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An Integrated Approach to Single-Leg Airline Revenue

Management: The Role of Robust Optimization

Ş. İlker Birbil ∗ J.B.G. Frenk† Joaquim A.S. Gromicho‡ Shuzhong Zhang§

ABSTRACT. In this paper we introduce robust versions of the classicalstatic and dynamic

single leg seat allocation models as analyzed by Wollmer, and Lautenbacher and Stidham,

respectively. These robust models take into account the inaccurate estimates of the underlying

probability distributions. As observed by simulation experiments it turns out that for these

robust versions the variability compared to their classical counter parts is considerably reduced

with a negligible decrease of average revenue.

Keywords: airline revenue management; single-leg problems; static models; dynamic models;

robust optimization

1 Introduction

Airline seat allocation problems on single legs or networksplay a prominent role within the revenue

management literature. This field expanded rapidly in recent years and for an overview on revenue

management up to1999 we refer the reader to [11], while developments occurring after this work

are discussed in the recent book by Talluri and Ryzin [15]. Although many practical seat allocation

problems observed in the airline industry are network based, single leg seat allocation problems still

play an important role. This is mainly due to two reasons: Firstly, in general the network based air-

line seat allocation problems are extremely difficult to solve. Therefore, different heuristics, which

required the solution of many single leg problems, were developed. Secondly, some small airline

companies, like charter flight companies commonly seen in Europe, have special one-hub networks

with single legs. Therefore for those companies managing their seat allocation over the network re-

quires solving only single leg problems. Among the single leg problems, one may distinguish static

and dynamic models. Actually, the static models can be further categorized into two types. The first

type assumes that only the distribution of the demand for thedifferent fare classes is known. Since
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2. Static Models

the objective is to maximize the expected revenue, this leads to the formulation of mathematical

programming models. Examples of such models are given in [17, 5, 15]. The second type assumes

that the demands for different fare classes arrive in non overlapping time periods in the order of in-

creasing fare class prices. Given a realization of a particular fare class demand, one needs to decide

how much of this demand is allocated to seats, under the probabilistic information on the demand

for the remaining higher priced fare classes. This model canbe solved by dynamic programming,

where the stages correspond to fare classes. Examples of such models under different assumptions

are presented for two fare classes in [10, 12], and for more than two fare classes in [1] (a heuristic

approach generalizing the rule of Littlewood) and also in [18, 3, 13]. Finally, dynamic single leg

models take into account the actual order of arrival of different fare class customers and so the de-

cision to accept or reject a specific fare class customer is not static, but may change over time. In

this case stages correspond to time periods. Examples of such models under different assumptions

are given in [9, 8, 16].

In this paper we first review, in the section on static models,the mathematical programming

formulation of the static single leg problem already given by Wollmer [17] in a more complicated

network environment (see also [5, 15]). However, in these references only a binary linear program-

ming formulation is given without any special purpose algorithms to solve those formulations. For

the more special single leg case considered here, we give in Section 1 a fast special purpose algo-

rithm to solve this model. Moreover, we present also in Section 1 a new robust formulation of the

mathematical programming model, which takes into account the inaccurate estimate of the proba-

bility distributions of the total demand for the different fare classes. As shown in Section 5 it will

turn out in our simulation experiments that the variabilityof the realized revenues is considerably

smaller for the robust version. At the same time due to the conservative behavior of the robust

model, the average revenues for the classical single staticmodel are slightly higher. In Section 3 we

then review the standard classical dynamic single leg problem as discussed in [8] and propose, also

for this model, a new robust version. This robust version takes again into account the inaccurate

estimates of the probabilities of the arrival process. In the same section we also propose, for the

classical dynamic model, an extension to batch arrivals in each period. Again from our simulation

results in section 5 we observe the same behavior as observedfor the static models. In Section 4 we

consider shortly which model we have to use in case of perfectinformation. Then we compare the

three different models (static, dynamic and complete information) extensively by means of simula-

tion in Section 5. Our simulation results show that that the cost of having incomplete information

is relatively small. Finally, in Section 6 we conclude the paper.

We adopt a standard notation in our paper. The difference between the vectors and scalars should

be clear from the text. The boldface letters are used to denote the random variables.

2 Static Models

In this section we are interested in the optimal allocation of the seat capacityC on a given flight

among them different fare classes. If the demanddi for each fare classi, 1 ≤ i ≤ m, is known

in advance, it is trivial to solve this allocation problem which can be modelled in the following
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2. Static Models

way. Letxi denote the number of reserved seats for fare classi at the beginning of the booking

period. We assume that fare classi customers do not consider the possibility of buying a ticketfrom

a different fare class. Thus, once no fare classi ticket is available, then it follows thatmin{xi, di}

will be the number of occupied fare classi seats on the selected flight. To determine the optimal

allocation of the different fare classes over the given capacity C, we need, therefore, to solve the

following optimization problem

v1(C) := max
∑m

i=1 ri min{xi, di}

s.t.
∑m

i=1 xi ≤ C,

x ∈ Z
m
+ ,

(2.1)

whereri denotes the price of a fare classi seat. In caser1 < r2 < ... < rm, it is obvious that

an optimal allocation is given as follows: Consider demanddi and priceri for each fare classi,

and assign all the seats to the higher-priced customers as long as the capacity is still available. To

formalize the algorithm, introduceSn :=
∑m

j=n dj with d0 := 0 andN(C) = min{0 ≤ n ≤ m |

Sn ≤ C}. Then, the optimal solution of optimization problem (2.1) is given by

x∗
i =






di, if i ≥ N(C)

C − SN(C), if i = N(C) − 1

0, if i < N(C) − 1.

(2.2)

The associated optimal objective function value as a function of the capacityC is given by

v1(C) =

m∑

i=N(C)

ridi +
(
C − SN(C)

)
rN(C)−1,

which is, clearly, a piecewise linear concave function.

