterizes the dynamic transcriptional landscape in metabolic tissues and 

provides a framework to identify and prioritize disease-relevant perturbations and disentangle the 

complex gene-environment interactions that determine disease susceptibility, which is particularly 

relevant for complex traits such as insulin resistance, diabetes and obesity. 

 
 

Results 

Transcriptome map of  21 perturbations across human skeletal muscle, fat and 
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liver cell lines   

We generated a transcriptome map of multiple chemical and environmental perturbations in 

well-established human skeletal muscle, fat and liver cell lines (N=234 samples). Specifically, we 

studied 21 environmental perturbations covering multiple aspects of glucose and insulin 

metabolism, inflammation, fatty acid metabolism, and including both LDL-lowering and anti-

diabetic drugs (Figure 1 and Table S1). For each perturbation and cell line and matched controls, we 

conducted assays in triplicate and applied differential expression analysis. We observed that the 

majority of perturbations induced broad gene expression changes in at least one cell line at FDR < 

5% (Figure 1A, Table S2). Several perturbations induced broad changes across all cell lines; for 

example, insulin and IGF1 altered the gene expression of 1,500-2,000 genes in each cell line. Other 

perturbations had broad changes only in specific cell lines. For example, IL-6, lauroyl-l-carnitine, 

and glucose had more pronounced effects in fat, muscle, and liver, respectively, impacting the 

expression of 3,161, 2,051 and 2,724 genes, respectively.  

Despite the broad effects for each perturbation, multiple differentially expressed (DE) genes 

showed perturbation-specific effects within each cell line, highlighting a unique molecular response 

to each perturbation. We observed 1,883 genes in muscle, 1,813 genes in fat, and 2,231 genes in 

liver altered by only a single perturbation in their respective cell lines (Figure 1B and Table S3). 

The largest proportions of perturbation-specific DE genes were found in glucose-stimulated liver 

cell lines and TGF-β1-stimulated fat cell lines. For these perturbations, 32.6% and 26.4% of DE 

genes were not altered by any of the other 20 perturbations in the same cell line (Figure 1C). By 

further stratifying across these cell lines, we identified 627, 742, and 808 genes that were both 

perturbation- and cell line-specific DE genes in muscle, fat, and liver (FDR < 5%; Figure S4A and 

Table S3). Glucose-stimulated liver cells also provided the largest amount of perturbation-and cell 

line-specific DE genes; 9.8% of DE genes were not altered by any of the other 20 perturbations in 

any cell line or by glucose stimulation in fat or muscle. 
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To identify the relationships between perturbations based on their overall transcriptional 

responses, we assessed the correlation of DE genes between each pair of perturbations within the 

same cell line (Figures 1D). The correlation of the effect of some perturbations was similar across 

cell lines, e.g., the effects of insulin and IGF1 were positively correlated in all three cell lines, i.e., 

Spearman’s ρ = 0.88, 0.76, and 0.71 in muscle, fat, and liver, respectively. The relationship of other 

perturbations, however, was dependent on the cellular context, e.g., while the effects of glucose and 

wortmannin were moderately correlated in fat (Spearman’s ρ = -0.63), their correlation in muscle 

and liver was low (Spearman’s ρ =0.02 and 0.2, respectively).  

To explore the shared and specific pathways altered by each perturbation, we performed 

enrichment analysis of DE genes in annotated pathways from ConsensusPathDB29 (Table S3). Our 

analysis highlighted multiple shared pathways across perturbations and cell lines related to PI3K-

AKT-mTOR, MAPK, adipogenesis, and TGF-β signaling (Figure S4B). We also observed several 

differences in pathway enrichments; for example, pathways related to FOXA2 and FOXA3 

transcription factor networks had greater enrichment across several perturbations in liver than in 

muscle and fat, transcriptional regulation by RUNX2 had greater enrichment in muscle than in liver 

and fat, and chromatin organization and remodeling pathways had greater enrichment in fat than in 

liver and muscle. In addition, for genes affected by multiple perturbations we saw strong enrichment 

pathways related to insulin signaling and resistance. 

Combined, our concurrent assessment of multiple metabolically relevant perturbations 

across cell lines highlights the relationships between complex cell-specific molecular mechanisms 

and provides a genome-wide map of genes and signaling pathways with potential environmental 

contributions to complex disease susceptibility. 

