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Abstract

Background: The development of high-throughput technologies has produced several large scale

protein interaction data sets for multiple species, and significant efforts have been made to analyze

the data sets in order to understand protein activities. Considering that the basic units of protein

interactions are domain interactions, it is crucial to understand protein interactions at the level of

the domains. The availability of many diverse biological data sets provides an opportunity to

discover the underlying domain interactions within protein interactions through an integration of

these biological data sets.

Results: We combine protein interaction data sets from multiple species, molecular sequences,

and gene ontology to construct a set of high-confidence domain-domain interactions. First, we

propose a new measure, the expected number of interactions for each pair of domains, to score

domain interactions based on protein interaction data in one species and show that it has similar

performance as the E-value defined by Riley et al. [1]. Our new measure is applied to the protein

interaction data sets from yeast, worm, fruitfly and humans. Second, information on pairs of

domains that coexist in known proteins and on pairs of domains with the same gene ontology

function annotations are incorporated to construct a high-confidence set of domain-domain

interactions using a Bayesian approach. Finally, we evaluate the set of domain-domain interactions

by comparing predicted domain interactions with those defined in iPfam database [2,3] that were

derived based on protein structures. The accuracy of predicted domain interactions are also

confirmed by comparing with experimentally obtained domain interactions from H. pylori [4]. As a

result, a total of 2,391 high-confidence domain interactions are obtained and these domain

interactions are used to unravel detailed protein and domain interactions in several protein

complexes.

Conclusion: Our study shows that integration of multiple biological data sets based on the

Bayesian approach provides a reliable framework to predict domain interactions. By integrating

multiple data sources, the coverage and accuracy of predicted domain interactions can be

significantly increased.
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Background
With the completion of genome sequences of many spe-
cies, comparative analysis of these organisms becomes
increasingly important in understanding the function and
evolution of genes and proteins. Comparison of the
genome sequences between worm and yeast has revealed
that most of the core biological functions were carried out
by orthologous proteins, and that the multi-cellular worm
had more diverse proteins than the unicellular yeast [5].
In addition, more than 50 bacterial, archaeal, and eukary-
otic genomes have been analyzed for protein function
prediction, phylogenetic profiling of domains, and
eukaryotic-signature domain organizations [6].

The development of high-throughput technologies such
as yeast two-hybrid assays has produced large scale pro-
tein interaction data sets for several species, and signifi-
cant efforts have been made to analyze them. By
combining protein interaction data sets and orthology
information on yeast protein sequences and a bacterial
pathogen, Kelley et al. [7] and Sharan et al. [8] identified
conserved protein interaction pathways and complexes.
Further studies on conserved protein complexes and func-
tional modules can be found in [9,10].

The basic units of proteins are domains and proteins inter-
act with each other through their domains. Therefore, it is
crucial to understand protein interactions at the level of
the domains [11]. Several groups have developed meth-
ods to understand domain interactions based on protein
interactions. Sprinzak and Margalit [12] selected domain
interaction pairs based on the frequency of observed pro-
tein interactions that contain the pair of domains over its
expect value. Deng et al. [13] developed a maximum like-
lihood estimation (MLE) method and an Expectation-
Maximization (EM) algorithm to infer underlying
domain interactions from protein interactions. Liu et al.
[14] extended the MLE method to combine protein inter-
actions from multiple species, and showed that the exten-
sion resulted in a higher accuracy in predicting protein
interactions than using the yeast protein interactions
alone. Liu et al. [14] also showed that, for a single species,
the approach by Deng et al. [13] was comparable to that
of Gomez et al. [15] and outperformed those of the Sprin-
zak and Margalit [12] and the Gomez et al. [16] for pre-
dicting protein interactions. More recently, Riley et al. [1]
modified the Deng et al. [13] approach to be applicable to
all the protein interactions in DIP [17,18] assuming no
false positives and false negatives. Most importantly, they
presented a new score for domain interactions, the E-
score, defined as the log likelihood ratio of the observed
interactions assuming the domain pairs interact over
assuming the domain pairs do not interact. They showed
that the E-score outperformed the Deng et al. [13] method
in predicting domain interactions. Other approaches for

predicting domain interactions using multiple data
sources were developed in [19,20]. In this study, we focus
on the integration of multiple data sources from multiple
species to predict high-confidence domain interactions.
First, we calculate the probability of domain interactions
from four species: yeast [21-23], worm [24], fruitfly [25]
and humans [26], respectively. Using these probabilities,
we compute the expected number of interactions for each
pair of domains within a species. Second, we investigate
information on protein fusion and the domain functions.
Third, a Bayesian approach is used to integrate those data
sources to predict high-confidence domain interactions.
These predictions help us to unravel the domain interac-
tions in protein complexes and protein interactions. Our
study differs from previous studies in several significant
ways. Compared to Liu et al. and Ng et al. [14,19,20], our
approach develop a new measure to score domain-
domain interactions and validate it with experimentally
derived domain interactions instead of using indirect
ways such as validating re-inferred protein interactions.
Compared to Riley et al. [1], protein fusion and Gene
Ontology (GO) [27] functions are also integrated using a
Bayesian approach. We show that the integration signifi-
cantly increases the accuracy of predicted domain-domain
interactions.