However, usually the demand for fare classi is a random variableDi and we do not know in

advance its realization. We may, however, estimate the distribution of the demand. LetDi(ω) be a

realization of the demandDi andxi be the number of reserved seats for fare classi. Consequently,

the total revenue is given by
∑m

i=1 ri min{xi,Di(ω)}. This shows that the expected revenue equals
∑m

i=1 riE (min{xi,Di}), and so, ourstatic decision model for random demand is given by

v2(C) := max
∑m

i=1 riE (min{xi,Di})

s.t.
∑m

i=1 xi ≤ C,

x ∈ Z
m
+ .

(2.3)

This static model was first formulated by Wollmer [17] in a much more complicated network

environment and became a classical model in this field. Sincethe simpler single-leg version is a

standard separable problem, it can be solved by dynamic programming. Introduce for everyp ≤ m

andy ∈ {0, ..., C} the valueRp(y) as the maximal expected revenue for fare classesp up tom if at

most capacityy is reserved for those fare classes, i.e.,

Rp(y) = max






m∑

i=p

riE(min{xi,Di}) |
m∑

i=p

xi ≤ y, xi ∈ Z, i = p, · · · ,m




 .
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2.1 An Improved Algorithm

By the optimality principle of Bellman it now follows for every y ∈ {0, · · · , C} andp + 1 ≤ m

that

Rp(y) = max
0≤xp≤y

{Rp+1(y − xp) + rpE(min{xp,Dp})} .

Since clearlyRm(y) = rmE (min{y,Dm}), y ∈ {0, 1, ..., C}, we can recursively compute the

optimal objective valueR1(C). The computational complexity of this dynamic programmingap-

proach is of the order ofO(mC2).

Clearly, to apply this approach we need an efficient algorithm to compute the function values

E(min{xi,Di}). This can be done in a direct way for some simple distributions or using the so-

called Fast Fourier Transform (FFT) approach [7].

2.1 An Improved Algorithm

The key idea behind our approach is to rewrite the separable objective function of problem (2.3).

We introduce the functionFi : Z → R given by

Fi(n) := E(min{n,Di}) (2.4)

and observe for givenn ∈ Z+ that

Fi(n) =
n∑

j=1

P{Di ≥ j}.

Using this, it is obvious thatFi is a discrete concave function; i.e., the differenceFi(n)−Fi(n− 1)

is non-increasing inn. By relation (2.4), problem (2.3) can be rewritten as

v2(C) = max
∑m

i=1 riFi(xi)

s.t.
∑m

i=1 xi ≤ C,

x ∈ Z
m
+ .

Clearly,xi ≤ C in this problem. Introduce now for1 ≤ j ≤ C, the values

αij := Fi(j) − Fi(j − 1) =
∞∑

k=j

pik,

wherepik = P{Di = k}. Notice that the objective function is separable. Therefore, riαij gives

themarginal value of increasingxi from j − 1 to j. After this observation, we can solve problem

(2.3) very fast. To explain the algorithm, we first introducethe followingm × C matrix





r1α11 r1α12 · · · r1α1C

r2α21 r2α22 · · · r2α2C

...
... · · ·

...

rmαm1 rmαm2 · · · rmαmC




. (2.5)

Then, the optimal objective function valuev2(C) can be found by sorting theriαij values, and

adding up the firstC terms. Consequently, the number of times indexi appears among theseC
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2.2 A Robust Optimization Approach

terms gives the optimal solutionx∗
i . Notice that sinceFi is discrete concave, the marginal values

in each rowi are in descending order; i.e.,riαi1 ≥ riαi2 ≥ · · · ≥ riαiC . Therefore,v2(C) can

be evaluated by taking the maximum ofm elementsC times. The computational complexity of the

proposed approach reduces to the order ofO(mC).

2.2 A Robust Optimization Approach

To evaluate the objective function of problem (2.3), we needto know the probability distribution

of the customer demand. These probabilities are usually estimated by analyzing the historical data,

and hence, they are prone to inaccuracies. A reasonable consideration would be: How can we

immunize the model from the inaccurate data? To answer this question, we propose next a robust

modeling approach.

We assume that random variableDi, representing the total demand for fare classi, is concen-

trated on{0, · · · ,K}, and this demand has an estimated probability vectorp̂⊺

i = (p̂i0, · · · , p̂iK).

To compensate for possible estimation errors, we consider for 1 ≤ i ≤ m the probability vectorspi

belonging to the uncertainty setPi given by

Pi = {pi ∈ R
K+1 : pi ∈ p̂i + ∆i, p⊺

i e = 1},

where

∆i =

{

di = (di0, · · · , diK)⊺ ∈ R
K+1 |

K∑

k=0

(
dik

p̂ik

)2

≤ δ2
i

}

with δi ∈ [0, 1]. It is easy to verify by the positivity of̂pik and the definition of∆i that p̂i + ∆i ⊆

R
K+1
+ . The total demand then depends on its probability distribution pi, and hence we denote this

random variable byDi(pi). Thus, the robust counterpart of problem (2.3) is given by

v3(C) := max
∑m

i=1 ri minpi∈Pi
{E (min{xi,Di(pi)})}

s.t.
∑m

i=1 xi ≤ C,

x ∈ Z
m
+ .

(2.6)

We introduce then the functionGi : Z+ → R given by

Gi(n) := min
pi∈Pi

{E (min{n,Di(pi)})} . (2.7)

Notice for everypi ∈ Pi that the function

n → E (min{n,Di(pi))

is discrete concave onZ+. Since the point wise infimum of a collection of concave functions is

again concave, the functionGi is also discrete concave onZ+. Then problem (2.6) can be rewritten

as
v3(C) = max

∑m
i=1 riGi(xi)

s.t.
∑m

i=1 xi ≤ C,

x ∈ Z
m
+ .
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3. Dynamic Models

Observe for givenpi ∈ Pi that

E (min{xi,Di(pi)) =

xi−1∑

k=0

kpik + xi

K∑

k=xi

pik = c(xi)
⊺pi,

where

c(xi)
⊺ := (c0(xi), c1(xi), · · · , cK(xi)) = (0, 1, · · · , xi − 1, xi, xi, · · · , xi).