 

Prioritizing complex disease-relevant environmental perturbations 

To measure the relevance of diverse environmental perturbations in complex diseases, we 
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analyzed our transcriptome data together with GWAS summary statistics for 31 diseases and 

complex traits broadly related to multiple cardiometabolic, psychiatric, autoimmune, and 

reproductive traits, as well as hematological measurements (Figure 2 and S5; Table S5). We 

hypothesized that environmental perturbations impact disease through the same genes that confer 

susceptibility to the trait. To this end, for each of the 21 perturbations across the three cell lines, we 

used stratified LD score regression8,9,30 (LDSCreg) to test whether disease heritability, i.e., 

proportion of phenotypic variance determined by genotypic variance, is enriched in regions 

surrounding DE genes for that perturbation and cell line, adjusting for both heritability explained by 

a baseline model of genetic architecture9 and by regions surrounding genes expressed in the specific 

cell line.  

For 26 of the 31 traits tested, the SNP-based heritability estimate was sufficiently large to 

partition reliably with LDSCreg, i.e., heritability Z-score >= 7 (Table S5). In 19 of these traits, at 

least one perturbation in at least one cell line was enriched for heritability (FDR<10%; Figure 2). 

Several of the enrichments recapitulate important known biology. For example, among 

cardiometabolic traits, high-density lipoprotein (HDL) and triglyceride levels were enriched for 

dexamethasone (P=2.10 x 10-3 and P=6.53 x 10-3), a corticosteroid known to induce 

dyslipidemia31,32, and cardiovascular disease was enriched for rosiglitazone (P=6.44 x 10-3), an 

antidiabetic drug shown to increase risk of cardiovascular disease33. In addition, these enrichments 

were often manifested through a single specific relevant cell line. For example, waist-hip ratio 

(WHR) heritability was enriched for genes whose expression is modified by perturbations in fat, 

while triglyceride and HDL level heritability were enriched for genes whose expression is modified 

by perturbations in the liver.  

Several notable examples were also observed for other tested traits. For psychiatric 

disorders, leptin, a hormone produced and secreted by white adipose tissue that is associated with 

antidepressant-like actions28,34,35, was enriched for heritability of major depressive disorder via its 
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effect in fat cell lines (P=2.11 x 10-3). In addition, adiponectin, plasma levels of which appear to be 

altered in neurological disorders with metabolic and inflammatory components36–38, was enriched 

for heritability of schizophrenia (P=5.81 x 10-3). For tested autoimmune diseases, TGF-β1, an 

immune-suppressive cytokine dysregulated in the intestines of inflammatory bowel disease 

patients39, was enriched for heritability of Crohn’s disease (P=1.18 x 10-2), as well as heritability of 

allergy, eczema, and asthma27,40–42 (P=1.08 x 10-4), three diseases with shared genetic origin43. 

Several perturbations were also enriched for heritability of hematological measurements; for 

example, dexamethasone, a synthetic glucocorticoid known to deplete peripheral blood lymphocytes 

and impact immune response44, was enriched for heritability of lymphocyte count (P=2.88 x 10-4). 

Lastly, for reproductive traits, glucose was enriched for heritability of age at menarche - older age at 

menarche is associated with reduced risk of glucose metabolism disorder45 - while IGF1, whose 

serum levels rapidly decrease after menopause46, was enriched for heritability of age at menopause 

(P=2.21 x 10-3).  

 

Identifying environmental perturbations impacting GWAS-significant loci. 

Beyond the broad polygenic impact of the tested perturbations and in order to analyze a 

larger number of traits, we sought to prioritize the subset of perturbations that were enriched for 

impact on GWAS-significant loci in specific complex diseases. We tested for enrichment of DE 

genes for cis-SNPs associated with diseases and phenotypes in the GWAS catalogue47. As many 

traits had a small number of associations, we first tested for enrichment within groups of similar 

traits, as defined in the GWAS catalogue (Figure 3, Table S6).  

