
 1

An Integrated Approach to Teaching Computer Systems Architecture

Umakishore Ramachandran William D. Leahy Jr.

College of Computing
Georgia Institute of Technology

e-mail: rama@cc.gatech.edu, bleahy@cc.gatech.edu

Abstract

At Georgia Tech, since the Fall of 1999, we have
been teaching a first course in systems that
represents a radical departure from the usual
stovepipe model of teaching computer architecture
and operating systems. By making this course a
required one for CS majors in their sophomore year,
we have accomplished several goals the most
important of which is the opportunity for students to
pursue deeper exposure to systems in their junior and
senior years, through additional courses and
research, if they so choose. The pedagogical style
embodied in this course fosters a good understanding
of the symbiotic relationship between hardware and
software for the students early on in their
undergraduate experience.

Index Terms: Computer Systems, Operating
Systems, Computer Architecture, Computer Systems
Organization

1. Rationale for the new approach

Most undergraduate institutions teach Computer
Architecture and Operating Systems as two separate
courses. However, it is well known among
academicians and practitioners that there is a
symbiotic connection between the systems software
and the hardware.

Permission to make digital or hard copies of all or part of
this work al or classroom use is granted without fee
provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

WCAE '07, June 9, 2007 San Diego, CA
Copyright 2007 ACM 978-1-59593-797 1/07/0006…$5.00

The design of instruction sets is influenced by high
level language. The OS abstractions (such as
process, threads, and page tables) are influenced by
the details of the processor and memory hardware.
The design of the network protocol stack is
influenced by the characteristics of the network
interface and the vagaries of the physical network.
The list goes on… Unfortunately, most students
never see this connection when these two courses are
offered as distinct stovepipes.

At Georgia Institute of Technology, we followed

a similar pattern of offering these two courses
separately for a long time at the junior level of the
UG program. Several factors came together that
forced us to reconsider this format. First of all, the
discipline of Computer Science has been expanding
and includes topics such as graphics, vision,
embedded systems, visualization, and human
computer interaction. To allow undergraduate
students ample opportunity to explore such emerging
topics warranted a rethinking of the “required” or
“core” part of the UG CS curriculum. Second.
Georgia Tech switched from a quarter to a semester
system. This forced us to take a hard look at the
curriculum from the point of view of fitting all the
required and elective courses within the total credit
hours available for the degree. Third, at Georgia
Tech, we have a long-standing tradition of involving
undergraduates in research. The entry level for
systems research was too high for most
undergraduates since by the time they took the
architecture and OS courses they were ready to
graduate.

Given all these factors, we undertook a bold new
experiment to offer an integrated architecture-OS
semester course “Introduction to Systems and
Networks” [1] at the sophomore level starting from
Fall 1999. This course has been a great success since
it makes pedagogical sense to the students seeing the
system software and hardware issues presented side
by side. Further, introducing the students to systems
in the sophomore year allows students to get a deeper
exposure to systems through additional elective

 2

courses in the junior and senior years, and opens the
door for research experience as undergraduates. It is
creative thinking like this and other curricular
changes that paved the way for innovations in our
UG curriculum and the recent birth of the ThreadsTM
concept for organizing the UG program at Georgia
Tech [2].

2. Overview of the pedagogical style

There is an excitement when you talk to high
school students about computers. There is a sense of
mystery as to what is “inside the box” that makes the
computer do such cool things as play video games
with cool graphics, play music be it rap or symphony,
sending instant messages to friends, and so on. The
purpose behind this course is to take a journey
together to unravel the mystery of what is “inside the
box.” The course takes the viewpoint that what
makes the box interesting is not just the hardware but
also how the hardware and software work in tandem
to make it all happen. Therefore, the path we take in
this course is to look at hardware and software
together to see how one helps the other to make the
box interesting and useful. We call this approach,
“unraveling the box”: basically look inside the box
and understand how to design the key hardware
elements (processor, memory, and peripheral
controllers) and the OS abstractions needed to
manage all the hardware resources inside a box
including processor, memory, I/O and disk, multiple
processors, and network.

To get a good understanding of what is going on
inside the box we have to get a good handle on both
the system software and the hardware architecture.

This is the intent of our integrated approach to
teaching computer systems.. Correspondingly, the
course is divided into five modules:

1. Processor and software concepts related to

processor
This unit consists of three sub-parts. The first
part deals with HLL constructs and their
influence on instruction-set design of the
processor. The second part starts out with a
simple implementation of the processor. Next,
the focus is on processor performance and an
efficient implementation of the instruction-set
using pipelining techniques. The third part deals
with operating systems issues relating to
scheduling programs on the processor.