Hence, by relation (2.7), we have

Gi(xi) = min {c(xi)
⊺pi | pi ∈ Pi} = c(xi)

⊺p̂i + min {c(xi)
⊺di | di ∈ ∆i, d⊺

i e = 0} . (2.8)

Using standard nonlinear programming techniques [2], it can be easily shown that

min{c⊺y | y⊺Qy ≤ δ2, e⊺y = 0} = −δ

√

c⊺Q−1c −
(e⊺Q−1c)2

e⊺Q−1e
, (2.9)

whereQ is symmetric and positive definite. This shows that the last term in relation (2.8) has an

analytic expression. Therefore, usingco(xi) = 0 we have

Gi(xi) = c(xi)
⊺p̂i − δi

√√√√
K∑

k=1

p̂2
ikc

2
k(xi) −

(
∑K

k=1 p̂2
ikck(xi))2∑K

k=0 p̂2
ik

. (2.10)

It is clear thatxi ≤ C in problem (2.6). Introduce now for1 ≤ j ≤ C, the values

βij := Gi(j) − Gi(j − 1).

Similar to the discussion in Section 2.1, we first introduce the followingm × C matrix





r1β11 r1β12 · · · r1β1C

r2β21 r2β22 · · · r2β2C

...
... · · ·

...

rmβm1 rmβm2 · · · rmβmC




. (2.11)

Then, sinceGi is discrete concave, the marginal values in each rowi are in descending order;

i.e., riβi1 ≥ riβi2 ≥ · · · ≥ riβiC . Therefore, the optimal objective function valuev3(C) can be

evaluated by taking the maximum ofm elementsC times. The computational complexity of the

approach to solve (2.6) is of the orderO(mC).

3 Dynamic Models

Before discussing a robust version of the dynamic single-leg problem we first review the classical

dynamic single-leg problem as proposed by Lautenbacher andStidham [8]. Suppose that there are

m different fare classes with the prices

0 < r1 < r2 < · · · < rm.
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3. Dynamic Models

The no-sales class is simply represented by0 with r0 = 0. The total number of available seats is

denoted byz, and the ticket sales period is partitioned into periods1, 2, · · · , T . We assume that

in each period either no customer is observed or at most one fare classi customer arrives. Ifξt

denotes this random demand in periodt, we may assume thatξt may takem + 1 different values

r0, r1, ..., rm and its discrete density is given by

P{ξt = ri} = pit

with i = 0, 1, ...,m andt = 1, ..., T . It is also assumed that the random variablesξt, t = 1, ..., T

are independent. Introducing now the optimal random revenueRt(z) that is generated from period

t to T , before a request shows up in periodt, while the number of available seats at the beginning

of periodt is z we denote byJt(z) := E(Rt(z)) the associated expected optimal value function.

ClearlyJt(z) = Eξt
(E(Rt(z)|ξt)) and by the principle of dynamic programming it follows that

E(Rt(z)|ξt) = max{ξt + Jt+1(z − 1), Jt+1(z)}.

The above equation also yields an optimal policy: Accept therequest if

ξt ≥ Jt+1(z) − Jt+1(z − 1).

Therefore,

Jt(z) = E (max{ξt + Jt+1(z − 1), Jt+1(z)}) ,

with

JT (z) =

{
E(ξT ), if z > 0

0, if z = 0.

For the above optimal value function, the following result has been shown [8].

Theorem 3.1 For every given t, the function

∆t+1(z) := Jt+1(z) − Jt+1(z − 1)

is nonnegative and non-increasing in z.

To compute the valuesJt(z) knowing the valuesJt+1(z) we observe

Jt(z) = Jt+1(z) + E (max{ξt − ∆t+1(z), 0}) .

If we denote(x)+ = max{x, 0}, then we have

E (max{ξt − ∆t+1(z), 0}) =

m∑

i=0

pit(ri − ∆t+1(z))+.

This yields due to∆t+1(z) ≥ 0 andr0 = 0 that

Jt(z) = Jt+1(z) +

m∑

i=1

pit(ri − ∆t+1(z))+. (3.1)

A backward recursive solving requires an overall computational complexity of the orderO(mTC),

whereC is the total number of seats available. It is possible to improve this computational com-

plexity if a careful study of the data structures is conducted.
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3.1 A Robust Optimization Approach

3.1 A Robust Optimization Approach

In this case, the uncertain data in question are the estimated probability vectorŝp⊺

t = (p̂1t, · · · , p̂mT ),

t = 1, · · · , T . We consider the probability vectorspt belonging to the uncertainty setPt given by

Pt = {pt ∈ R
m : pt ∈ p̂t + ∆t, p⊺

t e = 1},

where

∆t =

{
dt = (d1t, · · · , dmt)

⊺ ∈ R
m |

m∑

i=1

(
dit

p̂it

)2

≤ δ2
t

}

with δt ∈ [0, 1]. The dynamic programming formulation then becomes

Jt(z) = Jt+1(z) +
m∑

i=1

p̂it(ri − (Jt+1(z) − Jt+1(z − 1))+ + Ht(z)

with

Ht(z) = min

{
m∑

i=1

dit(ri − (Jt+1(z) − Jt+1(z − 1)))+ : dt ∈ ∆t, e
⊤dt = 0

}
.

To simplify the notation, let

cit := (ri − (Jt+1(z) − Jt+1(z − 1)))+, i = 1, · · · ,m.

Then by using relation (2.9), we have

Ht(z) = −δt

√√√√
m∑

i=1

p̂2
itc

2
it −

(∑m
i=1 p̂2

itcit

)2
∑m

i=1 p̂2
it

.

Therefore, the robust counterpart of the dynamic programming formulation becomes

Jt(z) = Jt+1(z) +
m∑

i=1

p̂itcit − δt

√√√√
m∑

i=1

p̂2
itc

2
it −

(∑m
i=1 p̂2

itcit

)2
∑m

i=1 p̂2
it

, (3.2)

where1 ≤ t ≤ T and 0 ≤ z ≤ C. Since the last term in (3.2) has an analytic solution, the

computational complexity of the robust approach remains the same withO(mTC).