The paper is organized as follows. In the Methods section,
we present the various data sources used in our analysis,
followed by the methods for analyzing an integration of
the different data sources. In the Results section, we
present the results based on the various data sources sep-
arately, followed by the results based on integrated analy-
sis. We evaluate our results by comparing with the
domain-domain interactions in iPfam. Finally, we show
limitations of our approach and further studies.

Methods
Data sources

In this study, we collect protein interactions and protein
domain information from various databases for yeast,
worm, fruitfly, and humans. Protein domain information
is based on the Pfam-A domains [28]. Table 1 shows the
number of proteins and protein interactions used in this
study. Because only a subset of proteins contain Pfam-A
domains, we use this subset along withtheir protein inter-
actions in this study.

Protein interactions for yeast and worm

We download the protein interaction data sets for yeast
and worm from the DIP database [17,18]. Each protein is
associated with a DIP number, SWISSPROT ID, GI
number, etc. We use the SWISSPROT accession numbers
to associate domain information from the Pfam database
[29] with the proteins in the DIP. We also use the GI num-
bers to obtain additional Pfam domain information from
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the National Center for Biotechnology Information [30].
For worm, the domain information collected using the GI
numbers increases the number of protein interactions
with domain information.

Protein interactions for fruitfly

We obtain the protein interaction data set for fruitfly from
Giot et al. [25]. In this data set, protein names are identi-
fied by CG numbers. To obtain the relationship between
proteins and domains, we associate the CG numbers with
the SWISSPROT accession numbers by the protein table
Integr8 in EMBL-EBI [31]. The compiled SWISSPROT
accession numbers are used to extract protein-domain
relationship from the Pfam database.

Protein interactions for human

We obtain the human protein interaction data set from
the Human Protein Reference Database (HPRD) [26],
which contains protein-protein interactions from individ-
ual small-scale experiments published in theliterature.
The proteinsare identified by NP numbers. We associate
the NP numbers in the HPRD with the SWISSPROT acces-
sion numbers using the protein table Integr8 in EMBL-
EBI, and then extractprotein-domain relationship from
the Pfam database.

Domain functions

We obtain domain functions, biological process, using the
mapping table from Pfam to GO in the Gene Ontology
webpage [27] and use the domains in the table to compile
domain pairs with the same function.

Domain fusion

We use protein-domain information in Pfam-A to identify
pairs of domains co-existing in one protein. The method
is referred to as domain fusion in the rest of the paper.

Databases of domain interactions

We use two structure based domain interactions: iPfam
[3] and Protein Quaternary Structure (PQS) [32] to esti-
mate the reliability of predicted domain-domain interac-
tions. iPfam contains 2,580 domain interactions(July
2004 version). The domain interactions in iPfam are

obtained by calculating all bonds between all pairs of res-
idues between domains based on the protein structures in
Protein Data Bank (PDB). PQS provides probable quater-
nary states for structures based on PDB. In PQS, the anal-
ysis of determining biologically relevant interactions and
crystal packing is attempted based on some known prop-
erties such as hydrophobicity, shape analysis, and the size
of the solvent-accessible surface area (asa). Note that bio-
logically relevant domain interactions and crystal contacts
are not distinguished in iPfam. As domains in PQS are
annotated by SCOP superfamily, we associate them with
the Pfam domains using the mapping table in the SCOP
webpage [33]. Finally, we obtain 36,439 domain interac-
tions.

Computational methods

In this subsection, we describe (1) the computational
methods for calculating the probability of domain-
domain interactions, (2) a new measure to evaluate the
strength of domain-domain interactions, and (3) a Baye-
sian method for integrating different data sources to con-
struct a high-confidence set of domain-domain
interactions.

The maximum likelihood estimation for probabilities of domain-

domain interactions

The maximum likelihood estimation method proposed
by Deng et al. [13] has been shown to have good perform-
ance in estimating the probabilities of domain-domain
interactions. We adopt this method in this study and
briefly describe the method as follows.

The basic assumption of the MLE method is that two pro-
teins interact if and only if at least one pair of domains
from each of the two proteins interact. Given two proteins
Pi and Pj, the probability that they interact is

where Pij = 1 if they interact and 0 otherwise, and Dmn ∈

ij denotes that domains Dm and Dn belong to proteins Pi

Pr( ) . ( Pr( )),P Dij mn
Dmn

= = − − = ( )
∈

∏1 1 0 1 1 1
ij



Table 1: Data sets. The characteristics of protein interaction data sets for yeast, worm, fruitfly and humans, the corresponding-domain 

information, and the values of fn and fp used in the analysis. Only protein pairs with both proteins containing Pfam-A domains are 

included in the protein interaction data sets, and proteins in those protein interactions are counted. The numbers in the parenthesis 

are the total number of available protein interactions.