2. Memory systems and software concepts
related to memory systems

This unit deals with memory management in the
operating system and the architectural assists for
memory management including memory
hierarchies.

3. I/O subsystems and software concepts related
to devices and device controllers
This unit deals with input/output issues; program
discontinuities due to I/O and other sources are
introduced first; the mechanism for interfacing
the processor to I/O devices and the
corresponding low-level software issues such as
device drivers are discussed next, with a special
emphasis on disk subsystem. This is followed
with a treatment of higher-level storage
abstractions such as file systems that may be
built on I/O devices such as the disk.

4. Parallel processors and software issues
related to concurrent programming
This unit deals with operating systems issues in
supporting parallel programming, and the
architectural features in multiprocessors for
supporting parallel programming.

5. Network connectivity and software issues

related to network protocols
This unit deals with the evolution of networking
hardware, and the features of the network
protocol stack (which is part of the operating
system) for dealing with the vagaries of the
network.

The hardware and software issues for each of the

above five modules are treated concomitantly in the
delivery of the course.

The pedagogical style taken in the course is one
of “discovery” as opposed to “instruction” or
“indoctrination.” Further, the presentation of a topic
is “top down” in the sense that the student is first
exposed to the problem we are trying to solve and
then initiated into the solution approach. Take for
example memory management. We first start with
the question “what is memory management?” Once
the need for memory management is understood, then
we start identifying software techniques for memory
management and the corresponding hardware support
needed. Thus the discourse almost takes a “story
telling” approach to presenting concepts that helps to
keep the student interest alive. The discourse
includes (through the online material made available
to the students) several worked out examples of
problems in each of the five modules to elucidate key
points.

 3

Further, we maintain a connection between the
different modules throughout the course. For
example, in the processor module, we use high-level
language constructs to illustrate a simple instruction-
set design for a processor dubbed LC-2200.
Subsequently, we use LC-2200 as the vehicle to
develop ideas in processor implementation including
pipelining techniques. Similarly, when we introduce
architectural assists for memory management or
interrupt structures for I/O, we illustrate the
enhancements to LC-2200 to facilitate these
additional functionalities.

2.1 Why parallelism concepts in a first
course on systems?

At the time we designed this course (circa 1998),
the answer to this question was not obvious. To this
day, most curricula, introduce system level
parallelism only in graduate level or at best senior
level courses. However, since the early stages of
computing, exploiting parallelism has been a quest of
computer scientists. As early as the 70’s, languages
such as Concurrent Pascal and Ada have proposed
features for expressing program-level concurrency.
Humans think and do things in parallel all the time.
For example, we may be reading a book while
listening to some favorite music in the background.
Often, we may be having an intense conversation
with someone on some important topic, while
working on something with our hands, may be fixing
a car, or folding our laundry. Given that computers
extend the human capacity to compute, it is only
natural to provide the opportunity for the human to
express concurrency in the tasks that they want the
computer to do on their behalf. Sequential
programming forces us to express our computing
needs in a sequential manner. This is unfortunate
since humans think in parallel but end up coding up
their thoughts sequentially! Just as research in
programming languages dabbled with concurrency
from the early days of computing, the operating
research community has been concerned with the
importance of supporting threads in the operating
systems for over a decade.

In the mid 90’s, there was a confluence of
several trends that helped break the parallelism sound
barrier: (1) the popularity of Java programming
language with its support for threads; (2) the
adoption of multithreading in commercial operating
systems such as Digital Unix 4.0 and Microsoft
Windows NT; and (3) the prevalence of multiple
CPUs in desktop computers, not just servers. All of
these trends foretold the necessity of introducing
parallelism in a fundamental way to the students,

which is what we did in our sophomore level
integrated systems course.

The intent of the parallelism module is to
introduce concepts in developing multithreaded
programs, the operating system support needed for
these concepts, and the architectural support needed
to realize the operating system mechanisms. The
important point we want to convey in this module is
that the threading concept and the system support for
threading are simple and straightforward.

In hindsight, it seems obvious that students
should be exposed to system-level parallelism early
on since even single-chip processors are starting to
have multiple CPU cores in them, and multithreading
as a programming concept is being introduced in
freshmen programming courses in many institutions.

2.2 Why networking concepts in a first
course on systems?

A computer box today does not provide the full
functionality to a user without a connection to the
Internet. While we take the Internet and network
connectivity for granted, it is a revelation to review
how we got to this point in the first place. This
course module starts with a journey through the
evolution of networking from the early days of
computing. We then explore network protocols that
allow computers to communicate with another.
Today, the network protocol stack is an important
and integral part of any operating system. This
course module gives a glimpse of the functionalities
of the protocol stack and how it enables a box to be
connected to the outside world and avail of services
that we take for granted today (such as e-mail and
web browsing).