We observed a significant enrichment for at least one perturbation and cell line across all 14 

groups of complex diseases and traits tested (FDR<10%). For example, genes responsive to the 

effect of rosiglitazone, an insulin sensitizer known to affect plasma lipid levels48, were enriched 

within GWAS significant hits for lipid or lipoprotein measurements (OR=2.00 and P=5.98 x 10-3). 
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In addition, genes responsive to the effect of retinoic acid, a metabolite of vitamin A that is 

synthesized in the liver and whose signaling dysregulation contributes to hepatic disease49, were 

enriched within GWAS hits for liver enzyme measurements (ORMuscle= 2.71 and PMuscle= 9.06 x 10-

4; ORLiver=2.60 and PLiver= 1.8 x 10-2). Moreover, atorvastatin and metformin, two perturbations with 

highly correlated DE signals (Figure 1D) known to reduce cardiovascular morbidity50–54, were both 

enriched within GWAS hits for cardiovascular measurements (ORATOR-Liver= 1.75 and PATOR-Liver= 

1.58 x 10-2; ORATOR-Muscle= 2.53 and PATOR-Muscle= 1.52 x 10-2; ORMETF-Liver= 1.86 and PMETF-Liver= 

1.56 x 10-2). In line with the LDSC regression-based enrichment for Crohn’s disease, we observed 

that genes responsive to TGF-β1 were enriched within GWAS significant hits for digestive system 

disorders (OR = 2.7 and P= 3.96 x 10-9).  

More generally, we observed that GWAS hits for immune system disorders or inflammatory 

measurements were enriched in genes responsive to the effect of inflammatory perturbations, e.g., 

ORTNFa= 1.92 and 1.77 and PTNFa = 3.84 x 10-8 and 2.54 x 10-8, for immune system disorders and 

inflammatory measurements respectively. Neurological disorders were also enriched for 

inflammatory perturbations, though to a lesser extent (e.g., ORTNFa= 1.35 and PTNFa = 8.60 x 10-4). 

Associations with lipid or lipoprotein measurements and drug metabolism traits were enriched in 

genes responsive to several perturbations via liver, where most drug metabolism occurs55, and 

associations with body measurements were enriched via muscle. 

For traits with a large number of GWAS hits, i.e., traits with at least 100 reported associated 

loci, we tested enrichments directly (Figure S5). In 14 of the 152 complex diseases and traits tested, 

we observed a significant enrichment for at least one perturbation and cell line (FDR<10%).  For 

example, genes in muscle cells that were responsive to the effect of isoprenaline, a beta-adrenergic 

agonist with effects on cardiac muscle56, were enriched within GWAS significant hits for 

cardiovascular disease (OR=2.24 and P=2.56 x 10-4). In addition, consistent with the LDSCreg-

based enrichment of dexamethasone for HDL heritability in liver, genes responsive to 
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dexamethasone in liver were enriched within GWAS significant associations for total cholesterol 

levels (OR=3.08 and P=1.94 x 10-4). Lastly, genes responsive to IGF1 in the liver were enriched 

within significant associations for birth weight (OR=3.86 and P=5.48 x 10-5), consistent with prior 

observations of negative correlation between IGF1 levels and birth weight57,58. 

Environmental perturbations harbor causal genes and help inform their functions 

A major challenge with GWAS data in isolation is identifying causal disease genes. Here, 

we assessed whether combining GWAS with relevant environmental perturbations helped to 

identify or reinforce causal disease genes and to inform on their molecular functions. As many of 

our perturbations were related to cardiometabolic traits including IR, obesity, and T2D, we tested if 

genes affected by our panel of perturbations harbored candidate causal genes underlying loci for 

seven cardiometabolic traits. To assess this, we integrated our perturbation data with results from 

genomic colocalization analyses of GWAS loci for these seven traits and GTEx eQTLs in visceral 

and subcutaneous adipose, skeletal muscle, and liver tissues5. We observed that genes with a 

transcriptional response to at least one of our environmental perturbations are enriched among the 

candidate causal genes, i.e., genes with high posterior colocalization probability (CLPP), for 

cardiometabolic traits (Figure 4A; OR=1.40, Fisher’s exact test P-value= 5.33 x 10-4). We next 

assessed whether DE genes for specific perturbation-cell line combinations were more likely to be 

causal, compared with non-DE genes (Figure 4B). Genes responsive to isoprenaline, SP600125 (a c-

Jun N-terminal kinase inhibitor that plays an essential role in TLR mediated inflammatory 

responses), and TNFα in fat had significantly higher median CLPPs (FDR<10%), compared to non-

DE genes (Wilcoxon test; PISOP= 8.7 x 10-4, PSP60= 6.0 x 10-3, and PTNFα= 6.0 x 10-3).   