Yeast Worm Fruitfly Humans

Proteins 2,568 1,580 2,444 3,493

Protein-protein interactions 7,985 (15,461) 2,193 (4,030) 3,944 (20,429) 10,906 (15,274)

Domains 1,386 888 1,195 1,401

False Negative (fn) 0.25 0.67 0.61 0.25

False Positive (fp) 0.0009 0.0007 0.0005 0.0007
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and Pj, respectively, and Dmn = 1 if domain Dm interacts

with domain Dn. For an experiment in a species, the false

positive rate (fp) is defined as the probability that two

non-interacting proteins were observed to interact and the

false negative rate (fn) is defined as the probability that

two truly interacting proteins were not observed to inter-

act in the experiment. Let Oij = 1 if the interaction between

proteins Pi and Pj is observed and Oij = 0 otherwise. Thus,

the probability for the observed protein interaction is

Pr(Oij = 1) = Pr(Pij = 1)(1 - fn) + (1 - Pr(Pij = l))fp.  (2)

The likelihood function-the probability of the whole
interaction data set is

Our objective is to maximize the likelihood L, which can
be represented as the function of P(Dmn = 1) with fixed fp
and fn by incorporating Equations 1, 2, and 3. P(Dmn = 1)
can be estimated by an expectation-maximization (EM)
algorithm [13]. Deng et al. [13] presented a method to
approximate the values of fn and fp based on the number
of observed interactions. We combine this idea and the
reliability of protein interaction data sets to approximate
values of fn and fp in each species used in this study. The
results are shown in Table 1. The details are presented in
the additional file 1.

The expected number of occurrences of domain interactions

Deng et al. [13] used the estimated value of P(Dmn = 1) to
rank domain-domain interactions. One problem of the
approach is that the estimated value of P(Dmn = 1) is gen-
erally large if (1) each of the two domains appears only in
one protein, (2) each of these two proteins contains only
one domain, and (3) these two proteins interact. Another
problem is that the value of P(Dmn = 1) is generally small
if (1) both domains appear in many proteins and (2) only
a small proportion of these pairs of proteins having these
two domains interact.

In order to overcome these problems, we score each
domain pairs by the expected number of occurrences of
domain interactions.

E(#Dmn) = Nmn Pr(Dmn = 1),  (4)

where Nmn is the number of protein pairs having domains
Dm and Dn. Our intuition is that if a pair of domains are
observed in multiple protein interactions, this pair of
domains are more likely to interact. We use E() as a feature
in our integrative model.

Domain fusion

In addition to the protein interaction data, we also incor-
porate information on domain fusion and domain func-
tion to build a set of high-confidence domain-domain
interactions. Enright et al. [34] and Marcotte et al. [35]
showed that two proteins are more likely to interact if they
are fused into one protein in another species. This idea
can be further extended to domains in that if two domains
are fused in one protein in any species, they are more
likely to interact. Thus, we search proteins having multiple
Pfam-A domains and 9,615 Pfam-A domain pairs that co-
exist in the same proteins are obtained. We define
CE(Dmn), where CE stands for Co-Existence, as the
number of occurrences that domain Dm and domain Dn

co-exist in the same proteins. It is expected that if CE(Dmn)
is larger, domain Dm and domain Dn are more likely to
interact. We use CE() as a feature in our integrative model.

Domain functions

We obtain gene ontology terms of domains and find
57,907 domain pairs having the same GO terms in the
category of the biological process. The gene ontology has
a hierarchical structure (a directed acyclic graph), where
the parents denote functions of more general terms and
the offsprings represent functions of more specific terms.
It is expected that two domains participating in the same
GO function (biological process) are more likely to inter-
act than they do in different functions. Moreover, two
domains participating in a more specific function are
more likely to interact than they do in a more general
function. A more specific function generally covers a
smaller number of domains. Assume that domain Dm and
domain Dn have the same function Ff. We define SG(Dmn),
where SG stands for the Same Gene ontology, as the
number of domains having the function Ff. We use SG()
as a feature in our integrative model.

Integrating multiple data sources

The six information sources can be combined to construct
a high-confidence set of domain-domain interactions.
Several heuristic methods can be used for data integration.
Here we consider three approaches: evidence counting,
naïve Bayesian, and logistic regression.

For each pair of domains, six information sources for their
interaction can be obtained from the analysis of the
expected number of domain interactions derived from
protein interactions of four species, the number of occur-
rences in the domain fusion, and the number of domains
with the same GO annotation. We applied the aforemen-
tioned three computational methods to integrate these six
biological evidences to predict domain interactions. The
methods are described as follows.