2.3 Implementing the proposed
pedagogical style in a CS curriculum

This course is intended as a first course in
systems for students, preferably in the sophomore
year of the undergraduate program. This is the way
we have used it at Georgia Tech for the past eight
years as a required course for all CS majors, where
students coming into this course have had a pre-
requisite course that deals with logic design and C
programming (currently taught using the pedagogical
style of Patt and Patel [3]).

Where does such a course fit into the continuum
of CS curriculum? Students coming into this course
should have a good understanding of data structures,
structured programming, and basic logic design.

 4

Most CS programs around the country give this
exposure to students in the first two or three
semesters of the UG program. Thus this course
would ideally fit in the second semester of the
sophomore year.

How many credit hours should be devoted to this
course? To cover the material in this course it would
require about 45 lecture hours (which usually
translates to 3 credit hours in a semester system). In
addition, since projects make up a significant part of
the learning experience, at least 60-90 hours of
unsupervised lab time should be dedicated by a
student for this course. Thus a course structured
around the material being proposed in this paper may
account for 4 credit hours in a semester system or 5
credit hours in a quarter system.

What follows this course? This course is
intended to give a broad exposure to all the elements
of a computer system: architecture, operating system,
and networking. Thus this course will serve as an
entry point for students interested in seriously
pursuing deeper systems topics. For example, in the
CS curriculum at Georgia Tech, students specializing
in systems go on to take electives including
“Advanced Computer Architecture” (using material
covered in a textbook such as the one by Hennessy
and Patterson [4]), “Advanced Operating Systems”
(using material covered in a textbook such as the one
by Tanenbaum [5]), and “Computer Networking”
(using the material covered in a textbook such as the
one by Kurose and Ross [6]). For students not
specializing in systems this course also gives the
necessary and sufficient exposure to “core” systems
issues allowing them to pursue other areas of
specialization (such as theory, graphics, and AI).

3. Experience in implementing this
pedagogical style

As we mentioned earlier, we have used this style
of presenting architecture and OS concepts together
to sophomores (CS 2200 [1]) in our UG program
from the Fall of 1999. It is a challenging course for
students to say the least. We have a significant
project component for each of the five modules [7-
11]. As is often the case in systems courses, the
projects bring home the concepts discussed in the
lectures to the students. We allow students to
collaborate on the projects but individually interview
them for grading purposes to ensure that “learning”
has been accomplished. We recruit the top
performers in the course as UG teaching assistants
for the course in subsequent semesters (which is
offered every term) and thus keep the pipeline of

knowledgeable students helping their juniors learn
the material.

One important advantage of this style is the
reinforcement of important CS concepts. As is often
the case, most students “really get it” the second
time. Being exposed to the important systems
concepts in the sophomore year help these students to
get an in-depth understanding when these concepts
are revisited in later advanced courses.

4. Students’ reaction to this pedagogical
style

As is often the case, when you have a
challenging course the reaction will be mixed. But
fortunately, there is uniformly positive reaction to the
learning outcome of this course. The students really
appreciate the “demystification” of what is inside a
box which is the primary intended learning outcome
of this course. In our experience, especially CS
majors (as opposed to computer engineering majors)
have an aversion to computer hardware. By
presenting the hardware and system software
concepts together, the students are able to recognize
the value of learning computer architecture than
when it is taught in a stovepipe format. Our
emphasis in the course that designing computer
hardware is an algorithmic exercise (for e.g., through
project 1 [7]) helps the students overcome the
aversion to computer hardware.

Of course, quite a few students complain about
the “hardness” of the course. The students need to
have a good grounding in C programming to
“survive” this course. However, even the ones who
have taken the course multiple times to pass it, have
told me later on how useful the concepts they learned
early on in this course (for e.g., caching) were useful
in the workplace (for e.g., web caching as a web
designer). I have heard similar comments from
students who went as UG interns (to companies such
as Intel and Microsoft) that they were instantly useful
during their internships because of the systems
exposure they obtained as sophomores through this
course.