3.2 Batch Arrivals

To introduce the general case we assume in the classical dynamic leg problem that there is only one

arrival at most during each time interval. That assumption may be considered restrictive. To account

for multi-entry during a given time interval, let us introduce a random vectorηt ∈ Z
m
+ , whereηit

denotes the number of customers arriving during the time interval[t, t+1), t = 1, ..., T −1. Hence,

by the dynamic programming principle we have

E(Rt(z) | ηt = (x1, · · · , xm)⊺)

= max
(∑m

i=1 yiri + Jt+1(z −
∑m

i=1 yi) | 0 ≤ yi ≤ xi, i = 1, ...,m,
∑m

i=1 yi ≤ z, y ∈ Z
m
+

)
.
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3.2 Batch Arrivals

Let us denote the value on the right hand side of the above equation beR(x, z;Jt+1). That is

R(x, z;Jt+1) := max
∑m

i=1 yiri + Jt+1(z −
∑m

i=1 yi)

s.t.
∑m

i=1 yi ≤ z

0 ≤ yi ≤ xi, i = 1, ...,m,

y ∈ Z
m
+ .

Using Theorem 3.1 it is easy to compute the value ofR(x, z;Jt+1) for each givenz ∈ Z+ and

x ∈ Z
m
+ with eT x ≤ z. Computeg(j) := Jt+1(z − j + 1) − Jt+1(z − j) for j = 1, · · · , eT x.

Clearly, we obtain by Theorem 3.1 thatrk − g(p) > rk − g(q) for q > p. Notice also that

rk − g(j) > rl − g(j) for k > l. Therefore, the optimal objective function value can be obtained

as follows: Letsk =
∑m

i=k xi. Find k = m,m − 1, · · · , 1 such thatrk+1 − g(sk+1) ≥ 0 and

rk − g(sk) < 0. Then, findl = 1, · · · , xk such thatrk − g(sk − l) ≥ 0 andrk − g(sk − l + 1) < 0.

The optimal solution then becomesyi = xi for i = k + 1, · · · ,m, yk = l, and yi = 0 for

i = 1, · · · , k − 1. This yields the optimal objective function value

R(x, z;Jt+1) =

m∑

i=k+1

rixi + lrk −

sk−l∑

j=1

g(j).

The above procedure is illustrated in Figure 1 and summarized in Algorithm 3.1. Notice that the

marginal gain decreases asyk, 1 ≤ k ≤ m increases and the procedure starts with the most prof-

itable fare classm.

ym ym−1 yk

R(x, z; Jt+1)

sk − l + 1sk − l1 sm = xm 3 sksk − l − 1

rk − g(sk − l)

rk − g(sk − l + 1)

rm − g(1)

rm − g(2)

rm−1 − g(3)

Figure 1: The calculation ofR(x, z;Jt+1).

The dynamic programming recursion is

Jt(z) = Eη (R(η, z;Jt+1)) , (3.3)
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4. The Solution with Perfect Information

Algorithm 3.1 The algorithm for calculatingR(x, z;Jt+1)

1. Initialize: yi = 0, 1 ≤ i ≤ m, andk = m.

2. Setsk =
∑m

i=k xi.

3. If rk − g(sk) ≥ 0 then setyk = xk, k = k − 1 and go to Step 2; otherwise, setl = 0.

4. Whilerk − g(sk − l) < 0 setl = l + 1 andyk = l.

5. Output:

R(x, z;Jt+1) =

m∑

i=k+1

rixi + lrk −

sk−l∑

j=1

g(j).

where t = 1, 2, ..., T , and z = 0, 1, ..., C. In case the number of the fare classes,m, is rel-

atively small, then a straightforward computation yields asolution at the complexity bound of

O(mTCm+1).

Clearly, R(x, z;Jt+1) is monotonic in x for fixed z and t + 1; i.e., if x′, x′′ ∈ Z
m
+ satisfying

x′ ≤ x′′, thenR(x′, z;Jt+1) ≤ R(x′′, z;Jt+1). It also has the followinglexicographic property: if

x′, x′′ ∈ Z
m
+ with eT x′ = eT x′′ ≤ z differ only in two components, say,x′

k > x′′
k andx′

l < x′′
l with

l > k, then it holds thatR(x′, z;Jt+1) ≤ R(x′′, z;Jt+1).

To reduce the computational complexity, we may consider forinstance a two-point distribution

for each fare class customers. That is, we letlit and uit be respectively the minimum and the

maximum amount of arriving customers for the fare classi during the time intervalt. The dynamic

programming then requires a computational complexity ofO(mTC2m). In the case of airline

revenue management, typicallym ≤ 16, and so for a flight with 400 seats and decision period

T = 12, the computation complexity is in the order of109 basic operations: a large but manageable

number. Ifm falls in a reasonable range, saym = 5, then we may afford to consider a finer grid of

scenarios, say we may consider a 10-point distribution for each fare class without losing tractability.

4 The Solution with Perfect Information

A useful concept in decision analysis isperfect information. Although this type of information

rarely exists, it provides an upper bound on the value of realinformation since it pictures the “best

case” scenario [4]. In our static problem setting, perfect information implies elimination of un-

certainty about the total demand for each fare class. The subsequent model focuses on the perfect

information from this “a priori” perspective. In Section 5,we solve the perfect information model

approximately and compare our results with the results thatwe obtain after solving the other models

of the previous sections.

Suppose that we decide on the allocation after knowing all the realized demands. Then, we
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obtain the following optimization model

v4(C) := E

(
max

{
m∑

i=1

ri min{xi,Di} |

m∑

i=1

xi ≤ C, xi ∈ Z+

})
. (4.1)

It is obvious thatv2(C) ≤ v4(C). We may consider the positive differencev4(C) − v2(C) as the

expected cost of havingincomplete information. We now introduce both the partial sumSn :=
∑m

j=n Dj with D0 := 0 and the stochastic processN(C) := min{0 ≤ n ≤ m | Sn ≤ C}. Then

by relation (2.2), the random optimal solution(x∗
i )

n
i=1 for the random demandsDi, 1 ≤ i ≤ m is

given by

x∗
i =






Di, if i ≥ N(C)

C − SN(C), if i = N(C) − 1

0, if i < N(C) − 1.