L O Oij
O

ij
ij

Oij ij= = − = ( )∏
−

(Pr( )) ( Pr( )) .1 1 1 3
1



BMC Bioinformatics 2006, 7:269 http://www.biomedcentral.com/1471-2105/7/269

Page 5 of 15

(page number not for citation purposes)

Evidence counting

The number of evidences supporting domain interactions
is used to score domain pairs for potential interactions.
For a pair of domains Dm and Dn, we say that the interac-
tion between Dm and Dn is supported by the yeast protein
interactions if the expected number of occurrences of
domain interactions is at least 1, i.e E(#Dmn) ≥ 1. We count
this as one evidence. A domain interaction can have a
maximum of 4 evidences from yeast, worm, fruitfly and
humans. Similarly, we say that the interaction between Dm

and Dn is supported by the domain fusion if CE(Dmn) ≥ 1,
and by the domain functions if SG(Dmn) ≥ 1. The number
of evidences for a pair of domains ranges from 0 to 6.

Naïve Bayesian

The naïve Bayesian approach assumes the independence
of data sources, and has been applied to the integration of
multiple data sources for predicting protein interactions
[36,37]. The basic idea is to calculate the likelihood ratio
of each of the six evidences and then multiply these likeli-
hood ratios. We define the set of observed interactions
(Obs) as the interacting domain pairs in iPfam and the set
of non-observed interactions (Nobs) as the domain pairs
not presented in iPfam. The likelihood ratio for six data
sources are calculated as follows. For each species, we split
the values of E(#Dmn) into 7 intervals. We call an interval
as a bin, and this process as a binning process. Let d =
E(#Dmn) and d falls into the t-th bin. Let Pr(d|Obs) be the
fraction of the observed interactions in the t-th bin and let
Pr(d|Nobs) be the fraction of the non-observed interac-
tions in the t-th bin. Then, the likelihood ratio for the t-th
bin is Pr(d|Obs)/Pr(d|Nobs). Similarly, we bin the values
of CE(Dmn) and SG(Dmn) and then calculate the likeli-
hood ratio for each of them. Additional file 2 shows the
likelihood ratios for each data source. Let d1,..., d4 be the
values of E(#Dmn) in yeast, worm, fruitfly, and humans,
respectively, and let d5 and d6 be the values of CE(Dmn)
and SG(Dmn), respectively. Then, the total likelihood ratio
is

Logistic regression

Let Ey(#Dmn), Ew(#Dmn), Ef(#Dmn), and Eh(#Dmn) denote
the expected number of occurrences of the domain inter-
actions in yeast, worm, fruitfly and humans, respectively.
Let I(d) be the indicator function: I(d) = 1 if d ≥ 1 and 0,
otherwise. Let EV(Dmn) be the number of evidences from
the evidence counting method. We use the following
model,

Validating the predicted domain interactions

To evaluate the reliability of the predicted domain interac-
tions, we compare them with the domain interactions in
iPfam. The interactions in iPfam are treated as the
observed interactions. Although many domain interac-
tions are not included in the database, a good score func-
tion for domain interactions should include a higher
fraction of observed interactions in the highest ranked
predictions than a random scoring function. Therefore,
for a given scoring range, the fraction of the observed
interactions among all domain pairs having scores within
the range is calculated. We also calculate the ratio of this
fraction over that from a random scoring function and
refer to it as the fold value. For a good score function, the
fold value should increase with the score.

Another method to evaluate the reliability of predicted
domain interactions is using the Receiver Operating Char-
acteristic (ROC) curve representing the relationship
between false positive rate (FPR) and sensitivity (SN). As
we mentioned before, we use domain pairs in iPfam as the
observed interactions and domain pairs not in iPfam as
the non-observed interactions. Because this gives too
many non-observed interactions (1,536,555), we ran-
domly remove domain pairs without any evidence and
finally obtain 84,385 domain pairs, about twice of the
number of domain pairs with at least one evidence, for the
non-observed set. For a given threshold value t, domain
pairs with score larger than t are predicted as interacting
and others as non-interacting. The results can be repre-
sented as

The FPR and SN are defined as

We use five-fold cross-validation to compare the perform-
ance. We use a subset of iPfam domain interactions for
training to calculate the likelihood ratio of the Bayesian
approach and the coefficients of the logistic regression.
The remaining iPfam domain interactions are used for
testing.

Results
Conserved domain interactions across multiple species

We first show that domain interactions inferred from mul-
tiple species are reliable. The four species share many
domains. Table 1 shows the number of proteins, the num-
bers of protein-protein interactions, and the numbers of
domains in each species. Figure 1 shows the numbers of
domains overlapped among the different species. Most
domains appear in more than one species. For example,
953 out of 1,386 domains in yeast (69%) are found in at
least one of the other three species. Similarly, 763 out of

L( )
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888 domains in worm (86%) are found in other species.
For fruitfly and humans, 82% and 68% are found in other
species, respectively.