To explore how perturbation experiments can inform the function of candidate causal genes 

underlying cardiometabolic loci, we intersected the DE patterns in each cell line and perturbation 

with the colocalization patterns in the matched tissue. We illustrate four such examples (Figure 4C-
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E): three loci in which a single gene showed high CLPP and one locus with more complex 

colocalization patterns, with five out of seven genes in the locus showing high CLPP.  

Results from the colocalization analysis associated FAM13A genetic variants in 

subcutaneous fat with several traits of interest, i.e., HDL, T2D, triglycerides, WHR, and fasting 

insulin (Figure 4C, locus 1). We recently described the role of FAM13A in adipocyte differentiation 

and the contribution to body fat distribution59. The DE patterns of FAM13A in our perturbation 

experiment (Figure 4D, locus 1) not only reinforce the role of FAM13A in adipose tissue but also 

suggest an additional metabolic function in the liver not captured by the colocalization results. The 

role of FAM13A in regulation of hepatic glucose and lipid metabolism was recently confirmed by 

Lin et al60. Another candidate gene, PDGFC, shows an identical colocalization pattern to FAM13A 

(Figure 4C, locus 2) and the perturbation data also supports its importance in the adipose tissue 

(Figure 4D, locus 2). However, the perturbation data identifies an additional role of PDGFC in 

skeletal muscle, in contrast with the role of FAM13A in the liver.  

Another complementary example is illustrated by the colocalization for DTX1, which is 

specifically associated with WHR and subcutaneous fat (Figure 4C, locus 4), and whose expression 

is regulated by insulin, IL-6, TNF-a, dexamethasone and rosiglitazone in mature human adipocytes 

(Figure 4D, locus 4).  

Finally, genetic variants in the FADS locus have been associated with HDL cholesterol, 

triglyceride levels, fasting glucose, and T2D61–63 and our colocalization analysis was consistent with 

these observations (Figure 4C, locus 3). However, the high amount of linkage disequilibrium, the 

gene density and the pleiotropy of FADS genes have challenged the dissection of individual gene 

effects. Particularly informative is the case of FADS1, FADS2, and FADS3, for which the DE 

patterns for glucose and insulin (Figure 4D, locus 3) point, among others, to a fine-tuned cell line- 

and perturbation-specific regulation of the FADS locus in the context of metabolic homeostasis 

(Figure 4E).  
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 Together these results highlight the importance of perturbation experiments to contextualize 

GWAS associations and results from genomic colocalization analyses. 

 

Discussion 

We have profiled transcriptional responses to multiple environmental perturbations to identify 

disease-relevant perturbations modulating genetic risk for complex traits and to inform functionality 

of causal genes. By combining gene expression data with GWAS summary statistics of complex 

traits, we show that heritability of multiple complex traits is enriched in regions surrounding genes 

responsive to particular sets of perturbation-cell line combinations. We confirmed several well-

established associations, e.g., the role of TGF-β1 on asthma, and provided additional evidence for 

recent and less well-understood associations, e.g., the role of leptin on major depressive disorder. In 

addition, beyond the broad polygenic impacts of the tested perturbations, we were able to prioritize 

the subset of perturbations that are enriched for their impact on GWAS-significant loci in specific 

groups of complex diseases. We observed that environmentally responsive genes are enriched for 

cis-SNPs associated with a broad spectrum of diseases and phenotypes from the GWAS catalogue. 

Further, by integrating gene expression data with information from genomic colocalization studies, 

we showed that environmentally responsive genes are enriched for candidate causal genes for 

cardiometabolic traits, and that the effects of these perturbations in the relevant tissues further 

suggest context-specific molecular mechanisms of GWAS hits for cardiometabolic traits.  