The associated random optimal objective value equals

v1(C) =
m∑

i=N(C)

riDi +
(
C − SN(C)

)
rN(C)−1.

As in the deterministic case, for each realization this is a concave function inC. This shows that

v4(C) = E




m∑

i=N(C)

riDi +
(
C − SN(C)

)
rN(C)−1



 . (4.2)

In general, it seems to be difficult to give an analytical expression for this expectation and so we

might approximate the above expectation by means of the Monte Carlo method [14].

5 Simulation Experiments

To support our theoretical study, we conduct simulation experiments and report our observations

in this section. We first compare, in the first subsection, thenon-robust static model (2.3) with its

robust counterpart (2.6). In the second subsection, a similar study is carried out to compare the

non-robust dynamic model (3.1) with its counterpart (3.2).To see the differences between the static

and the dynamic modeling approaches, we conduct additionalsimulation experiments in the final

subsection. Using the same data, we also approximate the expectation in the perfect information

model (4.1). We give then the comparison among static, dynamic and perfect information models.

In all our simulation experiments we have used MATLAB 7.0 on apersonal computer with 1.5 GHz

Intel Celeron M processor and 256 MB of RAM.

5.1 Static Models: Non-robust vs. Robust

We have implemented the algorithm given in Section 2.1. Recall that the same algorithm can

also be applied to solve the robust version given in Section 2.2. As shown in relation (2.10) the

convex subproblem has an analytic solution. Therefore, theonly difference between the non-robust
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5.1 Static Models: Non-robust vs. Robust

and robust implementations is the calculation of them × C matrices given by (2.5) and (2.11),

respectively.

We takeM simulation runs with different seeds. In each simulation run, we first generate the

estimated probability vectorŝpi ∈ R
K+1, 1 ≤ i ≤ m. Then we use the algorithm discussed in

Section 2.1 to find the optimal seat allocations of differentfare classes for both the non-robust and

the robust models. We next generateN realizations of the probability vectorspi ∈ R
K+1 uniformly

from Pi, 1 ≤ i ≤ m. Notice that to find thesepi vectors, one needs to generate uniform samples

from the intersection of an ellipsoid and a hyperplane. Thisissue is discussed in Appendix A. After

generating the probability vectorspi, 1 ≤ i ≤ m, by Algorithm A.1, we simulate the demand for

each fare class according to these probabilities. The totalrevenues are then evaluated according to

the non-robust and the robust seat allocations. As our statistics, we store the mean and the standard

deviation of theN realized revenues.

We assume thatδi = 1, 1 ≤ i ≤ m. This reflects the “conservative” choice of the decision

maker, where the estimation errors can be large. The distribution of the demand for each fare

classi, 1 ≤ i ≤ m is assumed to be a truncated Poisson distribution with parametersλi > 0

andK. Consequently, the total demand for fare classi is concentrated on{0, · · · ,K}. Moreover,

the distribution parameters are sorted in descending orderλ1 > λ2 > · · · > λm to reflect the

higher demand for relatively cheaper fare class seats. In each run, the parametersλi are uniformly

generated from the intervals[κi, µi], 1 ≤ i ≤ m. The actual values of the parameters that we use in

our simulation are given in Table 1.

Table 1: The parameters used in the simulation of static models.

Parameters Values
[M, N, K, C, m] [25, 250, 100, 100, 4]
(r1, r2, r3, r4) (2, 3, 4, 6)
(κ1, κ2, κ3, κ4) (40, 20 ,10 ,1)
(µ1, µ2, µ3, µ4) (70, 40 ,30 ,10)

Table 2 shows the simulation results. The first column of the table gives the run numbers. The

averages overN realized revenues for non-robust and robust models are reported in columns two

and three, respectively. The fourth column gives the relative differences between the non-robust and

robust revenues in percentages. Similarly, the standard deviations overN realized revenues for non-

robust and robust models are reported in columns five and six,respectively. The last column shows

the relative differences in percentages. The runs 7, 8 and 24do not show any difference between

the corresponding non-robust and robust models because forboth models the optimal allocations

turned out to be the same. It is clear from the fourth column ofTable 2 that the non-robust model

yields slightly better revenue than the robust version. However, as shown in the last column the

solution found by the robust model has, in most cases, significantly less deviation than the non-

robust version. Therefore, we find a stable solution at the expense of a small decrease in the revenue.

The small difference in the total revenues does not come as a surprise, since it can be easily shown

that the conservative solution found by the robust approachyields a revenue less than the value
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5.2 Dynamic Models: Non-robust vs. Robust

found by solving the non-robust model.

Table 2: The simulation results for the static models.

Mean Standard Deviation
Run Robust(a) Non-robust(b) % 100(b − a)/b Robust(c) Non-robust(d) % 100(d − c)/d