At Georgia Tech, this course (CS 2200) is a
required one for all CS majors. I should also add that
we have quite a bit of variety in our UG program for
students through specialization options in the junior
and senior years (e.g., HCI, UI, Graphics, and
Robotics). As an instructor, I used to do an informal
poll at the beginning of the semester to gauge the
student interest for this course. Less than 10% of a
class of 100 will say that they are taking this course
because they are genuinely interested in systems or
that they believe this course will be useful to them in

 5

their chosen area of specialization. However, when I
do the same poll at the end of the semester a majority
of the students respond that this course has been
useful to them despite the fact that they may choose a
specialization other than systems. Further, a
significantly higher percentage of students respond
that they seem motivated to pursue systems as a
specialization as a result of this course.

5. Need for courseware, tools, and
projects

Teaching such an integrated course is a challenge
for the instructors as well. There are several
textbooks that are excellent for the stovepipe model
of the curriculum (such as Patterson and Hennessy
for architecture [12], Silberschatz et al. [13] and
Tanenbaum [14] for OS), but there was none for such
an integrated approach. Therefore, we developed a
comprehensive set of notes and slides for the course
and used two standard textbooks (Patterson and
Hennessy [12], and Silberschatz et al. [13]) as
background reference material for the students to
supplement the course material. All of our
courseware (lecture slides, projects, homeworks,
example tests) were made are available online for the
whole community (for e.g., please see [15] for slides
that covers the course material) from the inception of
this course.

We taught our course using our courseware with
two textbooks serving as background reference
material since Fall of 1999 to Fall of 2004. In the
Spring of 2005, we turned our courseware into an
online textbook [16] since the students continually
communicated to us a need for a textbook that
matched the style and contents of our course. This
online textbook has also been available to the
community for the last two years.

To support the pedagogical style of this course,
in addition to the online book, we make available a
set of online resources. Due to the fact that we have
been teaching this course for the last eight years as a
required one for all CS majors (3 offerings in each
calendar year), there is a significant collection of
online resources.
1. We have PowerPoint slides for all the topics

covered in the course making preparation and
transition (from the stovepipe model) easy.

2. There is a significant project component that
dovetails each of the five modules that we
enumerated above. We have detailed project
descriptions [7-11] of several iterations of these
projects along with software modules (such as
simulators) for specific aspects of the projects.

3. We have problem sets and solution keys for the
different modules of the course.

6. Comparison to other pedagogical styles

In recent times, there are number of proposals to
offering complementary material in an integrated
fashion. Patt and Patel [3] advocate teaching low
level computer hardware (logic design, datapath, and
control) concomitantly with C programming. We
have found this approach very appealing as a
preparation for our first course in systems.

Bryant and O’Hallaron [17] advocate introducing
architectural concepts from the point of view of an
application programmer. Their approach is intended
to help programmers understand the salient features
of the “box” from the point of view of developing
correct and performance conscious software. Thus
the focus of their approach is intentionally on
application software and the pitfalls in software
development that does not account for system effects.
In their textbook embodying this pedagogical style,
the authors (Bryant and O’Hallaron) cover a number
of esoteric topics not usually found in a single
textbook (divided into three parts: program structure
and execution; running programs on a system; and
interaction and communication between programs).
As the authors state in the preface, “If you study and
learn the concepts in this book, you will be on your
way to becoming the rare ‘power programmer’ who
knows how things work and how to fix them when
they break.”

There are some aspects of their approach that are
complementary to the intended learning outcome of
our proposed course. There are some aspects of their
approach that are similar to ours. Our course
introduces the fundamental principles of computing
systems focusing on the inter-relationship between
machine hardware and system software. Starry-eyed
sophomores are the intended audience, who want to
learn how the computer works and not yet ready to
create sophisticated application software. Thus we
do not deal with issues relating to creating efficient
application software. Overall, we believe that the
approach proposed by Bryant and O’Hallaron is best
applied to senior level undergraduates and thus can
be a follow on to our introductory course.

Saltzer and Kaashoek presented MIT’s approach
to teaching a course in systems at last year’s WCAE
workshop [18]. Their approach focuses on system
building blocks (such as concurrency,
communication, fault tolerance, and atomicity) for
constructing modular software systems, including
operating systems, client/server systems, and
databases. This approach is similar in spirit to ours

 6

of presenting related topics in one course rather than
in disparate courses, albeit at a higher level, namely,
at the level of system software. In our view, such a
course would be a nice follow-on to ours.

7. Concluding remarks

At Georgia Tech for the last eight years, we have
adopted an integrated approach to teaching a first
course in systems that presents concepts in
architecture and operating systems in a concomitant
fashion. This is a pedagogically sound model that
has been very successful and well received by the
students at Georgia Tech. We have number of
online tools and resources for teaching such a course
for use by the community including an online
textbook, power-point slides, exercises, and detailed
project ideas.