We apply the MLE method to calculate probabilities of
domain interactions. The numbers of domain interactions
obtained (probability>0) for yeast, worm, fruitfly, and
humans are 7,333, 2,397, 3,779, and 7,750, respectively.
Figure 2 shows the numbers of predicted domain interac-
tions among four species together with the overlaps. 812
(4.0%) out of a total of 20,332 predicted domain interac-
tions from the four species are presented in at least two
species, which we call predicted conserved domain inter-
actions. Although this fraction is relatively small, we find
that this fraction is still three times higher than that of ran-
dom interactions [See additional file 3]. This result is con-
sistent with other studies [7,38], which found only a small
percentage of conserved protein interactions across sev-
eral species. We compare these 812 domain interactions
with iPfam. Table 2 shows that, surprisingly, 18.2% of the
812 conserved domain interactions are found in iPfam,
compared to only 3.0% for all of the predicted 20,332
domain interactions. Furthermore, 50% of the domain
interactions presented in all four species belong to iPfam.

The results suggest that the predicted conserved domain
interactions obtained from at least two species are very
reliable. Similar results are obtained (Table 2) by compar-
ing the predicted conserved domain interactions with
domain interactions obtained from the Protein Quater-
nary Structure (PQS) database [32]. The list of predicted
conserved domain interactions from at least three species
is presented in additional file 4.

Contributions of each data source to the accuracy of 

predicted domain interactions

We first evaluate the contributions of each of the six infor-
mation sources to the accuracy of predicted domain-
domain interactions by comparing with the domain inter-
actions in iPfam. To score domain interactions based on
protein interactions, three measures are considered. The
first measure is based on the estimated value of the prob-
ability of domain interactions (P(Dmn = 1)). The second is
the number of times the domain pairs occur in protein
pairs (Nmn). The last is the multiplication of the first two,
NmnP(Dmn = 1). These measures are referred as probability,
frequency, and expectation, respectively. We also compare
with another measure defined as E-value by [1]. The per-
formance of each score function is evaluated by the true

A Venn diagram for the numbers of domains in yeast, worm, fruitfly, and humansFigure 1
A Venn diagram for the numbers of domains in yeast, worm, fruitfly, and humans. (a) The numbers of domains in yeast, worm, 
and fruitfly. (b) The numbers of domains between humans and the other three species.

Table 2: The numbers of predicted domain interactions using protein interactions. The predicted domain interactions classified by the 

number of species (1,2,3 and 4) and their overlaps with iPfam and PQS.

Species 1 2 3 4 All

Predicted domain interactions 19,520 707 95 10 20,332

Overlap with iPfam (Ratio) 468 (2.4%) 115 (16.2%) 28 (29.5%) 5 (50%) 616 (3.0%)

Overlap with PQS (Ratio) 883 (4.5%) 147 (20.8%) 31 (32.6%) 4 (40%) 1,065 (5.2%)
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positive rate (TP/(TP+FP)) among the top r ranked
domain pairs. For each score function and a rank value r,
domain pairs with the top r ranked scores are predicted as
interacting. The predicted domain interactions are com-
pared with domain interactions in iPfam. Figure 3 shows
the relationship between the true positive rate and the
rank r based on the four different score functions. For
given r, the fractions of observed interactions among the
top r ranked domain pairs based on expectation and E-
value are higher than that based on probability and fre-
quency. Figure 3 indicates that the scores based on expecta-
tion and E-value have similar performance and outperform
the other two scores in evaluating domain interactions. As
another way of comparison, we also draw ROC curves
based on the four score functions and they are given in

additional file 5. The relative performance of the four
score measures based on ROC curves is similar as above.

We next consider the relationship between domain fusion
and domain interactions. Similar ideas have been applied
to E. coli and S. cerevisiae to infer protein interactions
[34,35]. From Pfam, we collect 9,615 Pfam-A domain
pairs that co-exist in the same proteins, among which
1,141 overlap with iPfam (Table 3). 859 domain pairs
found through domain fusion are found to interact within
at least one species based on protein interaction data,
among which 283 (32.9%) overlap with iPfam. The
results suggest that the co-existence of domain pairs is a
reliable evidence for domain interactions and combining
multiple evidences reduces the number of false positives.

A Venn diagram for the numbers of predicted domain-domain interactions in yeast, worm, fruitfly, and humansFigure 2
A Venn diagram for the numbers of predicted domain-domain interactions in yeast, worm, fruitfly, and humans. (a) The num-
bers of predicted domain-domain interactions in yeast, worm, and fruitfly. (b) The numbers of predicted domain-domain inter-
actions between humans and the other three species.

Table 3: The numbers of predicted domain interactions using domain fusion, domain function, and combining six data sets. The 

predicted domain interactions, the number of evidences, and the overlaps with iPfam. Numbers in the first column indicate the 

number of evidences for the domain interactions, and the second column is the number of interactions having the corresponding 

evidences. "PPI" represents the protein interaction data sets. "Fraction" indicates the fraction of domain interactions in iPfam in a 

given set. "Fold" indicates the ratio of the fraction over expected value (0.17%).