Our approach interrogated multiple cell lines and perturbations, but comparable applications 

will be limited by the cell lines and environmental perturbations that are selected, the concentrations 

of these perturbations, and the time length for which the cells have been exposed. Further, the use of 

cell lines provided the opportunity for conducting well-controlled perturbation experiments; 

however, it is unknown the degree to which all findings would generalize to a primary cell. For 

some of the diseases we considered, the studied cell lines might not represent the cell type or tissue 
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through which disease is manifested. However, because we observed that cell lines can share 

transcriptional responses (Figure 1D), our study design has shown that we can identify important 

perturbations without the causal cell type being examined.  

In conclusion, we demonstrate the advantages of large-scale characterization of 

transcriptional changes in diversely stimulated and pathologically relevant cells to identify disease-

relevant perturbations that modulate genetic risk for complex traits. We also provide a broad 

resource of the dynamic transcriptional landscape in metabolic tissues. To our knowledge, this is the 

largest and most complete study of transcriptional effects of metabolically relevant perturbations in 

human fat, liver and skeletal muscle cell lines. In addition, we show that integrating GWAS and 

eQTL results with perturbation experiments can inform the function of candidate causal genes and 

prioritize genes and environmental stimuli for follow-up experiments. Combined, this work 

demonstrates how integrating differential expression, eQTL, and GWAS data can inform genetic 

and environmental components of complex disease mechanisms.  

 
 

Online Methods 

Cell culturing and perturbations 

Experiments were conducted using human skeletal muscle64,65 (HMCL-7304),  fat66 (Simpson-

Golabi-Behmel syndrome - SGBS), and liver67 (HepG2) cell lines. Details on cell culturing are 

provided in the Supplemental Methods. Briefly, each cell line was starved for 6 hours and then 

treated for 2 hours with one the 21 perturbations shown in Table S1 in triplicate for each cell line 

- perturbation combination. We selected a stimulation window of 2 hours to allow enough time 

for transcriptional changes to occur, and at the same time, to minimize potential secondary 

responses that are not direct transcriptional effects of the selected perturbations, as previously 

assayed for insulin in liver and skeletal muscle cells from mice68. In addition, we selected the 
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concentrations of use, shown in Table S1, based on a consensus research of available literature, 

particularly in the cells of interest. Last, we prepared triplicate control samples for glucose (no 

glucose medium) and four sets of triplicate control samples (no stimulation) for all other 

perturbations in each cell line, resulting in a sample size of 234.  

RNA isolation and sequencing  

After stimulation, the cells were washed with PBS and collected in PureLink RNA extraction 

lysis buffer supplemented with 1% 2-mercaptoethanol, flash frozen in dry ice and stored at -

80ºC. RNA extraction was performed with PureLink RNA Mini kit (Thermo). 260/280 and RIN 

values were assessed prior to sequencing for sample purity and integrity. Library preparation 

was performed at Novogene company. Liver samples were sequenced in HiSeq 4000 (Illumina) 

and fat and muscle were sequenced in Novaseq 6000 (Illumina) at 150bp paired end reads. 

RNA-seq quality control 

For all subsequent analyses, we focused only on expressed genes, i.e., genes which have median 

expression counts above 10 in at least one of the conditions (perturbation or control) within each 

cell line, i.e., 17,660, 17,140, and 16,722 genes for fat, muscle, and liver cells, respectively. As a 

measure of quality control, we looked at several RNA-Seq technical metrics (See Supplemental 

Methods and Figures S1-S3), e.g., RNA integrity number, % GC content, % of uniquely mapped 

reads etc. One sample (TGF-β1 in Fat) was dropped due to failing these quality control metrics. 

All remaining samples had values within proper range (Figure S1). We used principal 

component analysis (PCA) to identify gene expression outliers. After removing the low-quality 

sample mentioned above, no outliers are present based on the first two principal components 

(Figure S3).  
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Identifying major components of variability in RNA-Seq data 

We identified major components of variability in RNA-Seq data using the linear mixed models 

implemented in the R package variancePartition69 (Figure S2). We correct all subsequent 

analyses for all variables that explain, on average, more than 1% of expression variability in 

either cell line, i.e., % GC content, % exon overlapping reads, RNA concentration, % of reads 

marked as PCR duplicates, RNA 260/280 ratio, RIN, and % Uniquely mapped reads. For 

analyses done in liver cells, we also correct for sequencing batch. 