1 278.3200 278.4000 0.0287 17.8700 19.0900 6.3939
2 292.5200 292.6300 0.0383 15.8350 18.2530 13.2480
3 263.8100 263.8900 0.0318 11.9040 13.5140 11.9130
4 289.4200 290.1200 0.2413 16.6830 19.6300 15.0120
5 268.8000 269.0000 0.0744 13.1890 15.5750 15.3140
6 286.9000 287.5200 0.2170 17.9980 19.5710 8.0349
7 260.3300 260.3300 0.0000 20.5020 20.5020 0.0000
8 234.9700 234.9700 0.0000 22.5590 22.5590 0.0000
9 286.8700 287.5800 0.2462 15.6510 18.2360 14.1760
10 273.5900 273.8400 0.0906 14.3170 15.5240 7.7740
11 275.3300 275.6800 0.1291 15.6000 16.5110 5.5180
12 285.4900 286.1900 0.2432 12.9710 15.8860 18.3550
13 259.9800 260.0200 0.0154 18.0090 18.7750 4.0777
14 275.6000 276.5600 0.3500 12.8040 14.9030 14.0810
15 277.1200 277.7400 0.2218 11.9320 14.0740 15.2160
16 287.7000 288.2400 0.1887 13.1010 15.2410 14.0350
17 283.8500 284.5100 0.2334 13.1380 15.3610 14.4730
18 299.5600 299.7600 0.0681 17.5140 17.6740 0.9024
19 304.3500 305.3700 0.3340 16.9290 19.6080 13.6630
20 285.9600 286.3300 0.1313 13.2190 15.7330 15.9770
21 289.0400 289.6900 0.2237 15.5990 18.5220 15.7780
22 268.0600 268.1600 0.0403 15.2080 15.5560 2.2364
23 291.6600 292.1000 0.1506 14.8070 17.3390 14.6020
24 264.7100 264.7100 0.0000 23.4670 23.4670 0.0000
25 261.2900 261.4400 0.0581 15.1350 15.4880 2.2761

Since the convex subproblem has an analytic solution, the computational time between solving

the robust and the non-robust models is insignificant. Moreover, the simulation with the above

parameters (for 25 runs) takes on average less than 3 minutes. Therefore, we do not report our

computation times separately. This remark is valid for all the subsequent results that we report.

5.2 Dynamic Models: Non-robust vs. Robust

We have implemented a dynamic programming algorithm to solve (3.1). Since the convex subprob-

lem of the robust model (3.2) has an analytic solution, only the calculation of the return at each

stage is changed, and hence, the dynamic programming algorithm implemented for the non-robust

model (3.1) is slightly modified to solve the robust version (3.2).

As in the previous subsection, we takeM simulation runs with different seeds. In each simula-

tion run, we first generate the estimated probability vectors p̂t ∈ R
m, 1 ≤ t ≤ T . Then we compute

the non-robust and the robust optimal policies by the corresponding dynamic programming algo-

rithms. Using Algorithm A in Appendix A, we generateN realizations of the probability vectors

pt ∈ R
m uniformly from Pt, 1 ≤ t ≤ T . Given a realizationpt, we simulateS times the arrival

process, and then, using the non-robust and robust optimal policies, we compute the corresponding

optimal seat allocations. As our statistics, we store the mean and the standard deviation of theN×S
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5.3 Cost of Incomplete Information

realized revenues.

Again, we takeδt = 1 for all 1 ≤ t ≤ T . The probability vector̂pt of periodt is assumed to

be Dirichlet distributed with parametersγit, 0 ≤ i ≤ m. This distribution allows us to generate

realizations that add up to 1, and therefore, we have valid arrival probabilities at each periodt for

the fare classes. Notice also that, the parameters of the Dirichlet distribution change at every period

t. We assume, as the departure timeT approaches, that the requests for cheaper fare classes reduce,

whereas the requests for the more expensive fare classes increase. The details of this implementation

are given in Appendix B. The actual values of the parameters that we use in our simulation are given

in Table 3.

Table 3: The parameters used in the simulation of dynamic models.

Parameters Values
[M, N, S, C, T, m] [25, 25, 10, 100, 200, 4]

(r1, r2, r3, r4) (2, 3, 4, 6)
[v̄0, v̄, v0, v1, v2, v3, v4]

∗ [1, 2, 3, 5, 4 ,1, 0.5]
∗See Appendix B for details.

Similar to previous subsection, we report our results in Table 4. The columns have the same

meaning as in Table 2. The figures, however, are reported overN × S realized revenues. Our

results with the dynamic model intensify our observations with the static model. Again the non-

robust model yields slightly better revenues than the robust version. Nevertheless, as shown in the

last column the solution found by the non-robust model yields a substantial deviation.

5.3 Cost of Incomplete Information

In this subsection we conduct simulation experiments to compare the static model (2.3), the dynamic

model (3.1) and the perfect information model (4.1). The main motivation of these experiments is to

check the effect of having additional information as one hasmore information in the dynamic model

than the static model, and similarly, as the perfect information model includes more information

than the dynamic model.

We takeM simulation runs with different seeds. In each simulation run, we first generate for

1 ≤ t ≤ T the arrival probability vectorpt ∈ R
m
+ from a Dirichlet distribution with parameters

γit, 0 ≤ i ≤ m. As we discussed in Section 4, it is difficult to computev4(C) and solve (4.1)

to optimality. Therefore, we implemented a Monte Carlo algorithm, which generatesN demand

realizations according topt, 1 ≤ t ≤ T , and then gives a point estimate of (4.2). Next, we compute

the expected optimal revenue by the dynamic model (3.1). To make a fair comparison between the

static and the other two models, we need to compute the demandprobabilitiespik = P{Di = k},

1 ≤ k ≤ T , by using the arrival probabilitiespt, 1 ≤ t ≤ T . Sincepit = P{ξt = ri}, 0 ≤ i ≤ m,

1 ≤ t ≤ T , we have

Di =

T∑

t=1

1{ξt=ri}.
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5.3 Cost of Incomplete Information

Table 4: The simulation results for the dynamic models.