Evidence Interactions Overlap with iPfam Fraction Fold

Random domain pairs 1,539,135 2,580 0.17% -

Domain fusion 9,615 1,141 11.8% 69

Domain fusion & PPI 859 283 32.9% 194

Same GO terms 57,907 1,302 0.8% 13

Same GO terms & PPI 1,031 234 22.7% 134

≥ 1 23,606 2,071 8.8% 52

≥ 2 1,624 820 50.5% 297

≥ 3 307 200 65.1% 383

≥ 4 58 43 74.1% 436

≥ 5 13 10 76.9% 452

= 6 0 - - -



BMC Bioinformatics 2006, 7:269 http://www.biomedcentral.com/1471-2105/7/269

Page 8 of 15

(page number not for citation purposes)

We also incorporate information on domain pairs with
the same GO annotations. It is known that proteins hav-
ing similar functions are more likely to interact [38,39]. In
fact, the observation is true for domains as well. We find
57,907 domain pairs having the same GO terms in the
category of biological process. 1,031 domain pairs are
also found in predicted domain interactions based on
protein interaction data, among which 234 (22.7%)
domain interactions are found in iPfam (Table 3).

Integration of multiple biological data sources

We integrate six data sources using different methods
described in the Methods section, and compare the per-
formance using a five-fold cross-validation. We first show

the improvement of integrating multiple biological data
sources. Table 3 shows the percentages of overlaps
between iPfam and the predicted domain interactions
with multiple evidences. The results indicate that one sin-
gle evidence is not sufficient for predicting domain inter-
actions as only 8.8% of these domain interactions overlap
with iPfam. However, the percentage of overlaps increases
to 50.5% for domain interactions with two or more evi-
dences. As the number of evidences increases, the predic-
tions are more accurate but, the number of predictions
decreases at the same time. Only 58 predicted domain
interactions have four or more evidences and 43 out of 58
(= 74.1%) belong to iPfam.

The relationship between rank and true positive rate (TP/(TP+FP)) compared to the iPfam for four species based on four score functionsFigure 3
The relationship between rank and true positive rate (TP/(TP+FP)) compared to the iPfam for four species based on four score 
functions. "Expectation" ranks domain pairs according to the expected number of occurrences of domain pairs in protein inter-
actions; "Probability" ranks domain pairs according to the estimated probability of interactions from the MLE method; "Fre-
quency" ranks domain pairs according to the number of protein interactions having domain pair; "E-value" ranks domain pairs 
according to the E-value defined in [1].



BMC Bioinformatics 2006, 7:269 http://www.biomedcentral.com/1471-2105/7/269

Page 9 of 15

(page number not for citation purposes)

Table 4 shows the percentages of overlaps between iPfam
and the predicted domain interactions based on the Baye-
sian approach. The fraction of domain pairs overlapped
with iPfam increases as the likelihood ratio score
increases. 80.0% of the 420 domain pairs with likelihood
ratio scores greater than 50 are found in iPfam, a 471-fold
increase over that of random domain pairs. Comparing
Table 3 with Table 4, we conclude that the likelihood ratio
score significantly increases the number of high-confi-
dence domain interaction pairs.

Figure 4 shows the ROC curves of the Bayesian method
using multiple data sources. Combining all six data
sources gives the highest accuracy. It also shows that add-
ing the domain-fusion and domain function information
significantly improves the performance of the prediction.
In addition, we compare the naïve Bayesian approach
with the method by Liu et al. [14] where they multiplied
the likelihoods of the observed protein interactions from

four species to achieve one likelihood function. Figure 4
shows the ROC curves of the two approaches by using the
protein interaction data from the four species. In both
approaches, the expectation score of domain interactions is
used. Although both approaches have similar perform-
ance, one advantage of the Bayesian approach is that other
information such as domain fusion and domain function
can easily be incorporated.

We compare the power of the three methods for predict-
ing domain interactions: evidence counting, naïve Baye-
sian, and logistic regression. Figure 5 shows the ROC
curves for the three methods. It is clear that the Bayesian
approach outperforms the other two. The evidence count-
ing method does not consider the quality of each data
sources, and the logistic regression method is limited by
many missing values. Finally, we select a set of 2,391 high-
confidence domain interactions having the likelihood
ratio value at least 4, among which more than half
(51.9%) are found in the iPfam. This set covers 48.1% of
the data in iPfam with a false positive rate of 2.3%. We list
the top 10 predicted domain interactions that are not
found in iPfam (July 2004 version) in Table 5. Among
them, three were later included in the updated version of
iPfam (Oct. 2005 version), showing the reliability of the
high-confidence domain interactions. The list of the high-
confidence domain interactions is shown in additional
file 6 and likelihood ratio values of 25,352 domain pairs
are given in additional file 7. In these tables, the domain
pairs are sorted based on the Bayesian approach. The
rankings by the three methods, the Bayesian approach,
the logistic regression, and the evidence counting, are also
presented to show the similarity of three methods. We test
the differences of the rankings of the 25,352 domain pairs
by three methods using the Wilcox rank sum test based on
the null hypothesis of no difference between rankings. All
three p-values are around 0.5, showing that the null
hypothesis cannot be rejected. However, it does not indi-
cate that the rankings by three approaches are similar. The

Table 4: The likelihood ratio values of predicted domain 

interactions. The likelihood ratio values of predicted domain 

interaction, the numbers of predicted domain interactions, and 

the overlap with iPfam. Numbers in the first column indicate the 

likelihood ratio values for the domain interactions, and the 

second column is the number of interactions having the 

corresponding likelihood ratio values.