Appendix

This appendix gives a brief description of the
projects that could be used in such an integrated
course. We will be happy to provide pointers to
detailed project descriptions as well as support tools
such as simulators.

Processor Design: Students are supplied a data path
design that is 90% complete. Students complete the
data path to help them become familiar with the
design. Then they design the microcode-based
control logic (using LogicWorks [19]) for
implementing the LC-2200 instruction-set using the
data path. This allows the students to get a good
understanding of how a data path functions and to
appreciate some of the design tradeoffs. The students
get actual circuit design experience and functionally
test their design using the built-in functional
simulator of LogicWorks.

Interrupts & Input/Output: Students take the
design from the first project and add circuitry to
implement an interrupt system. Then they write (in
assembly language) an interrupt handler. The circuit
design part of the project is once again implemented
and functionally simulated using LogicWorks. In
addition, the students are supplied with a processor
simulator that they enhance with the interrupt support
and use it in concert with the interrupt handler that
they write in assembly language. This project not
only makes operation of the interrupt system clear
but also illustrates fundamental concepts of low-level
device input/output.

Virtual Memory Subsystem: Students implement a
virtual memory subsystem that operates with a
supplied processor simulator. The students get the
feel for developing the memory management part of
an operating system through this project. The project
is implemented in the C programming language.

Multi-Threaded Operating System: Students
implement the basic modules of a multi-threaded
operating system including CPU and I/O queues on
top of a simulator that we supply. They experiment
with different processor scheduling policies. The
modules are implemented in C using pthreads. The
students get experience with parallel programming as
well as exposure to different CPU scheduling
algorithms.

Reliable Transport Layer: Students implement a
simple reliable transport layer on top of a simulated
network layer provided to them. Issues that must be
dealt with in the transport layer include corrupt
packets, missing packets, and out-of-order delivery.
This project is also implemented in C using pthreads.

References

[1] CS2200: Introduction to Systems and Networks,
http://www.cc.gatech.edu/classes/AY2007/cs2200_spring/
[2] Threads™ An Undergraduate Educational Program of
The College of Computing at Georgia Tech,
http://www.cc.gatech.edu/content/view/692/144/
[3] Y. N. Patt and S. J. Patel, “Introduction to Computing
Systems: from bits & gates to C & beyond,” McGraw-Hill.
[4] J. L. Hennessy and D. A. Patterson, “Computer
Architecture: A Quantitative Approach,” Morgan
Kaufmann Publishers.
[5] A. S. Tanenbaum, “Modern Operating Systems,”
Prentice-Hall.
[6] Kurose and Ross, “Computer Networking: A top down
approach featuring the Internet,” Addison-Wesley.
[7] CS 2200 Project 1: Processor Design.
http://www.cc.gatech.edu/classes/AY2007/cs2200_spring/p
rojects/p1/prj1.html
[8] CS 2200 Project 2: Interrupt & Input/Output.
http://www.cc.gatech.edu/classes/AY2007/cs2200_spring/p
rojects/p2/prj2.html
[9] CS 2200 Project 3: Virtual Memory Subsystem.
http://www.cc.gatech.edu/classes/AY2007/cs2200_spring/p
rojects/p3/prj3.html
[10] CS 2200 Project 4: Multithreaded Operating System.
http://www.cc.gatech.edu/classes/AY2007/cs2200_spring/p
rojects/p4/prj4.html
[11] CS 2200 Project 5: Reliable Transport Protocol.
http://www.cc.gatech.edu/classes/AY2007/cs2200_spring/p
rojects/p5/prj5.html
[12] D. A. Patterson and J. L. Hennessy, “Computer
Organization & Design: The Hardware/Software Interface,”
Morgan Kaufmann Publishers.

 7

[13] A. Silberschatz, P. B. Galvin, and G. Gagne,
“Operating Systems Concepts,” John Wiley & Sons.
[14] A. S. Tanenbaum and A. S. Woodhull, “Operating
Systems: Design and Implementation,” Prentice-Hall.
[15] On-line courseware for CS 2200,
http://www.cc.gatech.edu/classes/AY2007/cs2200_spring/S
lides/index.html
 [16] Online textbook for CS 2200
http://www.cc.gatech.edu/classes/AY2007/cs2200_spring/t
extbook/index.html
[17] R. E. Bryant and David O’Hallaron, “Computer
Systems: A Programmer’s Perspective,” Prentice-Hall,
2003
[18] Jerry Saltzer and Frans Kaashoek, “A systems
approach to teaching computer systems,” WCAE 2006
(held in conjunction with ISCA 2006).
[19] LogicWorks 5 Interactive Circuit Design Software,
Pearson Prentice Hall.