Mean Standard Deviation
Run Robust(a) Non-robust(b) % 100(b − a)/b Robust(c) Non-robust(d) % 100(d − c)/d

1 432.6600 437.3400 1.0692 13.0110 13.7500 5.3766
2 438.1000 443.0200 1.1088 11.8790 15.3450 22.5850
3 425.0600 427.3000 0.5252 12.8420 14.9320 13.9940
4 437.3300 444.0200 1.5071 11.8860 13.7100 13.3050
5 430.9800 435.9200 1.1314 12.3960 14.5080 14.5550
6 427.4600 432.5900 1.1854 11.5500 14.9910 22.9550
7 425.1600 430.3700 1.2092 12.7460 15.4330 17.4100
8 429.7400 436.3800 1.5198 12.0690 14.7410 18.1240
9 424.4900 428.8000 1.0047 12.2520 13.7000 10.5710
10 436.9900 441.6200 1.0480 12.4890 15.5960 19.9190
11 432.2000 438.5200 1.4412 13.1890 14.9990 12.0700
12 439.3000 445.0900 1.3013 12.3520 15.3690 19.6310
13 429.7000 432.5800 0.6658 12.5240 15.2760 18.0190
14 422.6300 425.8800 0.7627 12.4780 13.3760 6.7065
15 435.7100 439.6200 0.8899 11.8290 15.1270 21.8030
16 433.0700 439.2400 1.4061 12.0510 14.2880 15.6600
17 435.6600 439.6900 0.9170 13.4070 14.6110 8.2456
18 426.5100 431.5600 1.1688 11.9030 13.9600 14.7340
19 432.2600 436.7400 1.0240 11.3040 14.2460 20.6540
20 428.3600 431.8700 0.8114 12.7750 13.3550 4.3444
21 426.9800 431.8800 1.1364 11.8540 15.1900 21.9600
22 439.4600 444.4500 1.1232 12.9070 15.4250 16.3230
23 426.9400 430.7400 0.8804 12.9640 14.9580 13.3320
24 432.3400 437.7300 1.2309 12.3330 14.5600 15.2960
25 429.2500 436.4500 1.6488 12.6650 14.1260 10.3490

Since it is assumed that the random variablesξt, 1 ≤ t ≤ T , are independent it follows that the

Bernoulli random variables1{ξt=ri}, 1 ≤ t ≤ T , are also independent. This shows for every

α ∈ (0, 2π) that the discrete Fourier transformP(α) = E(exp(iαDi)) has the form

P(α) = E( exp(iα(
∑T

t=1
1{ξt=ri}))) = ΠT

t=1E( exp(iα1{ξt=ri})).

Consequently,

E(exp(iα1{ξt=ri})) = pit exp(iα) + (1 − pit) = 1 − pit(1 − exp(iα))

and so, we obtain

P(α) = ΠT
t=1(1 − pit(1 − exp(iα)).

It is well known that

pik =
1

T + 1

T∑

n=0

P(
2πn

T + 1
) exp(

−2πink

T + 1
).

By using the FFT algorithm of the orderO(T log T ), one can easily recover the probabilitiespik [7].

After recovering these probabilities, we compute the expected optimal revenue by the static model

(2.3). As our statistics, we store the estimated total revenue of the perfect information model and

the expected optimal revenues found by dynamic and static models, respectively. The parameters
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we use in our experiments are the same as in Table 3 except the parameterS is not required and

N = 1000.

Table 5 shows the simulation results. The second column gives a point estimate of the optimal

value of the perfect information model overN trials. The third and fourth columns include the

revenues found by the dynamic and static models, respectively. The fifth column shows the relative

differences between the perfect information model and the dynamic model in percentages. Simi-

larly, the last column gives the relative differences between the perfect information model and the

static model. As expected, the model with the perfect information yields higher revenues than both

the dynamic and the static models. However, as the fifth column shows, the cost of incomplete

information is rather insignificant when the dynamic model is considered. On the other hand, the

cost of incomplete information increases as one prefers thestatic model over the dynamic version.

Table 5: The simulation results for the perfect information, static and dynamic models.

Run Perfect(a) Dynamic(b) Static(c) 100(a − b)/a 100(a − c)/a

1 429.0100 427.0300 410.7100 0.4622 4.2666
2 434.2700 432.5000 416.0400 0.4068 4.1983
3 432.2200 430.4100 413.6400 0.4179 4.2990
4 436.5800 434.9000 417.8100 0.3852 4.3001
5 438.1600 436.1400 419.4700 0.4612 4.2660
6 443.5300 441.5500 424.5700 0.4484 4.2762
7 431.6700 430.5000 413.7800 0.2701 4.1437
8 435.7300 434.6000 417.3700 0.2607 4.2145
9 433.0000 431.0500 414.3100 0.4495 4.3152
10 439.1600 437.5400 420.3800 0.3689 4.2776
11 439.1100 437.3000 420.3500 0.4122 4.2723
12 433.9600 432.8600 416.0800 0.2528 4.1208
13 433.0600 431.9100 415.2600 0.2665 4.1104
14 437.8800 437.2700 420.4100 0.1376 3.9897
15 435.7800 435.4300 418.6100 0.0807 3.9400
16 438.0900 436.6900 419.8000 0.3203 4.1761
17 433.6800 432.1600 415.5000 0.3502 4.1921
18 442.6800 440.4200 423.2100 0.5096 4.3969
19 436.7900 435.0000 418.2700 0.4095 4.2407
20 440.7800 439.2500 422.2800 0.3482 4.1968
21 433.7500 431.7600 415.2800 0.4592 4.2579
22 439.8400 438.1700 421.1800 0.3796 4.2412
23 432.9500 431.7200 415.4000 0.2855 4.0547
24 433.6200 432.4200 415.1600 0.2766 4.2556
25 439.3300 436.7800 420.0900 0.5801 4.3810

6 Conclusion

In this study we have shown by means of simulation that the useof robust versions of the classical

static and dynamic single leg seat allocation problems in airline revenue management may be worth-

while due to the reduction in variability of the generated revenues. This reduction is much larger as

the reduction in average revenue due to the conservative behavior of the considered robust models.

In a subsequent paper we will consider extensions of the models in the network environment.
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APPENDIX

A Uniform Sampling from The Uncertainty Set

Notice that in both static and dynamic model simulation runs, we need to generate sample vectors

pi, 1 ≤ i ≤ m andpt, 1 ≤ t ≤ T , from the intersection of an ellipsoid and a hyperplane of

appropriate dimensions. In our subsequent discussion, we omit for ease of notation the subindices

i andt.

To conduct our simulation experiments, we need to generate sample vectorsp from the set

P = {p ∈ R
q
+ | p ∈ p̂ + ∆, p⊺e = 1},

where

∆ =




x ∈ R
q |

q∑

j=1

(
xj

p̂j

)2

≤ δ2




 .