Likelihood ratio 
values

Interactions Overlap with iPfam Fraction Fold

Random 
domain pairs

1,539,135 2,580 0.17% -

> 0 25,352 2,080 8.2% 48

≥ 1 6,386 1,641 25.7% 151

≥ 4 2,391 1,241 51.9% 305

≥ 6 2,044 1,142 55.9% 329

≥ 11 1,683 1,011 60.1% 353

≥ 21 886 634 71.6% 421

≥ 51 420 336 80.0% 471

Table 5: The ten highest ranked domain-domain interactions. The ten highest ranked domain-domain interactions from the Bayesian 

approach which are not in iPfam. iPfam_2005 represents domain interactions found in updated version of iPfam (Oct 2005 version).

Domain 1 Domain 2 iPfam_2005

Pfam ID Accession Pfam ID Accession

WD40 PF00400 Pkinase PF00069

zf-C2H2 PF00096 Pkinase PF00069

zf-C3HC4 PF00097 zf-C3HC4 PF00097

F-box PF00646 Skp1_POZ PF03931

zf-C4 PF00105 Hormone_recep PF00104 x

SMC_hinge PF06470 SMC_N PF02463 x

Cation_ATPase_N PF00690 Cation_ATPase_C PF00689

MutS_V PF00488 MutS_I PF01624

Cadherin PF00028 Cadherin_C PF01049

dsrm PF00035 dsrm PF00035 x
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ROC curves in Figure 5 show that the top ranked domain
pairs by three methods are different.

Comparison with domain interactions in H. pylori

Rain et al. [4] reported a protein-protein interaction data
set for H. pylori using yeast two hybrid assays. This data set
provides the ranges of sequences of the prey proteins
interacting with the bait proteins. We map these ranges in
the preys to the Pfam-A domains when the overlap
between them is larger than 50% of the Pfam domains. As
we do not have such information for the baits, we assume
that all domains in the baits interact with the specific site
of the preys. We obtain a total of 1,101 interactions
between Pfam-A domains. Note that the domain interac-

tions from H. pylori may contain false positives as the
interacting domains in the baits are not known. We com-
pare our predicted domain interactions from the six data
sources using the Bayesian approach with the experimen-
tally derived domain interactions from H. pylori. For com-
parison, we use a subset of the predicted domain
interactions with domains involved in domain interac-
tions in H. pylori. Additional file 8 shows the percentages
of overlaps between the domain interactions from H.
pylori and the predicted domain interactions. The fraction
of domain pairs overlapped with the domain interactions
in H. pylori increases as the likelihood ratio score
increases, confirming the accuracy of the predicted
domain interactions.

The relationship between false positive rate and sensitivity for predicting domain interactions using the Bayesian method with different data sourcesFigure 4
The relationship between false positive rate and sensitivity for predicting domain interactions using the Bayesian method with 
different data sources. The letters Y, W, F, H, C, and G indicate domain interactions based on yeast, worm, fruitfly, humans, 
co-existence, and same GO function, respectively. YWFH.Liu shows the result of predicted domain interactions using the 
extended MLE method defined in Liu et al. [14] with protein interactions of yeast, worm, fruitfly, and humans.
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We also study our scoring algorithm using the H. pylori
database. We infer domain interactions from H. pylori pro-
tein interactions using four scoring functions and com-
pare the predicted domain interactions with the domain
interactions from H. pylori. The number of domains in H.
pylori is 848 and 848*849/2 = 359,976 are potential inter-
acting pairs. From the Expectation scoring function, we
obtain 1,150 predicted domain interactions (larger than
zero). Among them, 750 predicted domain interactions

overlap with the 1,011 domain interactions in H. pylori.
Additional file 9 shows that true positive rate is around
0.8 in 1,150 ranked domain interactions, showing the
accuracy of the scoring functions.

Domain interactions in yeast complexes

We apply the set of high-confidence domain interactions
to examine the detailed protein and domain interactions
in yeast complexes [21]. Figure 6 shows two examples of
protein complexes. Figure 6(a) is the SCF (Skp1-Cdc53-F-
box protein) complex. SCF is a multi-protein complex
with Cdc53, Skp1, and at least three independent F-box
proteins, Cdc4, Met30, and Grr1 [40]. This complex acts
as a ubiquitin ligase catalyzing the final ubiquitin-transfer
reaction in the destruction of G1/S-cyclins. Our prediction
of domain interaction is consistent with the literature in
that only domain PF00646 (F-box domain) of F-box pro-

The relationship between false positive rate and sensitivity for predicting domain interactions using different methods : evi-dence counting, logistic regression, and naive BayesianFigure 5
The relationship between false positive rate and sensitivity for predicting domain interactions using different methods : evi-
dence counting, logistic regression, and naive Bayesian.