Differential expression analyses 

We characterize transcriptional responses to each perturbation in each cell line using the negative 

binomial models implemented in the R package DESeq270, adjusting for major technical 

components of expression variability identified in the last section. To account for multiple testing 

across cell lines, perturbations, and genes, we use the hierarchical error control strategies 

implemented in the R package TreeBH71 with cell line, genes, and treatments in level 1, 2, and 3, 

respectively. This hierarchical procedure adjusts for all the tests performed and allows us to make 

statements about differential expression at the gene, gene-perturbation, and gene-perturbation-cell-

line level. We call a gene perturbation-specific within a cell line, if the gene is DE in that specific 

perturbation but not in any other perturbation in that cell line (FDR<5% at each level). A gene is 

assumed perturbation-and-cell-line-specific if the gene is DE in that specific perturbation but not in 

any other perturbation in that or the other cell lines or that specific perturbation in the other cell 

lines (FDR<5% at each level). 

Correlation and hierarchical clustering of transcriptional response to perturbations  

We computed correlation and performed hierarchical cluster analysis of the transcriptional 

response to perturbations in each cell line using the test statistics from the DE analyses for all 
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genes that were significant (FDR<5%) in at least one perturbation and cell line. The R package 

corrplot72 was used to get a graphical display of the correlation matrix and hierarchical clustering 

of the perturbations.  

Enrichment analyses for biological pathways 

We performed over-representation analysis73 using the R package clusterProfiler74 and pathways 

from the ConsensusPathDB database29. We adjust for multiple testing within each perturbation 

and cell line using the Benjamini-Hochberg75 procedure. 

LD score regression analysis 

We downloaded the baseline model LD scores, regression weights, and allele frequencies from 

https://github.com/bulik/ldsc. Annotations for each perturbation and cell line were built using the 

pipeline described on the LD score regression wiki and according to 8. Specifically, for each of the 

63 combinations of 21 perturbations and three cell lines, we add 100kb windows on either side of 

the transcribed region of each DE gene in that combination to construct a genome annotation 

corresponding to that perturbation - cell line combination. Due to its unusual genetic architecture 

and LD pattern, we excluded the HLA region from all analyses. Z-scores for the significance of the 

estimated total heritability for each trait were computed as h2/se(h2), where h2 and se(h2) are the 

SNP-based heritability estimated and standard errors from LD score regression. Z-scores and p-

values for the significance of the partitioned and conditional heritability for each trait-perturbation-

cell type combination were obtained using the option --h2-cts flag. We adjust for multiple testing 

within each trait and cell line using the Benjamini-Hochberg procedure. 

Enrichment for diseases and traits in the GWAS catalogue 

We downloaded the entire GWAS Catalogue (v1.0.2) with added ontology annotations the file 
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showing all GWAS Catalog reported trait to EFO mappings, including the parent category each trait 

is mapped to on the diagram from https://www.ebi.ac.uk/gwas/docs/file-downloads. We assume the 

MAPPED GENE, i.e., the gene mapped to the strongest SNP as reported in the GWAS catalogue, is 

the GWAS gene. For the enrichment of groups of GWAS traits, i.e., EFO parent terms, we only 

keep the unique GWAS genes reported across all traits within each EFO parent terms. We excluded 

all results annotated with "Other measurement", "Other disease", and "Other trait" EFO parent terms 

as well as duplicated entries. For the enrichment of specific traits, we only test traits with at least 

100 reported associated genes. To test for the significance of the enrichment, we used the Fisher’s 

exact test. For each perturbation and cell line combination, we use an equal number of non-DE 

genes matched for length and median gene expression using the R package optmatch76. We adjust 

for multiple testing across all (parent) traits, cell lines, and perturbations using the Benjamini-

Hochberg procedure. 

Colocalization analysis of GWAS and eQTL effects and combination with DE 

signal 

We performed colocalization analysis using our custom integration of the FINEMAP77 and 

eCAVIAR11 methods. For each GWAS and eQTL overlap (GWAS and eQTL P < 5e-8 for at least 

one SNP in each), we narrowed our summary statistics to the set of SNPs tested for association with 

both the given GWAS trait and the given QTL trait, and removed all sites containing less than 10 

SNPs after this filter. Using the full 1000 Genomes dataset from phase 3 as a reference population78, 

we estimated LD between every pair of SNPs. We then ran FINEMAP independently on the GWAS 

and the eQTL summary stats to obtain posterior probabilities of causality for each of the remaining 

SNPs and combined these probabilities to compute a colocalization posterior probability (CLPP) 

using the formula described in the eCAVIAR method. Because the canonical CLPP score is highly 

conservative in regions with densely profiled, high-LD SNPs, we modified the score formula to 
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produce an LD-modified CLPP score (Supplemental methods). 