Notice thatp̂⊺e = 1. Therefore, if we generate uniform samples from the set

S =




x ∈ R
q |

q∑

j=1

(
xj

p̂j

)2

≤ δ2, x⊺e = 0




 ,

then we can setp = p̂ + x. Notice thatS defines an ellipsoid on aq − 1 dimensional subspace

(see Figure 2). It is not straightforward to generate uniform samples fromS. However, it is shown

by Fang. et. al. that uniform samples can be easily generatedfrom unit hyper-spheres [6, Sec-

tion 3.1.5]. Therefore, we next apply two transformations so that we can transformS to a q − 1

dimensional unit hypersphere.

Let y = Ax, whereA is aq×q diagonal matrix with nonzero elements(1/(δp̂1)), · · · , 1/(δp̂q)).

Using this transformation, the setS becomes

Sy = {y ∈ R
q | y⊺y ≤ 1, y⊺p̂ = 0}.

Since we want to focus only on the unit hypersphere, we further apply a transformation to reflect

the vectoru := (p̂/‖p̂‖) − I1, whereI1 is the unit vector corresponding to the first column of the

identity matrixI. This transformation is called Householder reflection [7],and it is applied by using

the orthonormal matrix

B = I −
2

u⊺u
uu⊺.

Using nowz = By, the setSy becomes

Sz = {z ∈ R
q | z⊺z ≤ 1, z1 = 0}.

Notice that it is now enough to generate a realization of the vectorZ = (Z1,Z2, · · · ,Zq) uniformly

from Sz. Then, usingB−1 = B⊺ and the Jacobian transformation theorem,X = A−1B−1Z =

A−1B⊺Z yields a uniformly distributed vector fromS as desired.
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Figure 2: A set of uniform samples from the ellipsoid centered at p̂⊺ = (0.5, 0.2, 0.3) with δ = 1.

To generate a realization of the vectorZ from Sz, observe that we can equivalently generate a

realization of the vector̄Z = (Z2, · · · ,Zq) uniformly from theq − 1 dimensional unit hypersphere

S̄z = {z = (z2, · · · , zq) ∈ R
q−1 | z⊺z ≤ 1}.

It is given on page75 of [6] that the random vector̄Z = RQ is uniformly distributed on̄Sz, where

Q is aq − 1 dimensional random vector distributed on the boundary ofS̄z, R is a random variable

with the distribution function

P{R ≤ r} = rq−1, 0 ≤ r ≤ 1,

and the random variablesR andQ are independent. Clearly by the inverse transformation method

we obtain thatR =d U(q−1)−1
with U uniform distributed on(0, 1). To generate a realization of

the random vectorQ = (Q1, · · · ,Qq−1), we can generate for the componentsQi, 1 ≤ i ≤ q − 1,

independent standard normal variates and then normalize the resulting vector [6]. The following

algorithm summarizes the steps to generate uniform samplesfrom the setS. An illustrative set of

samples generated by this algorithm is given in Figure 2.
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Algorithm A.1 Generating uniform samples fromS

1. Generate standard normal variatesN1, · · · ,Nq−1 and a random numberU .

2. LetN = (N1, N2, · · · , Nq−1) and set

z =

(
U (q−1)−1

N1

‖N‖
, ...,

U (q−1)−1
Nq−1

‖N‖

)

3. Setz :=

(
0

z̄

)
and returnx = A−1B⊺z.

B Generating Arrival Probabilities for The Dynamic Models

In our simulation of the dynamic models, we generate the probability vectorsp̂⊺

t = (p̂0t, p̂1t, ..., p̂mt),

1 ≤ t ≤ T in the following way:

1. Generate some numbersvi, 0 ≤ i ≤ m and v̄0, v̄ satisfying0 < v̄0 < v̄ < v0, 0 < vm <

vm−1 < ... < v1 andvm < v̄ < v1.

2. Introduce the functionsαi : R+ → R, 0 ≤ i ≤ m given by

γi(t) = vi + (v̄ − vi)(1 − exp(−
mt

T
)), 1 ≤ i ≤ m

and

γ0(t) = v0 + (v̄0 − v0)(1 − exp(−
mt

T
)).

3. Introduce the random vectorX = (X1, ...,XT ) ∈ R
(m+1)×T
+ consisting of the random vec-

tors

Xt = (X0t, ...,Xmt), 1 ≤ t ≤ T

with the random variableXit, 0 ≤ i ≤ m, 1 ≤ t ≤ T independent, and for each(i, t), the

random variableXit has a gamma distribution with scale parameter1 and shape parameter

γi(t).

4. Introduce now for each(i, t)

p̂it =
Xit∑m

j=0 Xjt

.

It can be shown that the above procedure generates realizations p̂t of a Dirichlet distributed

random vector̂pt with parametersγ0(t), · · · , γm(t) [6]. This yields that

E(p̂it) =
γi(t)∑m

j=0 γj(t)
.

Introducing nowi∗ = min{1 ≤ i ≤ m | vi > v̄} it follows by the definition of the function

γi that the functionγi is increasing fori > i∗ and decreasing fori < i∗. This modeling
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approach tries the capture the practical assumption that the arrival intensities are decreasing

for the cheaper fare classesi < i∗ in the total remaining time before departure of the plane

(but always above the arrival intensities of the more expensive fare classesi ≥ i∗), while for

the more expensive fare classesi ≥ i∗ are increasing in the remaining time before departure.

Figure 3 illustrates the change of the distribution parameters over time. Observe fort large

enough and1 ≤ i ≤ m that

E(p̂it) ≈
v̄i∑m

j=0 v̄j

andt 7→ E(p̂it) is increasing int for i > i∗ and decreasing fori ≤ i∗.
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Figure 3: The change of distribution parameters over time (i∗ = 3, m = 4, T = 30 and

[v̄0, v̄, v0, v1, v2, v3, v4]
∗ = [1, 2, 3, 5, 4, 1, 0.5]).
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