Table 6: 

Prediction

Interacting Non-interacting

Observed TP FN

Non-observed FP TN
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teins such as Cdc4, Met30, and Grr1 interact with domain
PF01466 of protein Skp1. Domain PF00400 (Leucine
Rich Repeat domain) and domain PF00560 (WD domain,
G-beta repeat) do not participate in protein-protein inter-
actions. Patton et al. [40] suggested that Cdc53 is a scaf-
fold protein for Cdc34 and Skp1 by showing that it has
independent binding sites for Cdc34 and Skp1. Our result

also shows that the domain PF00888 in the protein Cdc53
has interaction with both the domain PF00179 of the pro-
tein Cdc34 and the domain PF01466 of the protein Skp1.

Figure 6(b) shows a Pyruvate dehydrogenase (PDH) com-
plex. This complex converts pyruvate to acetyl CoA. The
interaction between protein Lat1 and protein Pdb1 is
mainly due to the interaction between domain PF02817
and domain PF02780. Domain PF02817 is an E3 binding
domain, and PF02780 is the C-terminal domain of tran-
sketolase, which has been proposed as a regulatory mole-
cule binding site. The interaction between protein Lap1
and protein Lpd1 occurs through the interaction of
domain PF02817 and domain PF02852, which is the Pyri-
dine nucleotide-disulphide oxidoreductase, dimerisation
domain.

Discussion
The basic units of proteins are domains. If two proteins
interact, at least one pair of domains from each of the two
proteins interact. However, current biotechnologies such
as the yeast-two-hybrid system can only detect protein
interactions and it is tedious and labor intensive to derive
domain interactions. The prediction of domain interac-
tions based on protein interactions from one species has
been formulated as a missing value problem and an EM
algorithm has been developed to achieve this objective
[13]. The method has been modified to integrate protein
interaction data sets from multiple species and the results
have been improved [1,14]. In this study, we further
explore the problem of domain-domain interactions from
multiple data sources including protein interactions from
four species; yeast, worm, fruitfly, and humans, as well as
domain fusion and domain function information. We
first provide a score function, the expected number of
domain-domain interactions in the observed interactions,
to infer the reliability of domain interactions. By compar-
ing with domain interactions in iPfam, we show that the
new score outperforms the score of Deng et al. [13] for
predicting domain interactions. The true positive rate
among highly ranked domain interactions predicted from
the new score is higher than that from Deng et al. [13]. We
further show that, by including the domain fusion and
gene ontology information, the accuracy of the predicted
domain interactions can be significantly increased. We
also show that the simple naïve Bayesian approach works
well to combine multiple biological information for pre-
dicting high-confidence domain interactions. There are
several limitations of this study. First, we did not include
all the interaction data from all the species as Riley et al.
[1] did. The reason is that the size of data in other species
is much smaller than those in the four species. Second, the
protein interaction data sets used in this study are incom-
plete and contain many false positives. Additional file 1
shows the ROC curves of the prediction results using var-

Two examples of yeast complexes with predicted domain-domain interactions and MIPS physical protein interactionsFigure 6
Two examples of yeast complexes with predicted domain-
domain interactions and MIPS physical protein interactions. 
The black arrows are predicted DDIs, the grey arrows are 
DDIs in iPfam, and the red arrows are PPIs from DIP. (a) SCF 
(Skp1-Cdc53-F-box protein) complexes. Cdc53 controls G1/
S transition. Cdc34 is E2 ubiquitin-conjugating enzyme. Skp1 
is kinetochore protein complex Cbf3, subunit D. Cdc4, 
Met30, and Grr1 are the F-box proteins. (b) Pyruvate dehy-
drogenase complexes. Pdb1 is pyruvate dehydrogenase 
(lipoamide) beta chain precursor, Pda1 is pyruvate dehydro-
genase (lipoamide) alpha chain precursor, Lpd1 is dihydrol-
ipoamide dehydrogenase precursor, Pdx1 is pyruvate 
dehydrogenase complex protein X, and Lat1 is dihydrolipoa-
mide S-acetyltransferase. For details, see the main text.
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ious values of false positive (fp) and false negative (fn). In
particular, we compared the result based on the fp and fn
values presented in Table 1 with the result based on fp =
fn = 0 used in Riley et al. [1]. Depending on species, the
former approach is sometimes better than or similar to the
latter approach, and sometimes is worse. Third, although
we have shown that the naïve Bayesian approach outper-
forms the evidence counting and the logistic regression
methods, there is room to improve the prediction by con-
sidering the correlations between data sources.

Conclusion
We have shown that the likelihood ratio score provides a
mean for evaluating the reliability of domain interactions.
Based on the likelihood ratio score, we have derived a set
of high-confidence domain interactions. This set has
important implication in understanding protein func-
tions at the domain level as well as in understanding pro-
tein interactions.
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