  To test whether the genes DE in at least one of our perturbations and cell lines are enriched 

for candidate causal IR genes for at least one IR-related trait and GTEx tissue we used Fisher’s 

exact test. Candidate causal IR genes, denoted as High P(Causal), are defined as genes with CLPP 

above 40%, which corresponds to 80th CLPP percentile. To test for the significance of the difference 

in median CLPP between DE and non-DE genes for each combination of perturbation and cell line 

we used the two-samples Wilcoxon rank sum test. We adjust for multiple testing using the 

Benjamini-Hochberg procedure. 
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Figure 1. Perturbations induce large-scale changes in gene expression in muscle, fat, and liver. (A) 

Number of DE genes for each perturbation in each cell line (FDR<5%). See Table S2 for extended DE 

summary statistics. (B) Proportion of DE genes that change in response to up to 10 perturbations in each cell 

line. See Tables S4 for extended results on sharing of DE genes. (C) Proportion of perturbation-specific DE 

genes, i.e., genes that change in response to a single perturbation, within each cell line. (D) Correlation of DE 

patterns between different perturbations within each cell line. Each square is Spearman’s correlation between 

the DE test statistic of a pair of perturbations across all genes. DE: differentially expressed; FDR: False 

Discovery Rate.  
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Figure 2. Prioritizing complex disease-relevant environmental perturbations via heritability 

enrichment analysis. Heritability enrichment results for each complex trait. Each point represents a 

perturbation-cell-line combination that passes the FDR<10% cut off. The y-axis represents the -log10(P-

value) of heritability enrichment, the x-axis indicates perturbation, color of the point indicates cell line, and 

the shading color within each panel indicates the perturbation category from Figure 1A. Numerical results are 

reported in Table S5. 
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Figure 3. Identifying environmental perturbations impacting significant GWAS loci. GWAS enrichment 

results for each group of complex traits from the GWAS catalogue. Each point represents a perturbation-cell- 

line combination that passes the FDR<10% cut off; color of the point indicates the cell line, and the shading 

color within each panel indicates the perturbation category from Figure 1A. The y-axis represents the -

log10(P-value) of the Fisher’s exact test and the size indicates the odds ratio for enrichment of GWAS hits of 

each group of traits from the GWAS catalogue. Numerical results are reported in Table S6. Results for 

specific traits, rather than groups of traits, are displayed in Figure S5. 
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Figure 4.  Environmental perturbations can help inform functionality of causal genes underlying 

cardiometabolic traits loci. (A) % of causal genes (High Prob(Causal)) underlying cardiometabolic traits 

loci that are DE (purple) or not DE (grey) in at least one perturbation and cell line. OR/P: Odds ratio and 

Fisher’s exact test P-value for enrichment of DE genes among causal genes, compared to non-DE genes. (B) 

Perturbation and cell line combinations with a significant (FDR<10%) difference in median (D) CLPP 

between DE and non-DE genes, according to the two-samples Wilcoxon rank sum test.  (C/D) Examples of 

loci for which intersecting the effects of perturbations (C) with the colocalization results (D) helps inform 

functionality of candidate causal genes. Color indicates CLPP (C) or DE direction (D). White boxes with 

crosses indicate that the gene was not tested for colocalization or DE. (E) Effect of glucose and insulin in the 

expression of the three FADS genes and the effect of the expression of these genes on HDL, fasting glucose 

(FGLUC), and triglycerides (TRIG), the three traits for which FADS genes colocalize. The color of the 

triangles indicates either the effect of the perturbation on the gene (red=up-regulation, blue=down-regulation) 

and the effect that up- / down-regulation of the gene has on the phenotype (red = increased phenotype, blue = 

decreased phenotype). DE: differential expression. CLPP: colocalization posterior probability. FDR: False 

discovery rate.  
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